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A STRONGER FORM OF A THEOREM OF FRIEDBERG

KEMPACHIRO OHASHI*

In Friedberg [l], Theorem I, it is shown that every nonrecursive re-
cursively enumerable (n.r.e.) set is the union of two disjoint n.r.e. sets.
The proof is based on the simultaneous enumeration of recursively enumer-
able (r.e.) sets. On the other hand, Suzuki, [2], presents the simultaneous
enumeration of recursive sets.

In this note, applying the method of Friedberg to the simultaneous
enumeration of recursive sets, we will prove the following theorems:

Theorem 1. For any given n.r.e. set S, there is a finite sequence of
r.e. sets Sλ, S2, . . Sn such that

1 U S, = S,

2 S, Π Sj = φ (empty set) for i f j ,

3 for any j (j = 1, 2, . . , n), there is no recursive set R such that

Sj = s n R.

Theorem 2. For any given n.r.e. set S, there is an infinite sequence

of r.e. sets Su S2, . . . . such that

CO

1 (J Sj = S
7 = 1

2 SinSj = φ dϊj)

3 for any integer j> 0, there is no recursive set R such that

Sj =s n R.

*The author wishes to thank Prof. Hartley Rogers, Jr. for valuable suggestions and
kind encouragement regarding the presentation of this paper.
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Proof of Theorem 1. Let E = {S, Ru R2,. . .} be a simultaneous enu-
meration of S and all recursive sets, and Sa or R* denote the set of integers
which, at or before step a in E, have been listed as members of S or R{.

Sf is the set of integers which, at or before step a in E, have been
listed as members of S7 according to the rule below. Ri is called satisfied
at step a if R* Π R* f φ for any j = 1, 2, . . . , n.

Sj is the r.e. set which is constructed as follows; S° = φ (j=l,2,..., n).
Suppose ne Sa - Sa~ι.
(1) Let ia be the lowest integer such that ne Ra

ia and Ra

ia is unsatisfied
at step a mE. If j a is the lowest integer such that Ra

ia Π S?~l = φ, then let
n be listed as members of Sja. (ia is attacked at step a).

(2) If any Ri that contains n is satisfied or if there is no R that contains
ny then let n be listed as a member of Si. It is evident that Sj (j = 1,2,..., n)

n

is r.e., and S = ( J •$/. Suppose that there are integers i, j such that Sj =

S Π Ri. Let R'k be the complement of Ri. Since both Ri and R~k are unsatis-
fied at any step a and there is at most a finite number of Sj, there is a step
a0 such that neither i nor k is attacked after step a0. Hence, after step a0,
if n~e~Sa and ne R* u Rk, then ne S, where S is the complement of S. More-
over, for any integer n, there is an integer an such that ne R* u Rt for
a > an. Thus

S = ( Λ , β 0 U < 0 - S β ° ) u { J J [x\(xeSa - S - 1 ) &(*€*? U i φ ] } ,

and then S is r.e. that is contrary to the hypothesis of S being n.r.e. set.
Therefore, there is no j such that Sj = S Π R{ for some i. Thus the proof is
complete.

Proof of Theorem 2. R{ is called fc-satisfied if Ra

{ n Sy ^ 0 and i + j=k.
Let S be the r .e. set that is constructed as follows;

S ° = 0 (j=l,2, . . . )

Suppose neS* - S*" 1 .
(1) Let &Λ be the lowest integer such that there are Sy, Ra

{, where / ^ is
&a-unsatisfied and ne R*. Moreover, let zΛ be the lowest integer such that
Ra

ia is ka-unsatisfied and neRa

ia. (i is attacked.) Then let n be listed as
member of Ska -**•

(2) If there is no R!\ that contains n, let n be listed as member of Sλ.

It is evident that Sj (j = 1, 2, . . .) is r .e. and that S = \J Sj.

Suppose there are integers i, j such that Sj = S Π Riy and that Rk is the
complement of Ri. Ri is i+j + 1 - unsatisfied and Rk is k+j - unsatisfied.
Moreover, for Rt s - unsatisfied, t can not be attacked more than s - t
times. Hence, there is a step a0 such that neither i nor k is attacked after
step a0. Therefore,

S = (Rai° U Ra

k° ' Sa°) u { U [χ\ (χeSa - S * " 1 ) & ( * e R\ U Λjf) ]}

and then S (the complement of S) is r.e. that is contrary to the hypothesis of
S to be n.r.e. Thus, Theorem 2 is proved.



12 KEMPACHIRO OHASHI

Theorem 3 (Friedberg). For given n.r.e. set S, there is a finite se-
quence of n.r.e. sets Su S2 . . , Sn such that

n

(1) S = U Sf ,

(2) Si nSf = Φ (i fί)

Proof. Let Sj be the r.e. set given in Theorem 1. If S; is a recursive
set, then S ; = R{ for some i. Hence,

Sj = s n Sf =s n R{.

That is contrary to Theorem 1.
Similarly, we have

Theorem 4. For any given n.r.e. set S, there is an infinite sequence of
n.r.e. sets S1? S2, . . . such that

oo

(1) S= U Sf,

(2) Si'nSj = Φ dϊj).
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