ON THE GENERALIZED BROUWERIAN AXIOMS

BOLESŁAW SOBOCIŃSKI

After Oskar Becker¹ a modal thesis of the following form:²

 $B_n \quad \mathbb{S}pL^nMp$

for any n > 1, is called a generalized Brouwerian axiom. Since in Lewis' system S4 the following thesis

M1 @LpLLp

holds, it is obvious that in S4 (and hence a fortiori in S5) every formula B_n , for any n > 1, is inferentially equivalent to the proper Brouwerian axiom, i.e. Lewis' thesis

C12 ©pLMp

On the other hand, it seems that in the field of some of Lewis' systems which are weaker than S4, a generalized Brouwerian axiom B_n , for any n > 1, is a stronger thesis than C12. For while, as far as I know, only the following definitive results concerning the addition of C12 to the systems weaker than S4 are obtained:

a) In [5], pp. 151-152, Parry has proved that the addition of C12 to S3 gives system S5 of Lewis.

and

b) In [8], pp. 56-58, I have shown recently that the same holds, if we add C12 as a new axiom either to S3° or to S3*.

and while the effect of the addition of C12 either to $S1^{\circ}$ or to S1 is not yet fully investigated,³ in [2], pp. 78-81, it is proved by Churchman that the addition of B_n , for any n > 1, to S2 gives system S5.

In this note I shall investigate some properties of a generalized Brouwerian axiom, i.e. of formula B_n , for any n > 1. Namely:

1) In §1 a certain subsystem of S1 is defined. This system, called S1^{*} is such that it is weaker than S1, it contains S1^o and it is stronger than the latter system.

Received August 19, 1961

2) In §2 I show that the addition of B_n to S1^{*} (and hence a fortiori to S1) gives system S5. Thus, the result of Churchman is strengthened.

3) In §3 it is proved that the same holds, if we add B_n either to $S3^\circ$ or to $S3^*$.

- §1. We obtain system S1* by addition of the following new axiom
- J1 ©МрММр

to S1°. Group IV of Lewis-Langford⁴ verifies S1*, and falsifies the proper axiom of S1, i.e. the thesis

G1 □©pMp

since for p = 1: $G1 = C_{1M1} = C_{12} = 3$. On the other hand, the following modification of Parry's matrix:⁵

	K	0	1	2	3	4	5	6	7	N	М
	0	0	0	0	0	0	0	0	0	7	1
	1	0	1	0	1	0	1	0	1	6 5	5
	2	0	0	2	2	0	0	2	2	5	7
	3	0	1	2	3	0	1	2	3	4	7
	4	0	0	0	0	4	4	4	4	3	7
	5	0	1	0	1	4	5	4	5	2	7
*			0	2	2	4	4	6	6	1	7
	7	0	1	2	3	4	5	6	7	0	6

verifies the axioms of S1° and Lewis' rules of procedure, but falsifies J1, since for p = 6: J1 = @M6MM6 = @7M7 = @76 = NMK7N6 = NMK71 = NM1 = N5 = 2. Thus, system S1*, which by the definition contains S1° and, obviously, is contained in S1, is stronger than the former system and weaker than the latter.

§2. Since S1* contains S1°, we have Lewis' axiom

A6 SKSpqSqrSpr

in this system.⁶ And, obviously, S1° and J1 imply

J2 ©LLpLp

Hence, if we add a generalized Brouwerian axiom

 $B_n \quad \mathbb{S}pL^nMp$

for an arbitrary n > 1, to S1^{*}, this last formula together with J2 and A6 gives

B, ©pLLMp

and

 $B_1 = \mathbb{S}pLMp$

Therefore, having $S1^{\circ}$ and B_1 we obtain

J3 ©MLpp

without any difficulty.

On the other hand, since it is proved in [8], p. 59, that the addition of C12, i.e. B_1 , to S1° generates a system, called S1⁺, which contains S2°, we have at our disposal the so-called Becker's rule.⁷ Hence, the application of this rule to B_2 gives at once

```
J4 ©MpMLLMp
```

And, therefore, we have

C11 ©MpLMp [A6, p/Mp, q/MLLMp, r/LMp; J4; J3, p/LMp]

i.e. the proper axiom of S5. Since it is proved in [8], p. 58, that the addition of C11 to $S1^{\circ}$ gives system S5, and since B_n , for any n > 1, is provable in this latter system, our proof is completed.

I have to note here that I do not know whether the addition of B_n , for any n > 1, to S1° gives system S5, although using the deductions analogous to the reasonings presented in [8], pp. 56-59, one can prove easily that:

a) The addition of an arbitrary Brouwerian formula B_n , for any $n \ge 1$, to S1° generates a system in which the following formula

N1
$$\mathbb{C}pM^{n+1}p$$

holds,

and that:

b) The addition of B_n , for n > 1, to S1° generates a system in which besides N1, the formula

N2 $\mathbb{C}M^{n+2}pMp$

is provable.

§3. Since in system S3* Lewis' rule of detachment for strict implication holds as a metarule of procedure, and since in both systems S3° and S3* the theses

 P1
 SCpqCLpLq

 P2
 SCpqCMpMq

 P3
 SpNNp

 P4
 SNNpp

 P5
 SCpqSNqNp

- P6 ©pCqp
- P7 ©LCpqSpq
- P8 ©©pqLCpq
- P9 ScpCqrSqCpr
- P10 ©Kpqq
- P11 ©NMKrNNpNMKrp
- P12 NMKNMKKrpqNNMKKpqr
- P13 ©MKpqKMpMq

and the following metarule of procedure

PI If the formulas $\mathbb{S} \propto \beta$ and $\mathbb{S} \beta \gamma$ are provable in the system, then also formula $\mathbb{S} \propto \gamma$ is provable in the system

are provable,⁸ the addition of a generalized Brouwerian axiom B_n , for any n > 1, as a new axiom either to S3° or to S3* allows us to make the following easy deductions:

<i>S1</i>	©M ⁿ Lpp	[Follows from B _n ; P1; P2; P3; P4; P5 and PI]
S2	©LpLCqp	<i>"</i> [<i>P</i> 1; <i>P</i> 6]
S3	©LpLCLqLp	[PI ; <i>P1</i> ; <i>P7</i> ; <i>P8</i> ; <i>S2</i>]
S4	™©M ⁿ LpM ⁿ LCLqLp	[<i>P2</i> ; <i>S3</i>]
S5	™LpCLqLp	[PI ; <i>S4</i> ; <i>S1</i>]
S6	[©] LqCM ⁿ LpLp	[<i>P9</i> ; <i>S5</i>]
S7	∖©LLq©M ⁿ LpLp	[<i>P1</i> ; <i>S6</i> ; P1 ; <i>P7</i>]
<u>S</u> 8	™Gq©M ⁿ LpLp	[PI ; B_n , p/q ; S7; since in B_n : $n > 1$]
S9	©M ⁿ LpLp	[[°] S8; P3 ⁹]
S10	[™] ©KrM ⁿ LpLp	[PI ; <i>P10</i> ; <i>S</i> 9]
S11	NMKKrM ⁿ LpMNp	[<i>P</i> 11; <i>S</i> 10]
<i>S12</i>	NMKKM ⁿ LpMNpr	[<i>P12</i> ; <i>P11</i>]
S13	(SMKM ⁿ⁻¹ LpNpr	[PI ; <i>P13</i> ; <i>S12</i>]
S14	©NNrNMKM ⁿ⁻¹ LpNp	[<i>S</i> 13; <i>P</i> 5]
S15	©M″ [−] Lpp	[<i>S</i> 14; <i>P</i> 3]
В _{п-1}	$\mathbb{C}pL^{n-1}Mp$	[<i>S</i> 15; <i>P</i> 1; <i>P</i> 2; <i>P</i> 3; <i>P</i> 4; <i>P</i> 5; P 1]

Now, it is obvious that

- a) if n 1 = 1, B_{n-1} is C12, i.e. the proper Brouwerian axiom,
- b) if n 1 > 1, then using entirely the same deductions which allowed us to obtain B_{n-1} from B_n we can deduce

$$B_{n-2} \cup \mathbb{S}_p L^{n-2} M_p$$

from B_{n-1} .

Hence C12 follows from B_n , for any n > 1, in the fields of both systems, S3° and S3*. And, therefore, since in [8], pp. 56-58, it was proved that the addition of C12 either to S3* or to S3° gives S5, our proof is completed.

126

NOTES

- 1. Cf. [1], [2] and [7].
- 2. In this note instead of the original symbols of Lewis I use a modification of *Kukasiewicz's* symbolism which is described in [8], p. 52. In particular, the formulas

$$M^n \alpha$$
 and $L^n \alpha$

where n is an arbitrary natural number, will have here the following meanings

- a) if n = 1, then $M^n \alpha = M \alpha$ and $L^n \alpha = L \alpha$
- b) if n > 1, then $M^n \alpha = M M^{n-1} \alpha$ and $L^n \alpha = L L^{n-1} \alpha$.
- It has to be noted that
- 1) Throughout this paper symbols C, L, \mathbb{S} and \mathbb{S} are used as the abbreviations.

and that

2) The definitions of the systems S1°, S2°, S3° and S3* discussed in this note are given in [8], pp. 52-53.

Moreover, in this paper the term "thesis" means: a formula which is true in the system under consideration.

- The addition of C12 to S1° generates a system which contains S2°. Hence, obviously, the addition of C12 to S1 gives a system which contains S2. Cf. [8], p. 59.
- 4. Cf. [4], p. 494.
- 5. Cf. [6] and [4], p. 507.
- 6. Cf. [4], p. 493, [3], p. 483, and [8], p. 52.
- 7. I.e. the following metarule of procedure:

If the formula $\[mathbb{G} \alpha \beta\]$ is provable in the system, then also $\[mathbb{G} M \alpha M \beta\]$ is provable in the system.

This metarule is proved in S2 by Churchman, c_{f} . [2], pp. 79-80, but it can be proved easily in S2°, c_{f} . [3], p. 491, and [8], p. 58.

- 8. It follows clearly from the proofs given in [8], pp. 53-54 and pp. 57-58, that the theses P1-P13 and the mentioned metarules of procedure are provable in S3° and S3*. Since we do not have the first rule of substitution of Lewis in S3* and a proof that an analogous metarule holds in this system is not given in [8], all deductions given in this paragraph are conducted in such a manner that this rule (or metarule) is not used. The rule of adjunction of Lewis holds, obviously, as an analogous metarule in S3*.
- 9. Cf. the proof of S9 given here with the deductions given by Parry in [5], pp. 151-152.

BIBLIOGRAPHY

- [1] O. Becker: Zur Logik der Modalitäten. Jahrbuch für Philosophie und phänomenologische Forschung, v. 11 (1930), pp. 496-548.
- [2] C. West Churchman: On finite and infinite modal systems. The Journal of Symbolic Logic, v. 3 (1938), pp. 77-82.
- [3] R. Feys: Les systèmes formalisés des modalités aristotéliciennes. Revue Philosophique de Louvain, v. XLVIII (1950), pp. 478-509.
- [4] C. L. Lewis and C. H. Langford: Symbolic Logic. Second Edition, 1959, New York, Devon Publications.
- [5] W. T. Parry: Modalities in the Survey system of strict implication. The Journal of Symbolic Logic, v. 4 (1939), pp. 137-154.
- [6] W. T. Parry: The postulates for "Strict Implication". Mind, v. XLIII, N. S. (1934), pp. 78-80.
- [7] H. B. Smith: Abstract logic or the science of modality. *Philosophy of Science*, v. 1 (1934), pp. 369-397.
- [8] B. Sobociński: A contribution to the axiomatization of Lewis' system S5. Notre Dame Journal of Formal Logic, v. III (1962), pp. 51-60.

University of Notre Dame Notre Dame, Indiana