NOTES ON THE AXIOMATICS OF THE PROPOSITIONAL CALCULUS

C. A. MEREDITH and A. N. PRIOR

In this paper the proofs, unless otherwise stated, are Meredith's, and the bracketed notes introducing each item or commenting on it, Prior's. The proofs are all compressed by Meredith's device of writing 'Dmn' for the most general result (i.e. without any unnecessary identification of variables) of detaching the formula n, or some substitution in it, from the formula m , or some substitution in it.

1. Łukasiewicz's Deduction Shortened. (This is a very slight abridgement of £ukasiewicz's proof that CCCpqrCCrpCsp suffices for classical C. It seems worth including, as Łukasiewicz's own paper [5] is now out of print and not easily obtainable.)
2. $C C C p q r C C r p C s p$
3. сССрqрСrp $=$ DDD1D111n
4. $C C C p q r C q r=$ DDD1D1D121n
5. $\mathrm{CpCCpqCrq}=\mathrm{D} 31$
6. CCCpqCrsCCCqtsCrs $=$ DDD1D1D1D141n
7. $\mathrm{CCCpqCrsCCpsCrs}=\mathrm{D} 51$
8. $\mathrm{CCpCqrCCpsrCqr}=\mathrm{D} 64$
9. $\operatorname{CCCCCpqrtCspCCrpCsp~}=\mathrm{D} 71$
10. $\subset C p q \subset p q=\mathrm{D} 83$
11. $\operatorname{CCCCrpCtpCCCpqrsCuCCCpqrs~}=\mathrm{D} 18$
12. $C C C C p q r C s q C C C q t s C p q=D D 10.10 . \mathrm{n}$
13. CCCCpqrCsqCCCqtpCsq $=\mathrm{D} 5.11$
14. $C C C C p q r s C C s q C p q=D 12.6$
15. CCCpqrCCrpp $=\mathrm{D} 12.9$
16. срССрqq $=$ D3.14
17. $\subset C p q C C C p r q q=\mathrm{D} 6.15$
*17. CCpqCCqrCpr $=$ DD.13D.16.16.13
*18. $\subset C \subset p q p p=\mathrm{D} 14.9$
*19. $C p C q p=\mathrm{D} 33$
18. Two Axioms for C-Verum. (Meredith's axiomatisation--the development is only given for the first of the two-of that fragment of the two-valued logic in which implication is supplemented by a constant true proposition, here symbolised as ' I ' --the same symbol is used for the axiom, but the context prevents confusion. This is the solution of a problem put to Meredith in 1957 by Lejewski, whose own work in [3] gave him a special interest in ways of completing the propositional calculus from its implicational fragment. It is clear that if you know of an axiom AX in C and N, which will yield the complete propositional calculus when subjoined to a basis known to be complete for C-pure, you can obtain a single axiom for $C-N$ by replacing I in Meredith's $C-I$ axiom by AX. It may be noted that a $C-I$ single axiom must in the nature of the case be non-organic, i.e. must contain a law of the system as a part, namely the constant I. As with some systems considered in later sections, a shorter total axiomatisation seems possible with two organic axioms than with a single non-organic one. In the present case, the pair consisting of Łukasiewicz's CCCpqrCCrpCsp and the constant I is shorter than either of Meredith's single axioms.)
(a) CCCpqCrCIsCCspCrCtp
(b) CCCpqCIrCsCCrpCtCup
19. $\operatorname{CCCpqCrCIsCCspCrCtp}=(a)$
20. $\operatorname{CCCtpCpqCCspCrCtp}=\mathrm{D} 11$
21. $\operatorname{CCCpqCtpCCspCrCtp~}=\mathrm{D} 12$
22. $\operatorname{CCrCpCqpCtCCspCpCqp~}=\mathrm{D} 31=\mathrm{D} 33$
23. $C \subset r C C s p \subset р С q р С и C t C C s p C p C q p=\mathrm{D} 34$
24. $С с г р с р С q р=$ DDD53nn
25. $\mathrm{CCqrCqCpr}=\mathrm{D} 16$
26. $\operatorname{CCrCqpCsCpCqp~=~D36~}$
27. $\operatorname{CCr} C p C q p C t C s C p C q p=\mathrm{D} 38$
28. $C p C q p=$ DDD96nn
29. $C p C q C r p=\mathrm{D} 7.10$
30. $\mathrm{CpCqCrCsp}=\mathrm{D} 7.11$
31. $\operatorname{CCCsCpqpCrCtp~}=\mathrm{D} 1.12$
32. $C C p C r C p q C s C t C r C p q=\mathrm{D} 1.13$
33. $\subset \subset p C r \subset p q C r C p q=$ DDDD14.14.n.n.n
34. $\mathrm{CCqrCsCqCpr}=\mathrm{D} 77$
35. $\mathrm{CtCCqrCsCqCpr}=\mathrm{D} 10.16$
36. CCCqCprsCCqrCts $=\mathrm{D} 1.17$
37. CCCpqCIrCsCCrpCtCup $=$ D18.1
38. CCCpqrCsCtCCrpCuCrp $=\mathrm{D} 18.19$
39. CCCpqrCCrpCsCtp $=$ DD15.20.n
40. CCrpCCCpqrCsp $=\mathrm{D} 15.21$
41. СССрqrССrpp $=\mathrm{D} 15.22$
42. $\operatorname{CCCCrppsCCCpqrCus~=~D1.D11.23~}$
43. CCCpqrCtCCrpCsp $=$ D24.7
44. $C C p C p q C r C s C p q=D 1 . D 1.11$
*27. $\operatorname{CCCpqrCCrpCsp~}=$ DDD26.25.n.n
(In view of the next item, the proof of 7 and 24 , even without 27 , establishes sufficiency for C-pure. The above deductions will also go through if I in the axiom is replaced by t, the result of this replacement being therefore a single axiom for C-pure. To prove the constant I itself, prove Cpp and CrCsCpp in C-pure, and the constant is obtainable as DDDD.Ax. CrCsCpp.Cpp.n.n.)
45. 2-Axiom 2-Valued C-Pure.
46. $\operatorname{CCCpqrCCrpp}$
47. CCqrCqCpr
48. $\operatorname{CCCCrppCpqCpq}=\mathrm{D} 11$
49. $\operatorname{CCCpqrCsCCrpp}=\mathrm{D} 21$
50. CpCCpqq $=\mathrm{D} 34$
51. $\operatorname{CCCCCprqqpp~}=\mathrm{D} 15$

52. CCCCCpqrsCCrppCCrpp $=\mathrm{D} 74$
53. CCCCrppCCCpqrsCCCpqrs $=\mathrm{D} 18$
54. $\mathrm{CCqrCsCqCpr}=\mathrm{D} 22$
55. CCCpqrCCrpCsp $=\mathrm{D} 9.10$
56. 2-Axiom 2-Valued C-Pure (Others). (About the time when Meredith was circulating the preceding item, it was noted by Ivo Thomas that the sufficiency of certain axiom-pairs followed easily from Łukasiewicz's proof in [6], given in D-form in [10], pp. 318-9, that in the Tarski-Bernays axioms $C C p q C C q r C p r, C C C p q p p, C p C q p$, the last one may be replaced by any formula of the form $С р С \alpha \beta$. For example, we have the following deductions, starring the probanda:-
57. $с С С р q р С$ рр
*2. $C \subset p q C C q r C p r$
58. $\subset С р С р q$ CrCpq $=$ DD221
*4. $\operatorname{CrCCCрqрр~}=С р С \alpha \beta=\mathrm{D} 31$
*5. $\subset C C p q p p=\mathrm{D} 4 \mathrm{n}$, for any thesis n ;
and the following:-
*1. CCCpqpp
59. CCpqCsCCqrCpr
*3. $\mathrm{CuCCCsCCqrCprtCCpqt}=C p C \alpha \beta=\mathrm{D} 22$
*4. $C C p q C C q r C p r=\mathrm{DD} 3 \mathrm{nl}$, for any n .
When Thomas sent these results to Meredith, the latter replied, in a letter of August, 1958, that he knew the pair CCCpqpCrp, CCpqCCqrCpr, and (i) to the other pair he added CCCpqpp with CCpqCCqrCsCpr, CCpqCCqrCpCsr. He further noted (ii) that Łukasiewicz’s CpC $\alpha \beta$ result showed that Pierce and Syll, i.e. CCCpqpp and CCpqCCqrCpr, give Weak Syll, i.e. CCqrCCpqCpr. Putting capitalised variables for implicationse.g. $C P C q P$ for $C C r p C q C r p-T h o m a s ~ c o m m e n t s$, 'I fill in the reasoning thus: Peirce and Syll give themselves capitalised, $C \subset p q C \alpha \beta$ (Syll), and so
by the £ukasiewicz result (1) $C P C Q P$. Peirce and Syll also give (2) $C C C p q C q r C C p q C p r$, hence by Syll, (1), (2) we get Weak Syll'. Finally, Meredith adds in his letter the theorem that follows below. It may be added that before $\ddagger u k a s i e w i c z ' s ~ r e s u l t, ~ W a j s b e r g ~ h a d ~ t h e ~ t w o ~ T h o m a s ~ p a i r s ~ a b o v e, ~$ in [14], with more difficult proofs.) (iii) An allied result: Either Syll works with $\operatorname{CCCr} C p q p p$.
60. $C C C r C p q p p$
61. $C C q r C C p q C p r$
62. $\operatorname{CCsCCrCpqpCsp}=\mathrm{D} 21$
63. CCCCrpqpCrp = D32
*5. CCCpqpp = D3DD232
64. $C C s C q r C s C C p q C p r=D 22$
65. $\mathrm{CCqrCCsCpqCsCpr}=\mathrm{D} 62$
66. $\operatorname{CCrCsCCpqpCrCsp}=\mathrm{D} 75$
67. $\operatorname{CCrpCCCpqrp}=\mathrm{D} 82$
68. CCrpCpp $=$ DD249
69. $C q C p p=D 4.10$
70. $C q C r C p p=$ DD7.11.11
71. CCCqrqCCqrr $=$ DD921
72. CCCqCpprr $=\mathrm{D} 13.12$
73. $C C p q C r C p q=D D 2.14 .7$
74. CCCpqpCrp $=\mathrm{D} 8.15$
*17. $C p C q p=\mathrm{D} 4.16$
75. $C C C q r C p q C C q r C p r=D D 971$
*19. CCpqCCqrCpr $=$ DD2.18.15
For 1 and 2. $C C p q C C q r C p r$ I can give no better than DDDD22211 = CCCpqpp and thence via Łukasiewicz's result above (i.e.(ii)).
76. C-Pure with Identity. (All the axiom-pairs in the preceding sections have a total of 9 C 's, distributed variously between the axioms. This set me wondering whether there could be a pair with the distribution 1-8; with results which I have described in [9]. When I put this problem to Meredith in 1959, he did not solve it, but he did in 1960 produce not a $9-\mathrm{C}$ but an $8-\mathrm{C}$ pair with the $1-\mathrm{C}$ axiom Cpp as one member. His independence-proof and deductions are given below. The 4 -valued matrix verifies Axiom 1 and $C O p$ and falsifies $C p p$, showing independence, while the inner 3 -valued matrix verifies both 1 and $C C p p p$, falsifying $C p p$ and allowing no constant k such that $C k p$ for all p. The deductions are from Axiom 1 only, and illustrate the extreme difficulty of getting rid of its extra letter of simplification; but the set of section 3 is given by 12 and the detachment of $C p p$ from 20 . The 'twiddle' or tilde signifies deductive equivalence. For other uses of the two axioms which are together equivalent to 1 , see I.4.)
77. CCCpqrCCrpCsCtp
78. $C p p$

1 with
3. $c \subset p p p$
is saturated and
rejects both $C p p$ and $C O p$

C	1	2	3	0
1	1	3	2	0
2	1	3	1	3
3	1	1	2	2
0	1	1	1	1

$1 \sim C C p q C C q r C p C s r, C C C r C p q p p$.

1. CCCpqrCCrpCsCtp

Axiom
2. $C C C r C p q p C s C t p$
= DDDD1D111nn
3. $C C C q p r C p C s r$
= DDDD121nn
4. $C r C u C C r p C s C t p$
= D31
5. CCCuqCtpCCCqrpCsCtp = DDDD1D141nn
6. CCCrqCsCtpCuCCrpCsCtp $=\mathrm{D} 51$
7. $C C q C s C t p C u C C C q r p C s C t p=D D 64 \mathrm{n}$
8. CCCCCpqruCtpCCrpCsCtp = DD71n
9. $C p C q C r C s p=D 32$
10. $C C p C r C p q C s C t C r C p q=D D 69 n$
11. $C C p C r C p q C r C p q=$ DDDD10.10 nnn
12. CCCpqrCCrpp = D11.D11.1
13. $C r C q C C r p p=D 3.12$
14. CCpqCsCCCprqq = DD6.13.n
15. CCCCpqtqCsCCCprqq = DD7.14.n
16. $C C C s C C C p r q q C C p q t C C p q t=\mathrm{D} 12.15$
17. $C C C C C p r q q t C s C C p q t=\mathrm{D} 8.16$
18. $C C p q C C q C p r C p r=D D 17.12 \mathrm{n}$
19. $C C C C q C p r C p r C C p q t C C p q t=\mathrm{D} 18.18$
20. $C C p q C C q r C p C s t=$ D19.6
6. Variations on Tarski. (I once raised with Meredith the question whether Łukasiewicz's result, that from $C C p q C C q r C p r, C C C p q p p$ and any $C p C \alpha \beta$ we could obtain the remaining Tarski-Bernays axiom $C p C q p$, would still hold if we replaced $C C C p q p p$ with Tarski's original axiom $C C C p q r C C p r r$. I could prove particular cases of it, e.g. CpCpp works as follows:-

1. $C C p q C C q r C p r$
2. $C C C p q r C C p r r$
3. $c p c p p$
4. $C C C C q r C p r s C C p q s=\mathrm{D} 11$
5. CCpCqrCCsqCpCsr $=\mathrm{D} 44$
6. $C C C p p q C p q=\mathrm{D} 13$
7. $C C C C p r r s C C C p q r s=\mathrm{D} 12$
8. $C C C p q p C p p=\mathrm{D} 76$
9. $C C p C p q C C p q C p q=\mathrm{D} 48$
10. $C C p p C p p=\mathrm{D} 93$
11. $\subset \subset р С р р С р р=\mathrm{D} 2.10$
12. $C p p=\mathrm{D} 11.3$
13. $C C p C p q C p q=\mathrm{D} 2.12$

14. $C C C p q p C C p q q$	$=\mathrm{D} 4.13$
15. $C C C p p p p$	$=\mathrm{D} 14.8$
16. $C C C p q p p$	$=\mathrm{D} 7.15$

But I could obtain no general result either way. Meredith pointed out in July 1961 that the matrix

C	1	2	3
${ }^{*} 1$	1	3	3
2	1	3	3
3	1	1	1

verifies Syll, Tarski and $C p C C p q q$ but falsifies $C p C q p$. In October of the same year he implicitly extended this result to three other formulae which he shows below to be equivalent to Tarski. Capitalised variables stand for implications, e.g. CPP is CCpqCpq.)

Subject to CCpqCCqrCpr the four theses (A) CCCpqpCCprr, (B) $C C p q C C C p q p r$, (C) $C C C p q r C C p r r$, (D) $C C p r C C C p q r r$ are equivalent.

The strongest identity (derivable from Syll with any of these) is $C C P q C P q$; the strongest Peirce is $C C C C P q r C P q C P q$; the strongest Simp is CCPqCRCPq.

Refutation of $C \bar{P} P$ by

C	1	2	3	4	0
$*_{1}$	1	1	0	0	0
2	0	0	0	0	0
3	0	4	0	0	0
4	1	1	0	0	0
0	1	1	1	1	1

(A) CCprr $=1$ unless $p=0$, but $C C O q O=0$; hence $C C C p q r C C p r r=1$. CCpqCCqrCpr $=1$ if $p=0$ or $p=2$ or $q=2$; also if $p=4 q=1$, (CC1rC4r $=$ 1); also if $p=4 q=1(C C 1 r C 1 r=1)$; also if $p=3, q \neq 2$. But CC32C32=0.

Deductions from Syll alone:-

1. $C C p q C C q r C p r$
2. $\operatorname{CCCCqrCprsCCpqs}=\mathrm{D} 11$
3. $\mathrm{CCpCqrCCsqCpCsr}=\mathrm{D} 22$
4. $\operatorname{cCpqCCCprsCCqrs}=\mathrm{D} 21$
5. CCCCCprsCCqrstCCpqt $=\mathrm{D} 14$
6. $\mathrm{CCqsCCpqCCsrCpr}=\mathrm{D} 23$
7. CCtCpqCCqsCtCCsrCpr $=\mathrm{D} 36$

Adding as second axiom (A) we have:-
8. СССрqрССриr (Ax)
9. $\operatorname{CCCpqpCCtrCCpCrsCts}=\mathrm{DD} 183$
10. $C C C C p q C C C p q C q r C p r s s=\mathrm{D} 89$
11. CCsCCpqpCCCCprrtCst $=\mathrm{D} 68$
12. CCCCCpqrrsCCpqs $=\mathrm{D} 10.11$
13. $C P C C P q q=\mathrm{D} 12.8$
14. $C C p C Q r C Q C p r=D 3.13$
15. $\operatorname{CCprCCCpqpr}=(\mathrm{B})=\mathrm{D} 14.8$
16. $C C P q C P q=\mathrm{D} 12.12$
17. $C C C C P q r C P q C P q=D 15.16$
18. CCCprsCCpqCCqrs $=\mathrm{D} 14.4$
19. CCCCPqrsCCsCPqCPq $^{\text {1 }}=\mathrm{D} 18.17$
20. $C C P q C C r C P q C P q=D 12.19$
21. $C C P q C R C P q=$ DD1.20.12
22. $C C s C P q C C C s r C P q C P q=D 2.19$
23. $\mathrm{CCCsrCPqCCsCPqCPq}=\mathrm{D} 14.22$
24. CCCpqCCprrCCprr = D23.8
25. $\mathrm{CCCprCCpqrCCprr}=$ DD1.14.24
26. CCCpqrCCprr $^{2}=(\mathrm{C})=$ DD1.21.25
27. $\operatorname{CCprCCCpqrr}=(\mathrm{D})=\mathrm{D} 14.26$

Adding (B) to 1-7 we have:-
8. $C C p r C C C p q p r$ (Ax)
9. $\operatorname{CCsCCpqpCCprCsr}=\mathrm{D} 38$
10. $C C C p q s C C p r C C s p r=\mathrm{D} 29$
11. $C C C r s C C p q p C C r t C C p r t=\mathrm{DD} 199$
12. CCCpqsCCtCspCCprCtr $=$ DD1.10.3
13. CCCCtrqsCCtuCCCtrtu = DD1.12.11
14. ССХССрrСССрqpr = DD1.6.13
15. CCCpqsCXCCCCsprtCCprt $=\mathrm{D} 5 \mathrm{D} 7.14$
16. СССрqрССССрррrСXr = DD1.15.9
17. СССрqрССргCXr $=$ DD3.16.8
18. $C C C P C C C C s P r t C C P r t u C X u=D D 17.15 . \mathrm{n}$
19. $C C C P P P q C P q=D D 18.9 . \mathrm{n}$
20. $C C P q C P q=D D 1.8 .19$
21. $C C C C P q r C P q C P q=D 8.20$
22. $C C P C P q C P q=D 2.21$
23. $\subset С С р q p С C p r r=(\mathrm{A})=$ DD1.17.22

Adding (C) to 1-7 we have:-
8. CCCpqrCCprr (Ax)
9. 8Cpq $^{\text {CCprrCCprr }}=\mathrm{D} 88$
10. CCsCCpqrCCCCprrtCst $=\mathrm{D} 68$
11. CCCpqsCCCCprrtCCsrt $=\mathrm{D} 2.10$
12. CCCCCCprrCCsrtCCsrtuCCCpqsu $=\mathrm{D} 10.11$
13. CCCpqsCCpsCCsrr $=\mathrm{D} 12.5$
14. $C C C p q p C C p r r=(\mathrm{A})=\mathrm{DD} 1.13 .9$

Adding (D) to 1-7 we have:-
8. $C \operatorname{cprCCCpqrr}$ (Ax)
9. $\operatorname{CCsCCpqrCCprCsr}=\mathrm{D} 38$
10. CCCpqrCCprr $=\mathrm{D} 98$
(Meredith has noted that although Tarski cannot replace Peirce in Łukasiewicz's theorem, Tarski and Simp will yield the full C calculus when combined with either Syll, whereas with Pierce we must have CCpqCCqrCpr. With Tarski and the weaker Syll the initial deductions are

1. $C C q r C C p q C p r$
2. CCCpqrCCprr
3. $C p \subset q p$
4. $С \subset р q$ СрСrq $=\mathrm{D} 13$
5. C CqCpCqrCpCqr $=\mathrm{D} 23$
6. $\subset p C \subset p q q$
= D54
The rest follows from the results in the following section.)
7. The System B-C-I. (Meredith observed independently some of the relations between implicational calculus and combinatory logic developed in Curry and Feys [2], 9E. In particular, if we write B for CCqrCCpqCpr, then for any formula a, b, c, DDDBabc = DaDbc, just as in combinatory logic $\mathrm{Babc}=\mathrm{a}(\mathrm{bc})$; if we put C for $C C p C q r C q C p r$, DDDCabc $=$ DDacb, just as in combinatory logic $\mathrm{Cabc}=\mathrm{acb}$; and if we put I for $C p p$, $\mathrm{DIa}=\mathrm{a}$, just as $\mathrm{Ia}=\mathrm{a}$ in combinatory logic. $C p C q p$ and $C C p C p q C p q$ are similarly related to the combinators K and W . Following the practice in combinatory logic, Meredith will often write, say, $C \operatorname{CqrCCpqCpr} \sim \lambda \mathrm{a} \lambda \mathrm{b} \lambda \mathrm{cDaDbc}$. The following is his 1956 summary of deductive equivalents of the set $\mathrm{B}, \mathrm{C}, \mathrm{I}$.)
```
B = CCqrCCpqCpr = \lambdaa\lambdab\lambdacDaDbc
C = CCpCqrCqCpr = \lambdaa\lambdab\lambdacDDacb
I = Cpp = \lambdaaa
T = CpCCpqq = = a }\lambda\textrm{bDba
P = CCpqCCqrCpr = \lambdaa\lambdab\lambdacDbDac
```

3 Axiom bases: T, I and either B or P
2 Axiom bases: I and either

$$
\begin{gathered}
\mathrm{Q}_{1}=C C p C q r C C s q C s C p r=\lambda \mathrm{a} \lambda \mathrm{~b} \lambda \mathrm{c} \lambda \mathrm{dDDadDbc} \\
\text { or } \\
\mathrm{Q}_{2}=C C s q C C p C q r C s C p r=\lambda \mathrm{a} \lambda \mathrm{~b} \lambda \mathrm{c} \lambda \mathrm{dDDbdDac} \\
\text { or } \\
\mathrm{R}_{1}=C C C C p q r s C C q r C p s=\lambda \mathrm{a} \lambda \mathrm{~b} \lambda c \mathrm{c} \mathrm{a} \lambda \mathrm{dDbDdc} \\
\text { or } \\
\mathrm{R}_{2}=C C q r C C C C p q r s C p s=\lambda \mathrm{a} \lambda \mathrm{~b} \lambda \mathrm{cDb} \lambda \mathrm{dDaDdc}
\end{gathered}
$$

1 Axiom bases: $\begin{aligned} & \bar{Q}_{1}=\lambda a \lambda b \lambda c \lambda d D D a d D D b I c \\ & \bar{Q}_{2}=\lambda a \lambda b \lambda c \lambda d D D b d D D a I c\end{aligned}$
Putting α for DCC, i.e. CqCCpCqrCpr, we have
DDoo $\alpha=\mathrm{C}$
DDDPPDPPT $=\mathrm{C} ; \mathrm{DDBBT}=\alpha ; \mathrm{DCI}=\mathrm{T}$.
$D D Q_{1} Q_{1} \mathrm{I}=\mathrm{Q}_{2} ; \mathrm{DQ}_{2} \mathrm{I}=\mathrm{C} ; \mathrm{DCQ}_{2}=\mathrm{Q}_{1} ; \mathrm{DDQ}_{1} \alpha \mathrm{DQ}_{1} \mathrm{I}=\mathrm{P}$. $D_{1} \mathrm{DR}_{1}=\mathrm{T} ; \mathrm{DDR}_{1} \mathrm{R}_{1} \mathrm{I}=\mathrm{P}$.

Meredith's main results follow from these; and for R_{2} he gives

1. $C C q r C C C C p q r s C p s$
2. $C p p$
3. $\operatorname{CCCCpqqrCpr=}=\mathrm{D} 12$
*4. CpCCpqq = D32
4. CCCCsCCCpqqrCprtCst $=\mathrm{D} 13$
5. CCsCCCpqqrCsCpr = D35
*7. $\operatorname{CCqrCCpqCpr}=\mathrm{D} 61$
The single axiom \bar{Q}_{1} is the formula CCpCqrCCssCtqCtCpr mentioned in III.1, and the other is of comparable length--non-organic, and longer than the organic axiom-pairs, Q_{1} etc. with I)
6. Single Axiom for $B-C-K$ (see note introducing the last section).

	1. CCCpqrCCsCrtCqCst
D11	= 2. CCuCCCsCrtCqCstvCrCuv
D21	= 3. CrCCCxuqCuCCsCrtCst
D23	= 4. CxCrCCxyCCsCrtCst
D41	= 5. CrCClyCCsCrtCst
D25	= 6. CCxCyzCrCCsCrtCst
D61	= 7. CrCCsCrtCst
D77	= 8. $C C p C 7 q C p q$
D87	= 9. CCpCqrCqCpr *
D88	= 10. $C C 7 C 7 p p$
D1.10	$=11 . C C q C p r C C 7 p C q r$
D1.11	= 12. CCsCCC7pCqrtCCprCst
D12.7	= 13. CCpr $C q C C 7 p r$
D8.13	= 14. CCpr CC 7 pr
D14.14	= 15. $С С 7 C p r C C 7 p r$
D1.15	= 16. $C C q C C C 7 p r s C C p r C q s$
D1.9	= 17. CCsCCqCprtCCqrCst
D17.7	= 18. CCqrCsCqr
D1.18	= 19. CCsCCpCqrtCrCst
D19.7	= 20. CrCqCpr
D8.20	= 21. $C p C q p^{*}$
D21.1	= 22. Cul
D16.22	= 23. CCqrCuCCsCrtCqCst
D8. 23	= 24. CCpqCCsCqrCpCsr
D9.24	= 25. CCsCqrCCprCpCsr
D8.18	= 26. CCqrCar
D25.26	= 27. CCpqCpCCqrr
DD9D27	= 28. CCpqCCqrCpr *

9. A Combinatory Base without C-Positive Analogue. (If any formula is D -derivable from other formulae the combinator corresponding to it is
definable in terms of those corresponding to the other formulae. The converse, however, does not always hold, as is noted in [2], p. 315, n. 15. Meredith gives also this example: the combinator corresponding to $C C p q C C C s p C q r C p r$ suffices to define those corresponding to $C p C q p$ and $C C p q C C p C q r C p r$, which are jointly sufficient for the positive or intuitionistic implicational calculus; but the latter two formulae are not deducible from the first one. Meredith did find them deducible, however, from the formula resulting from prefixing ' $C t$ ' to the latter. The following deduction is Ivo Thomas's:-
10. CtCCpqCCCspCqrCpr
11. CCpqCCCspCqrCpr = D1n
12. CCutC2vCtv = D21
13. $C C 2 v v=\mathrm{D} 33$
14. $\mathrm{CCCspCqrCqCpr}=\mathrm{D} 32$
15. $C p C C p q q=\mathrm{D} 54$
16. CCCpqrCqr = D56
*8. $C p C q p=\mathrm{D} 77$
17. $\operatorname{CCpqCCqrCpr=} \mathrm{DD} 7 \mathrm{D} 227=\mathrm{DD} 22 \mathrm{D} 87$
18. CCvuCC2vu = D94
19. CCCC2vuwCCvuw = D9.10
*12. ССрqССрСqrCpr = DD9.2.11
Thomas has noted that 5 alone gives $C p C q p$ and $C p p . C p p=$ DD5DD55nn, and $C p C q p=\mathrm{D} 5 . C p p$. Also sufficient for C-positive are 8, i.e. in combinatory terms K, and the commutation of 12, Frege's axiom CCpCqrCCpqCpr, which Meredith calls A. This is derived below from P, i.e. Syll, with the combinators K and R ; but R has no C -positive analogue. Items marked with a dash are all in this last position; those with one cross are in C-positive; those with two are even in the system B-C-I of Section 7.)

xx	x	-
$\mathrm{P}=\lambda \mathrm{a} \lambda \mathrm{b} \lambda \mathrm{cDbDac}$	$K=\lambda a \lambda b a$	$\mathrm{R}=\lambda \mathrm{aDaa}$
1. DPP	$=(\mathrm{ab}) \mathrm{DaDPb}$	xx
2. DPK	$=(\mathrm{ab}) \mathrm{DaDKb}$	x
3. D1P	$=(\mathrm{abc})$ DbDDPac	x
4. D23	$=(\mathrm{abc}) \mathrm{DbDKDca}$	x
5. D4R	$=(\mathrm{ab}) \mathrm{DaDKDbR}$	-
6. D5R	= (a) DaR	-
7. DP4	$=(a b) D a D 4 b$	x
8. D76	$=(\mathrm{ab}) \mathrm{Dba}=\mathrm{T}$	xx
9. D1R	$=$ (abc)DDabDac	-
10. DP8	$=(\mathrm{ab})$ DaDTb	xx
11. D10.9	$=(\mathrm{abc})$ DDbaDca	x
12. D1.10	$=(\mathrm{abc}) \mathrm{DDacb}=\mathrm{C}$	xx
13. D12.11	$=(\mathrm{abc}) \mathrm{DDabDcb}$	x
14. DP. 13	$=$ (ab) DaD.13.b	x
15. D14.12	$=(\mathrm{abc}) \mathrm{DDacDbc}=\mathrm{A}$	x

10. Single Axiom Equivalent to CCCppqq and Syll. (Wajsberg showed in [13] that from $C C C p p q q$ and $C C p q C C q r C p r$ we may infer a substitution in $C C p C q r C q C p r$, namely $C C p C Q r C Q C p r$, from which we can obtain the other Syll CCqrCCpqCpr. Meredith obtained the same result independently in 1956, when working on pure strict implication, and Belnap also obtained it when working on entailment. Belnap's proof is in [1]; Meredith's was as follows:-
11. $C C p q C C q r C p r$
12. $С С С р р q q$
13. CCCCqrCprsCCpqs = D11
14. CCpqCCCprsCCqrs = D31
15. CCCCCppqrsCCqrs $=\mathrm{D} 42$
16. CCCCqrstCCCCCppqrst $=\mathrm{D} 15$
17. $\operatorname{CCCCCppqqrr}=\mathrm{D} 62$
18. CCCCCprsCCqrstCCpqt $=\mathrm{D} 14$
19. CCCppqCCqrr $=\mathrm{D} 87$
20. $C P C C P q q=\mathrm{D} 39$
21. $C C p C Q r C Q C p r=$ DD3.3.10

In 1962 Belnap's collaborator A. R. Anderson asked Meredith if he could find a single axiom equivalent to Wajsberg's two premisses, certain general methods for obtaining single axioms, e.g. that suggested in Tarski's [12], p. 44, being unavailable in the absence of $C p C q p$; and Meredith obtained the result below. "In sub-systems of (B, C, I)", he commented, 'there is complete agreement between theses and combinatory logic and I find the latter quicker to work with".)

$$
1=\lambda \mathrm{aa} \sim C p p, 2=\lambda \mathrm{aDal} \sim C C C p p q q .
$$

For brevity I omit the λ-prefix, which is understood as sufficient of $\lambda a \lambda b$.... to cover the variables. This is possible in the absence of K.
I. $\mathrm{Ax} \quad 3=\mathrm{DDDa2cDbd} \sim$ CCCCCppqqCrCst -CCusCrCut
$4=$ D33 $=$ DDD32bDac $=$ DDacDbd
$5=$ D34 $=$ DDD42bDac $=$ DDDac 1Dbd
$6=$ D35 = DDD52bDac $=$ DDDDac11Dbd
7 = D63 = DDDD3b11Dac $=$ DDDb21Dac
*8 = D57 = DDD7b1Dac $=\mathrm{DbDac} \sim C C p q C C q r C p r$
9 = DD737 = DDD721D3a = DD3a1 = DDDa2bc
$10=$ D98 = DDD82ab = DaDb1
$*_{11}=\operatorname{DD7}(10) 7=\operatorname{DDD} 721 \mathrm{D}(10) \mathrm{a}=\mathrm{DD}(10) \mathrm{a} 1=\mathrm{Da} 1=2$
(11 = DDD7978).
II. The commutation also works but is much heavier, though I got it first. Very briefly:-

$$
\begin{array}{ll}
\text { Ax } \quad 3=\text { DDDb2cDad } \\
& 4=\text { D33 }=\text { DDDa2bD3c } \\
& 5=\text { DDDD } 43333=\text { DbDDa1c }
\end{array}
$$

```
    6 = D4D45 = DDDac1Dbd
*7 = D46 = DbDac (= D6D65)
    \(8=\) D65 = DDb1Dac
    \(9=\) DD858 = DDa1b
    \(10=\mathrm{D} 93=\mathrm{DDDa} 2 \mathrm{bc}\)
*11 = DD(10) \(89=\) DDD829a \(=\mathrm{Da} 1=2\)
```

III. Proof of Axiom 1 from

$$
\begin{aligned}
& 2=\mathrm{Da} 1 \\
& 3=\mathrm{DbDac} \\
& \text { Note: DD231 = D1D2a = D2a }=2 \\
& 4=\mathrm{D} 33=\mathrm{DaD} 3 \mathrm{~b} \\
& 5=\text { D44 }=\text { DDacDbd } \\
& 6=\mathrm{D} 43=\mathrm{D} 3 \mathrm{D} 3 \mathrm{a} \\
& 7 \text { = D46 = D3D3D3a } \\
& 8 \text { = DD722 = DD3D3D322 } \\
& \text { = D2DD3D32a } \\
& \text { = DDD3D32a1 } \\
& \text { = DaDD321 } \\
& \text { = Da2 } \\
& \text { *9 = DD385 = D5D8a = DDD8acDbd } \\
& \text { = DDDa2cDbd }
\end{aligned}
$$

(There follows a later communications supplementing and improving these results).

With my former conventions:
(i) $1=\lambda$ aa, (ii) $2=\lambda$ aDa1, (iii) omission of the λ-prefix.

I give three more single axioms for the system (CCCppqq, CCpqCCqrCpr): the first contains encysted 2 and is obviously best possible of this kind; the others are longer but contain only encysted 1.

Concerning proofs in λ-logic versus prop. logic: I find λ easier for breakdown of a complex single axiom, but the converse process I find easier propositionally.

```
(A1) \(3=\) DDb2Dac \(\sim\) CCpqCCCCCssttCqrCpr
    Note: DD3aD3b = \(\lambda c \mathrm{cDbDac}\)
    4 = D33 = DDa2D3b
    \(5=\mathrm{D} 43=\mathrm{DD} 32 \mathrm{D} 3 \mathrm{a}=\mathrm{DaD} 2 \mathrm{~b}=\mathrm{DaDb} 1\)
    \(6=\) D45 = DD52D3a \(=\) D2DD3a1 \(=\) DD3a11 \(=\) D2Da1 \(=\) DDa11
    *7 = D63 = D2a = Da1
    \(8=\) D4D34 \(=\) DD33D34 \(=\) D4D3a \(=\) DDD3a2D3b \(=\) DaD3b
    *9 = D88 = DD3aD3b = DbDac
```

For the next two I use $J=\lambda a \lambda b D a b=\lambda a D D B a 1=\lambda a D D B 1 a . \quad D D J a b=D a b ;$ if X begins with λ, $D J X=X$.
(A2) $3=$ DDDad1DDBbc \sim CCsCCuuCCprtCCqrCCpqCst 4 = D33 = DDDcd1DDBab
$5=$ D34 $=$ DDDaDbd1DJc
$6=$ D53 $=$ DDDDacd1DJb
7 = D64 = DDa1DDBbc
8 = D57 = DDDac1DJb
$9=\mathrm{D} 77=\mathrm{DaDbDcd}$

* 10 = D89 = DbDac
$11=$ D88 = DDDbDJa11
*12 = DD11.10.3 = Da1 = 2
(A3) $3=$ DDDad1DDBcb
4 = D33 = DDDcd1DDBba
$5=$ D34 = DDDbdad1DJc
6 = DD543 = DDa1DDBcb
7 = DD534 = DDDac1D3b
8 = D66 = DcDbDad
$9=$ D74 $=$ DDDaDJb1DJc
$10=$ D93 $=$ DDDac1DJb
$11=$ D10.8 = DaDbc
$12=$ D10.10 $=$ DDDbDJall
*13 = DD12.11.3 = Da1 = 2
*14 = D6.13 = DbDac

11. Two-valued C-O. (In 1952 Meredith obtained two single axioms for the full propositional calculus in C and O. The development of one of them is given in [8]; that of the other, below.)
12. CCCpqCCOrsCCspCtCup
13. $\operatorname{CCCtCupCpqCrCsCpq}=\mathrm{D} 11$
14. $\mathbf{C C C r C p q C t C u p C u C s C t C u p ~}=\mathrm{D} 12$
15. CCCsCtCupCrCpqCwCvCrCpq = D13
16. CCCpqrCqCsr
= DDD41nn
17. CCCvCrCpqCsCtCupCxCwCsCtCup
= D14
18. CCCpq CrCsp
= DDD61nn
19. $C C C s p C p q C t C r C p q$
= D17
20. $C C C r C p q C s p C u C t C s p$
= D18
21. CCCtCspCrCpqCvCuCrCpq
= D19
22. $C C q r C q C p r$
23. CCCOrsCqCCspCtCup
= DDD10.1.n.n
24. CsCrCqCCspCtCup
= D51
25. CCCqCCCsrpCtCupsCwCvs
= D5.12
26. CCCqCCCsrpCtCupsCxCwCvs
= D1.13
27. CCCwCvsCqCCCsrpCtCupCzCyCqCCCsrpCtCup
= D11.14
28. CCsCupCCCsrpCtCup
= D1.15
29. CsCCspCtCup
= DDD16.1.n.n
30. CCCsrCtCupCqCCspCtCup
= DDD8.12.n.n
31. CpCqCrCsp
= D17.18
= D55
32. C CpCqCprCsCtCqCpr $=D D 19.20 . \mathrm{n}$
33. $C C p C q C p r C q C p r=$ DDDD21.21.n.n.n
34. $С$ р $С С$ - $q q$ = D22.11
35. CCpqCCCprCsqCsq =DD19.23.n
36. CCCCpqtCuCCCprCsqCsqCuCCCprCsqCsq = D24.24
37. CCCCCprCsqCsqCCpqtCuCvCCpqt $=\mathrm{D} 1.25$
38. CCCpqCCOrsCvCCspCtCup = D11.1
39. $C C p q C C q C p r C t C s C p r=D D D 26.27 . n . n$
40. $C C q C p r C C p q C s C p r=D 22.28$
41. $\mathrm{CCqCprCtCCpqCsCpr}=\mathrm{D} 11.29$
42. CCtCqCprCvCtCCpqCsCpr = D29.30
43. C CqrCCpqCsCpr $=$ DD31.11.n
*33. CCpqCCqrCpr = D32.22
*34. СССрqрр = DD22.7.n
*35. CpCqp = D33.7
(This proves sufficiency of the axiom for C-pure; to prove it for the full calculus Meredith should also prove COp. But given C-pure, and so $C p p$ and $C q C p p, C O p$ is deducible as DDDD1.CqCpp.Cpp.n.n. And COp with CCCpqrCCrpCsp would be a shorter axiomatisation, although 1 is organic).
44. Full Propositional Calculus in N and K. (1-3 are Rosser's axioms in [11] for this version of full p.c. Meredith deduces an alternative to Rosser's second axiom, the deduction of Rosser's axiom from Meredith's going through analogously. The other alternatives Meredith mentions look longer than Rosser's axioms but are not when all defined terms in the latter are duly expanded.)

$$
D p q=N K p q \quad C p q=D p N q
$$

$\left.\begin{array}{ll}\text { 1. } & C p K p p \\ \text { 2. } & C K p q p \\ \text { 3. } & C C p q C D q r D r p\end{array}\right\}$ Rosser
D31 $=$ 4. $C D K p p q D q p$
D42 $=$ 5. $D N p p$
D32 $=$ 6. CDprDrKpq

D36 = 7. CDDrKpqsDsDpr
D75 = 8. $D K r K p q D p r$
D48 = 9. $D D p K p q K p q$
D79 = 10. СКрqКрр
$\mathrm{D} 3.10=$ 11. CDKpprDrKpq
D11.2 = 12. $D N p K p q$
D6.12 = 13. $D K p q K N p r$
D4.13 = 14. DKNpqp
D3.14 $=15 . C p p$
D3.15 $=$ 16. $C D p q D q p$
D3.5 $=$ 17. $C D p q C q N p$
$\mathrm{D} 17.16=18 . C N D q p N D p q$
D3.18 $=$ 19. CDNDpqrCrDqp

```
D3.16 = 20. CDDqprDrDpq
D20.19 = 21. DNCrDqpCrDpq
D16.21 = 22. CCrDpqCrDqp
D3.3 = 23. CDCDqrDrpsDsDpq
D23.22 = 24. DNCDqrDprCpq
D16.24 = 25. CCpqCDqrDpr
    (25 = DD.22.23.22)
D20.5 = 26. CKqpKpq
DD25.26.2 = 27. CKpqq
```

With 27 instead of 2 we have alterations only in $6,7,8,9,10,11,12$, 13, 14, 27.

14 and $D K q N p p$ are easier than either.
13. Two-valued E-pure. (モukasiewicz having shown in [4], reproduced in Polish in [7], that any one of the formulae EEpqEErqEpr, EEpqEEprErq, EEpqEErpEqr would suffice as a single axiom, with substitution and E-detachment, for that part of the propositional calculus which has no constant but material equivalence. He has also been credited with showing that no other axiom of equal length would do, but this is not so, Meredith having shown in August 1951 that either of the formulae EEEpqrEqErp or ErEEqErpEpq would do, and later that the same property is possessed by $E p E E q E r p E q r, E E p E q r E r E p q$ (the easiest, he claims, in development), EEpqErEEqrp, EEpqErEErqq, EEEpEqrrEqp and EEEpEqrqErp. We give below not Meredith's original 1951 deduction from EEEpqrEqErp but his later improvement on it.)

1. EEEpqrEqErp
2. $\operatorname{ErEEqErpEpq}=\mathrm{D} 11 \quad(\mathrm{DD} 222=1)$
3. $E E s E(1) t E t s=\mathrm{D} 21$
4. EEErpEEpqrq = D32
5. EEEpqqp = D42
6. EqEpEpq = D15
7. $\operatorname{EErEsEsr}(6)=\mathrm{DD666}$
8. $E E \operatorname{EsrE}(6) r=\mathrm{D} 17$
9. $E E s r E E(6) r s=\mathrm{D} 18$
10. $E E(6) E E(6) r s E s r=\mathrm{D} 99$
11. EEsEtEtsEEErpEEpqrq = DD646
12. EqEEEpEprqr $=\mathrm{D} 10.11$
13. $E E s E(12) t E t s=\mathrm{D} 2.12$
14. EErqEEpEprq = D13.2
15. EEsEsEEpqrEqErp = D14.1
16. EEsEEpqrEqErp = D1.15
17. EEEprEqpErq = D16.14
*18. EEpqEErpEqr = D1.17
(Meredith has noted that 1 will suffice for E-pure not only with ordinary detachment but also with reverse detachment, i.e. the rule to infer α from $E \alpha \beta$ and β, as its primitive rule. One way of confirming this is to show that
with this formula and reverse detachment, ordinary detachment is obtainable as a derived rule, thus (writing ' $R m n$ ' for the reverse detachment of n from m):-
18. EEEpqrEqErp
19. $E \alpha \beta$
20. α
21. $E E E r p E E p q r q=\mathrm{R} 11$
22. EErpEEpar = R43
23. $E E p E p q E q \alpha=\mathbf{R 1 5}$
24. $E E \alpha E p E p q q=\mathbf{R 1 6}$
25. $E \alpha E p E p \alpha=$ R73
26. EEEp $\alpha \alpha$ = 18
27. $E \alpha \alpha=$ RR933
28. $E E q E \alpha p E p q=\mathbf{R} 51$
29. $\beta=\mathbf{R R}(11) 2(10)$.

REFERENCES

[1] A. R. Anderson, N. D. Belnap, and J. R. Wallace, Independent axiomschemata for the pure theory of entailment. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vi (1960), pp. 93-5.
[2] Haskell B. Curry and Robert Feys, Combinatory logic (Amsterdam 1958), Vol. I.
[3] Czesław Lejewski. On implicational definitions. Studia Logica, viii (1958), pp. 189-205.
[4] Jan £ukasiewicz. Der Aquivalenzkalkül. Collectanea logica I (1939), pp. 145-169.
[5] Jan Łukasiewicz. The shortest axiom of the implicational calculus of propositions. Proceedings of the Royal Irish Academy, Sect. A, 52 (1948), pp. 25-33.
[6] Jan £ukasiewicz. W aprawie aksjomatyki implikacyjnego rachunku zdań. Annales de la Societé Polonaise de Mathematique 22 (1950), pp. 87-92.
[7] Jan Łukasiewicz. Z zagadnień logiki i filozofii (Warsaw 1961).
[8] C. A. Meredith. Single axioms for the systems (C,N), (C,O) and (A,N) of the two-valued propositional calculus. The Journal of Computing Systems, i, No. 3 (July 1953), pp. 155-64.
[9] A. N. Prior. Axiom-pairs for material and strict implication. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vii (1961), pp. 61-65.
[10] A. N. Prior. Formal logic, 2nd edition. (Oxford 1962).
[11] J. Barkley Rosser. Logic for mathematicians (New York 1953).
[12] A. Tarski. Logic, semantics and metamathematics (Oxford 1956).
[13] M. Wajsberg. Metalogische beiträge. Wiadomości matematyczne, xliii (1937), pp. 131-168.
[14] M. Wajsberg. Metalogische beiträge II. Ibid., xlvii (1939), pp. 119139.

Trinity College
Dublin, Ireland
and
University of Manchester
Manchester, England

