S1° AND GENERALIZED S5-AXIOMS

IVO THOMAS

We call axioms $A_{j,k}$, $\mathbb{C}M^{j}pL^{k}Mp$ $(1 \leq j, 1 \leq k)$ "generalized S5-axioms" since $A_{1,1}$ is commonly called "the characteristic axiom of S5." Some results of adding such an axiom to Feys's system S1° are investigated. For B_{n} , the generalized Brouwer axioms, see [1] and [2]. Proofs of the theorems depend largely on the rule:

 $\mathcal{R} \quad In \ \mathrm{S1}^\circ if \models \mathbb{G}M \ \boldsymbol{\alpha} L\beta \text{ then } \models \mathbb{G} \ \boldsymbol{\alpha}\beta$

which [3] 4.2 clearly shows to be derivable.

Theorem 1. If j + k is odd, the matrix used in [2] shows that $A_{j,k}$ is insufficient to yield S5.

Theorem II. If j = k, $\{S1^{\circ}, A_{j,k}\} = S5$.

Proof: from $A_{k,k}$ we obtain by $\mathcal{R} A_{1,1}$. The theorem follows by [3] 4.2. Theorem III. If j = k + 2, $\{S1^\circ, A_{j,k}\} = S5$.

Proof: by \mathcal{R} we obtain from $A_{k+2,k}$, $\mathbb{C}M^2pMp$ and so $\mathbb{C}LpL^2p$; hence we have $A_{k+2,k+2}$ and the theorem follows by theorem II.

Theorem IV. If j = k + 2n (n > 1), then $\{S1^\circ, A_{j,k}\} = \{S1^\circ, B_{2n-2}\}$.

Proof: from left to right we proceed:

(1)	$\mathbb{S}M^{k+2n}pL^kMp$	[by hyp.]
(2)	·©M ² ⁿ pMp	[(1), R]
(3)	$(\mathbb{S}LpL^{2n}p)$	[(2), S1°]
(4)	$\mathbb{S}M^{k+2n}pL^{k+4n-2}p$	[(1), (3), S1°]
(5)	$\mathbb{S}pL^{2n-2}Mp$	[(4), K ·]

For the converse deduction it is enough to show that from B_{2n-2} we can prove $\mathbb{S}M^2pLMp$, $\mathbb{S}M^3pL^2Mp$, ..., $\mathbb{S}M^{2n-1}L^{2n-2}Mp$, since under B_{2n-2} all perpositive indices are strictly equivalent to one of 1, 2, ..., 2n - 1. This series of theses is obtainable by $B_{2n-2} p/M^{2n-1}p$ and \mathcal{R} , the resulting $M^{2n}p$ at the end of each being reducible to Mp.

Theorem V. If k = j + 2n $(n \ge 1)$, then $\{S1^\circ, A_{j,k}\} = \{S1^\circ, B_{2n}\}$.

Proof: from left to right by \mathcal{R} . From right to left: express B_{2n} as B_{2m-2} . Then by the last theorem we have $\mathbb{S}M^{k+2m}pL^kMp$ and so, since $M^{2m}p$ reduces to Mp, $\mathbb{S}M^{k+1}pL^kMp$. With B_{2n} the Becker rule is obtainable, and thus $\mathbb{S}L^{2n}M^{k+1}pL^{k+2n}Mp$, and further, by $B_{2n}p/M^kp$, $\mathbb{S}M^kpL^{2n}M^{k+1}p$. From these last two theses we have by S1°, $\mathbb{S}M^kpL^{k+2n}Mp$. Q.E.D.

REFERENCES

- B. Sobociński: On the generalized Brouwerian axioms. Notre Dame Journal of Formal Logic, v. III (1962), pp. 123-8.
- Ivo Thomas: S1° and Brouwerian axioms. Notre Dame Journal of Formal Logic, v. IV (1963), pp. 151-2.
- [3] B. Sobociński: A contribution to the axiomatization of Lewis' system S5. Notre Dame Journal of Formal Logic, v. III (1962), pp. 51-60.

Blackfriars Oxford, England