Notre Dame Journal of Formal Logic Volume III, Number 1, January 1962

THE RULE OF EXCISION IN POSITIVE IMPLICATION

IVO THOMAS

The point made in [1] that the rule of excision

RE: $\vdash \alpha$, $\vdash \phi$ ($C \alpha \beta$) $\rightarrow \vdash \phi$ (β)

can be more powerful than the rule of detachment

RD: $\vdash \alpha, \vdash C \alpha \beta \rightarrow \vdash \beta$

is to be made with great economy in the context of positive implication. Assuming RE, substitution and the axiom

1. CCpCqrCCpqCpCsr

we have

* 2.	CCpCqrCCpqCpr	[1 s/1, RE]
3.	CCqrCqCsr	[1 p/1, RE]
*4.	CrCsr	[3 a/1. RE]

and RD as a special case of RE, thus having the positive system. But the matrix MI

MI	C	0	1		<u>C</u>	0	1	2
	*0	0	1	1	MII *o	0	2	2
	1	0	0	1	MII 1	0	2	0
	2	, 0	0	0	2	0	0	0

which is hereditary under RD, verifies 1 and rejects 2;

CC1C12CC11C12 = CC11C01 = C0C01 = 1.

If interest of the system is disregarded, the point can be proved with maximum economy by excising s from 4 to obtain 5. Crr; but the matrix MII shows that 5 is independent of 4 and RD.

REFERENCE

[1] Angell, R. B., The sentential calculus using rule of interference R_e, The Journal of Symbolic Logic, vol. 25 (1960), p. 143.

Blackfriars
Oxford, England

Received January 31, 1962