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A STRONGER FORM OF A THEOREM OF FRIEDBERG

KEMPACHIRO OHASHI*

In Friedberg [1], Theorem I, it is shown that every nonrecursive re-
cursively enumerable (n.r.e.) set is the union of two disjoint n.r.e. sets.
The proof is based on the simultaneous enumeration of recursively enumer-
able (r.e.) sets. On the other hand, Suzuki, [2], presents the simultaneous
enumeration of recursive sets.

In this note, applying the method of Friedberg to the simultaneous
enumeration of recursive sets, we will prove the following theorems:

Theorem 1. For any given n.v.e. set S, theve is a finite sequence of
v.e. sets Sy, Sa, . . S, such that

1 LnJ S; =S,
ji=1

2 S;NSj=¢ (empty set) for i#j,
3 foranyj (G =1,2,..,n), there is no vecursive set R such that
Sj=SNR.

Theorem 2. For any given n.v.e. set S, there is an infinite sequence
of r.e. sets Sy, Sz, . . . . Such that

©o
1 UJs;=s
i=1

2 S;NSj=¢  (i#))
3 for any integer j> 0, theve is no vecursive set R such that

S; =S NR.

*The author wishes to thank Prof, Hartley Rogers, Jr. for valuable suggestions and
kind encouragement regarding the presentation of this paper.
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Proof of Theorem 1. Let E = {S, Ry, R.,. . .} be a simultaneous enu-
meration of S and all recursive sets, and S* or R? denote the set of integers
which, at or before step a in E, have been listed as members of S or R;.

S? is the set of integers which, at or before step a in E, have been
listed as members of S; according to the rule below. R; is called satisfied
atstepa if Rf N R # ¢ foranyj=1,2,...,n.

S; is the r.e. set which is constructed as follows; S;’ =¢(j=1,2,...,n).

Suppose n € S* - S, ’

(1) Let i, be the lowest integer such thatzne Ry, and R;, is unsatisfied
at step a in E. If j, is the lowest integer such that Rfa N S;:‘la’l = ¢, then let
n be listed as members of Sj,. (i« is attacked at step a).

(2) If any R; that contains » is satisfied or if there is no R that contains
n, then let # be lis::ed as a member of S;. It is evident thatS; (j=1,2,...,n)

is r.e., and S = U S;. Suppose that there are integers ¢, j such that S; =
i=t

S N R;. Let R be the complement of R;. Since both R; and R are unsatis-
fied at any step @ and there is at most a finite number of S;, there is a step
ao such that neither ¢ nor k is attacked after step a,. Hence, after step a,,
if €S and ne R? U RZ, then ne€ S, where S is the complement of S. More-
over, for any integer », there is an integer a, such that ne R? U RZ' for
a > a,. Thus

S =(R;°U R -5"9 U {alSJa [x | (x€8® -5 & (xe RY URD 1},
) o

and then S is r.e. that is contrary to the hypothesis of S being n.r.e. set.
Therefore, there is no j such that S; =S N R; for some ¢. Thus the proof is
complete.

Proof of Theorem 2. R; is called k-satisfied if R N S # ¢ and i+j =k.
Let S; be the r.e. set that is constructed as follows;

Si=¢ (j=1,2,...)

Suppose neS? - St

(1) Let k, be the lowest integer such that there are S;‘, Rf, where R? is
k. -unsatisfied and ze Rf. Moreover, let i, be the lowest integer such that
R;, is ks-unsatisfied and ne R],. (i is attacked.) Then let n be listed as
member of S, -i,-

(2) If there is no R that contains n, let n be listed as member of S;.

It is evident that S; (j=1, 2, . . .) is r.e. and that S = {J ;.
=4

Suppose there are integers ¢, j such that S; =S N R;, and that R, is the
complement of R;. R; is i+j+1 - unsatisfied and R, is 2+j - unsatisfied.
Mobreover, for R, s - unsatisfied, { can not be attacked more than s - ¢
times. Hence, there is a step a, such that neither 7 nor % is attacked after
step a,. Therefore,

S=(R°URL -5y {aLJa [x](xes® -5 &(xe R U RE) ]}
(1]

and then S (the complement of S) is r.e. that is contrary to the hypothesis of
S to be n.r.e. Thus, Theorem 2 is proved.
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Theorem 3 (Friedberg). For given n.v.e. set S, theve is a finite se-

quence of n.rv.e. sets Sy, Sz .., S, such that
(1) s=U s,
i=1
(2) S; NS =9 (i #9)

Proof. Let S; be the r.e. set given in Theorem 1. If §; is a recursive
set, then S; = R; for some ¢. Hence,

S;i=8SNS;=8NR;.

That is contrary to Theorem 1.
Similarly, we have

Theorem 4. For any given n.v.e. set S, theve is an infinite sequence of
n.v.e. sets Sy, S, . . . such that

o]
(1) S = U Si:
]’:l
(2) SiNS;=¢ (@#35) .
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