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A DIAGRAM OF THE FUNCTORS OF THE TWO-VALUED
PROPOSITIONAL CALCULUS

THOMAS W. SCHARLE*

By means of arranging the functors of the two-valued propositional
calculus in a certain array (to be described below), we find that several
properties of the functors are related. Such properties are connected to the
possibilities of defining some functors by others, and thus in the diagram
we have displayed definitional connections between certain sets of func-
tors. In this paper we first present the method of diagramming, and certain
helpful connections within the diagram, then several theorems on definitions
within the propositional calculus. We are then able to show that there are
three exhaustive classes for single functors in terms of definitions, of such
a nature that we are able to give axioms for a large number of functors.
The paper is concluded with some further consideration on definability in
special cases.

Let us arrange the unary functors of the two-valued propositional cal-
culus in the array 2I1#

/

ax o u
N

We may then extend this array to include also the binary functors by plac-
ing a given binary functor, X, having the properties, that, for certain unary
functors Y and Z,

Xpp = Yp
XpNp = Zp

in an array similar to ?I1? and half its size, centered at the functor Y, with
X at the position corresponding to that occupied by Z in the array ?Iχ. This
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procedure g i v e s us the array ?Ia. The array 2I2 i s quite similar to a diagram
of C. S. Pe i rce , which we will cal l δ . 2
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U2 F R E V

T P C
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Using certain features of this diagram, Peirce was able to construct
true propositions of certain forms. For example, Xpp is true if X lies in the
upper quadrant. We are, in addition, able to find interesting properties con-
cerning definability in the propositional calculus by the diagram.

Let us, then, extend the diagram so that all n-ary functors are included.
If X is an (n + 2)-ary functor and Y and Z are w-ary functors such that

1) Xfifr. -PnPn= YpiPi . Pn

2) XPlp2. . .pnNpn=ZPlp2. . .pn

then X is in an array similar to 21̂ , which is centered at Y, with X at the
position occupied by Z in 21̂ . The resulting array of (n + 2)-ary functors*
we call . 8 ^ .

To formulate this in a more exact way:
Let •(£ be a one-to-one function from a subset of points in the complex

plane onto the set of functors of the two-valued propositional calculus such
that

•ε (i> = u e (i i) = /
2 2

>S (- i) = 0 '<£ (- ί i) = N

and if X is an (n + 2)-ary functor, Y and Z w-ary functors with

•e (x) = x, ε (y> = y, e (z) = z,

and (1) and (2) holding, then

x=y+z(Γ2\

Now, consider the reflections and rotations of the complete array. We
obtain these theorems:

Theorem 1. Let 8 be the reflection in the vertical axis. Then δX is the
dual of X.

Proof. It is clear that the unary functors have this property, for δl = I
and δN = N, while NINp = ϊp and NNNp = Np; and δO = ϋ, while NONp = Up.
If we have for each w-ary functor X

δXpip* Pn = NXNp.Np,. . .Npn,

then for appropriate X, Y, Z such that (1) and (2) hold,

8xpιpi. . .pnpn = δYpίpi. . .pn

δXpip*. PnNpn = δZp1p2. . .pn

so that all (n + ί)-ary functors are also transformed by δ into their duals.
Theorem 2. Let β be the reflection in the diagonal: real part of x -

imaginary part of x. Then

βXpi- >Pn= EpiXpi - -Pn
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Proof. Similar to the proof of theorem 1.
It is well known that the two mentioned reflections are sufficient to

determine all reflections and rotations of the diagram. But one further ex-
ample which will be of use is the rotation of 180°.

Theorem 3. Let η be the rotation of 180°. Then

ηXpi. .pn = NXp±. . .pn

Proof. Follows from theorems 1 and 2, since δβδβ = η:

δβδβxp,.. .pn = δβδEPιxPι. . .pn

= δβNENp^Np!. . .Npn

= δEp^ENp.XNp^ . .Npn

= δEp^p.XNp,. . .Npn

= SXNp,.. . .Npn

= NXPl...pn

We obtain certain regularities in our array 2l2 if we use the symbolism
of Lesniewski for the binary functors (see diagram S).

-?

2) o ί-o- <j>j Jf-

A] U-
L

In each of the quadrants, there is a uniform positioning of the vertical
strokes, and the horizontal stroke placement follows the same pattern within
each quadrant. Also, the lines as drawn in diagram 5) serve as "contours",
dividing the functors according to the number of strokes on the functor
symbols.

Let us now consider the definition characteristics according to the
diagram. We will say that functor X lies in the Y quadrant, where Y is a
unary functor, if Xpp. . . p = Yp, so that, for example, V, C, L, and E are
the binary functors in the U quadrant.

Theorem 4. (i) If X is defined by functors lying in the 1 quadrant, then
X lies in the I quadrant, (ii) If X is defined by functors lying in the U and
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/ quadrants, then X lies in the U or I quadrant (Hi) If X is defined by func-
tors lying in the 0 and I quadrants, then X lies in either the 0 or I quadrant.

Proof, (i) Let X be defined by functors lying in the / quadrant. Then,
clearly, Xpp. . ,p = p, i.e., X is also in the / quadrant, (ii) Let X be de-
fined by functors lying in the U and / quadrants, then Xll . . . 1 = 1, or X
lies in the U or I quadrants, (iii) Similarly, we find that on the hypothesis
X00 ...0 = 0, i.e., X lies in the 0 or / quadrant.

This gives us immediately the
Corollary. If we use only functors from the 0 and I quadrants, we are

unable to form a true proposition.
Theorem 5. // X is defined by functors lying on the vertical axis, i.e.,

self-dual functors, then X lies on the vertical axis.
Proof. Say we have

xpipt- • • />„= Y -zpi •

then, on negating each of the p we find

XNp,Np2. . .Npn= Y. . .ZNp.. . .

= y . . . N Z P r . .

= NY...Zp.. . .

= NXpxp%. . .pn

Thus X is self-dual.
Theorem 6. X is a Sheffer functor* if and only if it lies in the N quad-

rantt not on the vertical axis.
Proof, (i) If a functor does not lie in the N quadrant, then, from theorem

4, it cannot define any functor lying in the N quadrant, and hence is not a
Sheffer functor. If a functor lies on the vertical axis, by theorem 5 it cannot
define any functor not on the vertical axis.

(ii) If X is a functor in the N quadrant, and not on the vertical axis,
then Xpq. . . q = Spq, Dpq, Jpq or Ppq. If Xpq. . . q = Spq or Dpq, then,
since S and D are Sheffer functors, X is also a Sheffer functor. So assume
Xpq. . . q = Ppq or Jpq. In such a case there is a combination of / and N,
say Q., such that

3) XpqQiqQ2q. . .= Ypq

where Y is a binary functor not on the vertical axis. Since we are able to
define (with X alone) N and /, we are able to define one of the well-known
pairs of complete functors, unless Y is on the horizontal axis (V, Ey R, F).
So now consider the cases in which Y is on the horizontal axis. In the
frame (3) for the definition of Y with X, we place *p9 for every occurrence
of a non-negated *qf, and fq* for every occurrence of fNq9. (For example,
if XpqNqNqq = Vpq, we would consider Xppqqp). The functor so defined,
say Z, has these properties: Zll = 0, ZOO = 2, Z01 = Z10. And thus Z is
either S or D, one of the Sheffer functors, so that X is a Sheffer functor.
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As mentioned above (corollary to theorem 4), only those functors oc-
curring in the N and U quadrants (and not on the vertical axis) are able to
serve as a single functor for the propositional calculus. Thus, for example,
the only such unary functor is £/, and the only binary functors are V, C, L,
E9 D and S. We are now able to show that if we have a fragment of the
propositional calculus based on the w-ary functor X alone, then either

1) X defines C;
2) X defines E and E defines X; or
3) X is verum for n arguments.

From this result we will be able to give an axiom set for any such single
functor fragment of the propositional calculus. But, to prove these state-
ments, some lemmas are required.

Lemma 1. If X is a functor in the U quadrant, not lying on the hoή-
zontal axis, then X defines C.

Proof. If Xpq. . .q = Cpq or Lpq9 we immediately have this proven.
Suppose that Xpq. . . q = Epq or Vpq. In such a case, there are Qz which
are either / or N, such that (3) holds, where Y is not a binary functor on
the horizontal axis. We let Zpq be the result of replacing, in the left side
of (3), each occurrence of *Nq* by *p'. It is then easy to show that Zpq is
either Cpq or Lpq, except in case Y is A, R, D, K, F, E, or S.

Now, consider the left side of (3) with each occurrence of *Nq* re-
placed by %q% and each occurrence of fq* or fIq* replaced by %p\ and let the
resulting expression be Zιpq. Now we are able to show that Z1 is either
C or L except when Y is E, L, C, V, H, F, T, or R. Comparing the require-
ments for Z and Z1 to be neither C nor L, we see that Y can only be a func-
tor lying on the axis, contrary to our assumption. Thus the lemma is proved.

We will need this definition to simplify the subsequent proofs: (YZ)
is that unique functor X such that the equations (1) and (2) hold. We may
then use the symbolism for transformations of functors—e.g., (XηX) is that
functor such that

(XηX)p1pi. . .pnPn = Xpip2- Pn

and

( X η X ) p ! p 2 P n N p n = NXptft . . . p n

We have now

Lemma 2. If X is a functor on the axis in the U quadrant, and is de-
finable by E, then E defines both (XX) and (XηX).

Proof. We have immediately

(XX)p1p3. . . p n + 1 = Xp!p3. . .ρn

(XηWpiPi • Pn+1 = EEpnPn+ι Xp,pt. . .pn
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Lemma 3. // X lies on the axis in the U quadrant, either X defines E
or X is verum.

Proof. If Xpqq. . .q = Epq, then X defines E. Assume, then, that
Xpq. . . q - Vpq. Then there are such ζλ, either / or N, such that (3) holds,
and say that Y is not V (for if all such equations hold only for Y = V, then
X is verum). Following the same sort of procedure again, replace *Nq* by
*p', yielding Zpq such that Z = E unless Y = R. But in such a case, in
(3) we replace *Nq9 by tq*, and *q9 and *lq9 by *py, yielding Z*pq, which is
Epq if Y = R. Thus the lemma is proved.

Lemma 4* If X is an (n + l)-ary functor in the U quadrant and on the
horizontal axis, and E defines X, then there is a Y such that E defines Y
andX = (YY)orX = (YηY).

Proof. Let X = (YZ), then clearly E defines Y. Let

x%. . .pn = xp1. . .pni

Then

[ z p ι . . .pn,iipn = o

Consider the effect of the reflection in the horizontal axis (which we will
call a) on the functor X1:

(YNpι...Npn, U Pn = 0

\zNPl. ..Npnii(pn=l

j Y p ί . . . p n , i * P n = O

\zpx.. . p n , i ί p n = l

since Y and Z are on the horizontal axis. Then, if X1 is on the horizontal
axis, αX' = X1, and thus Y = Z. If X1 is on the vertical axis, αX1 = 77X1,
and thus Y = ηZ. Our lemma is proven.

If X1 is in quadrant U, not on the horizontal axis, by lemma 1 we have
that X1 defines C, and thus cannot be defined by E. If X1 is in quadrant /,
not on the vertical axis, X1 is a Sheffer functor, which means that X1 and
N can define all functors, so that E cannot define X. But, since E de-
fines X, and thus also X', either Y = Z or Y = ηZ.

We are now able to prove the theorem

Theorem 7. // X lies in the U quadrant, either C can be defined by X,
or X defines E and E defines X, or X is verum.
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Proof. We have shown in lemmas 3 and 4 a necessary and sufficient
condition for a functor to define C, or to be defined by E, provided it lies
on the axis. But any functor not lying on the axis (in the U quadrant) de-
fines C, by lemma 1. And by lemma 2, any functor on the axis which is
not verum defines E. Thus the theorem is proved, for we have found neces-
sary and sufficient conditions for each of the three possibilities for functors
in the U quadrant.

Now we may complete the characterization of functors which may serve
as a single functor basis for propositional calculus (or, in other words,
those functors which can define U). If a functor is a Sheffer functor, then
it clearly defines C, and this takes care of possible functors from the N
quadrant, by theorems 5 and 6.

There have been given the following sorts of axiom sets for two-valued
propositional calculus:

1) with E as single functor
2) with C and any other functor

We are able to give a constructive method for axiomatizing the propo-
sitional calculus with any single functor with which a true proposition can
be formulated: consider the three possibilities

1) If X is a functor which defines E and which E defines, we may write
as an axiom set for X: a complete axiom set for E, with every occurrence
of E replaced by a definition of E using X; and add to this an axiom written
in the form of an equivalential definition of X in terms of E, but with E re-
placed throughout by its definition in terms of X. Then, we must adjust the
rule of detachment for E to the corresponding one for X. Therefore, we
will have not only a complete system for E expressed in terms of X (i.e.,
if we have a true formula containing E, we can prove the formula with every
occurrence of E replaced by its definition in X), but also, since the substi-
tution theorem is provable, the final axiom will permit us to derive any true
formula in X—if we have a true formula with X, there is a corresponding
true formula with E, which is provable in the system, and the equivalence
of the two formulas is provable.

2) If X is a functor which can define C, then we use the axiom set of
Henkin for C and X, in which C is replaced throughout by its definition in
terms of X. With the rule for detachment for C adjusted to X, we clearly
have a complete axiom set for X.

3) If X is verum for n arguments, we require only Xpxp2. . .pn for an
axiom, and no rule of detachment.

There are a few more theorems suggested by the diagram, among which,
e g

Theorem 8. If X is a functor from the I or U quadrant, then X is de-
finable by C and E.

Proof. We first show that the theorem holds for unary functors. Ip -
EEppp, Up = Epp. Also note that Apq = CCpqq and Kpq = EpCpq.

Assume that the theorem is true for all 772-ary functors. Then let
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r A P , _ A + 1 • ' • P m " X p o ' P i - t 1 P i + ι - - - P m ,

for 0 ^ z ̂  m.

Note that a functor Z is in the I or U quadrant if and only if Zl 1. . . 1 =
1. If X is a functor in the U or / quadrant, each Yi is in the U or I quad-
rant, and, since they are m-ary functors, each Y• is definable by E and C
Note that, if X is in the / quadrant, we may write

XPo • P m = A K P o Y t P . P m - A K P i Y i P o • P , - A - H • • • P m '

and if X is in the U quadrant, then

XPo.. .pm=KCPoYoPι. . . p m . ..KCPΎiPo. . . P i _ ι P i + ι . . . P m .

Since the Y\ are definable by C and E, and A and K are definable by C and
E, X is definable by C and E. And the theorem is proved.

Let us call a set of functors self-dual and complete if 1) the set of the
duals of the functors is identical with the original set, 2) every functor of
the propositional calculus can be defined by the members of the set, and
3) no functor in the set can be defined by the others. It is well known that
there are only two such sets of binary functors, viz. {C, T\ and {L, H\.
Alan Rose has found two self-dual ternary functors which are able to de-
fine all functors with the constants 1 and 0. Using methods suggested by
the diagram of the functors, one is able to find large groups of self-dual
complete sets of functors.

First, note that the vertical axis (on which all self-dual functors lie)
is generated by the reflection β on the horizontal axis. So, if a functor X
on the horizontal axis is not definable by E, then the functor βX is not
definable by E and R, and, in addition, βX defines E. Therefore, by lem-
mas 2-4, we have

Theorem 9. A set of the form {X, E, R\ is a complete self-dual set if
and only if we can wήte X in the forms (X[ XJ), ((X[} X'2

!j ΓX̂  X^)),
where for some m, k, neither

(A) U) (k) (k)
Xm =Xm+, n θ Γ Xm = *7 Xm+i '

For example, the ternary functors satisfying the conditions of theorem
9 are (GB), (GP), (BJ), and (BG). And among these ternary functors, since

(BG) pqr= AKrApqKpq

(GB) lpq= Cpq

(GP) pql = Cqp

(BJ)pql = Cpq

onl> tne three (GB), (GP), and (BJ) are also complete with 0 and 1.
To complete these considerations on functors, we may note first
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Theorem 10. The set {X, δX} is self-dual and complete if and only if
either X or δX is from the U quadrant, and is not definable by E.

Proof. If X is from the / quadrant, δX is also, and, by theorem 4, the
pair is unable to define any functor outside of the / quadrant. If X and δX
are from the N quadrant, either X = δX or X is a Sheffer functor, which means
that X defines δX. We have shown that if X lies in the U quadrant, and is
not definable by E, then it defines C; and if X lies in the U quadrant, δX
lies in the 0 quadrant and thus defines 0. And, as is well known, C and 0
are able to define all functors, proving the theorem.

Among the ternary functors in the U quadrant there are precisely four
which do not satisfy the conditions of theorem 10, viz. (VV), (VF), (EE),
(ER).

And, finally, considering the triples of ternary functors, we see that
the possibilities reduce (because of the self-dual complete sets of two
ternary functors given) to consideration of the above mentioned four with
the various self-dual functors. By similar methods to those above we are
able to find that there are exactly 15 self-dual complete triples of ternary
functors:

i(GB), (VV), (FF)1 \(GB), (VF), (FV)\ {(GB), (EE), (RR)\

{(GP), (VV), (FF)} \(GP), (VF), (FV)\ {(GP), (EE), (RR)}

\(B] ), (VV), (FF)\ \(BJ ), (VF), (FV)} \(B] ), (EE), (RR)\

\(BG), (VF), (FV)\ {(BG), (EE), (RR)\

\(GB), (ER), (RE)} \(GP), (ER), (RE)}

i(BJ), (ER), (RE)} {(BG), (ER), (RE)}

Having proven these various definitional properties in the two-valued
propositional calculus, the problem presents itself whether a similar ar-
rangement of the functors in an w-valued propositional calculus would be of
any help—for example, in finding the Sheffer functors of an w-valued propo-
sitional calculus. In the first place, it would be quite difficult to picture
even the binary functors in three-valued logic merely because of the great

λ2

number of them, there being 3 = 19,683 of such functors.
In addition, instead of the number of (k + l)-ary functors being the

square of the number of &-ary functors, in n-valued propositional calculus
we proceed by the nth power at each step. In analogy to the bracketing of
two functors, we must bracket n functors. For example, we might write in
the three-valued logic (XYZ) for the functor such that

4) (χγz)pι...pnpn = xp1. ..pn

5) (XYZ)p1...pnMPn=YPl...pn

6) (XYZ)pι...pnNpn=Zpι...pn

where M and N have the matrices:
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p Mp Np

1 2 3

2 3 1

3 1 2

But beyond simple considerations such as these, it is not clear how to pro-

ceed, nor of what value further investigations might be.

NOTES

1. The symbolism to be used in this paper is after that of-Lukasiewicz as

presented in [ l l ] , with certain modifications for the unary functors: Ip

is "assertium" for p> i.e. Ip = p; Np is the negation of p; Op is "falsum"

for £—always false; Up is "verum* for £—always true.

For the binary functors, we have the explanatory table:

S P L C explanations

F 0 o (none) Fpq= NCpCqq

K K o Kpq=NCpNq

T M o- <f Tpq = NCqp

S X o v Spq = NCNpq

H L -o φ Hpq=NCpq

B H o- (none) Bpq= q= CCppq

E E <J> = Epq= KCpqCqp

G I -o (none) Gpq-p-CCqqp

J F o- (none) Jpq = Np = CCqqNp

R J -o- ^ Rpq=NEpq

P G -4 (none) Ppq = Nq = CCppNq

C C < j > - D Cpq=NKpNq

A A -o- V Apq- CNpq

L B -if C Lpq= Cqp

D D - o - I Dpq=NKpq

V V -If- (none) Vpq=CpCqq

In this table, the column headed w S n is the symbolism in [ l l ] ; that

headed *PW, in [8] p. 12; *L", in [3] (see also [4], pp. 21-22, and [6]);

*C" in [1], p. 37.

2. [7], 4.268, from his "Minute Logic" of 1902. Since the symbolism used

is little known, the diagram is presented with the same symbolism as
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the rest of the paper. I had investigated this method of diagramming the
functors independently, before finding it quite accidentally in the writ-
ings of Peirce. It is interesting to note that, although Peirce was ac-
quainted with the property of duality (see [7], 4.295), he did not remark
on the obvious relation that reflection in the horizontal axis takes each
functor into its dual.

3. That, in fact, each propositional functor is included by such a process
can be seen by a simple combinatorial argument. Obviously, no functor
is represented more than once, and since the number of w-ary functors

is 2 , we see that the number of (n + I)-ary functors is the square of
the number of ra-ary functors.

4. Theorems 4 and 5 occur in [12], and theorem 6 occurs in [8], although
clearly in different forms.

5. By "Sheffer functor" is meant any functor X, such that, by the use of X
alone every functor can be defined. The name is a concession to uni-
versal use, although Sheffer's discovery was anticipated by about 30
years by Peirce—see [7], 4.12 and also 4.264.

6. For a proof of this, see [12].

7. For propositional calculus based on E alone, see Lesniewski [3], and
also Lukasiewicz [5]. For that based on C and any arbitrary functor X,
see Henkin [2]*

8. In [10]. The two such functors which he investigated are (GB) and
(GP)-Rose gives the definitions (GB) pqr = AAKpqKpNrKqNr (which is
his Gpqr) and (GP) pqr= AAKpNqKprKNqr (which is his Hpqr).
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