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NOTES ON FOUNDATIONS

G. Y. RAINICH

Note II. On Galois Connections

We deal here with partially ordered sets.! In such a set a relation of
order is defined which possesses the usual properties except that given two
elements it is not necessarily true that one is higher than the other or that
they are equally high. As an example we may consider the set of subsets
of a given set; given two such subsets it may happen that one includes the
other or that each includes the other but, in general neither of these rela-
tions is true. We say in a case like this that we have partial order “by in-
clusion”. Although in a sense all cases of partial order may be reduced to
this it is convenient to consider other situations independently. Examples
of some other cases appear in what follows.

Given two partially ordered sets which are in correspondence it may be
that their orderings are related to each other. A classical example occurs
in the theory of algebraic equations.2 As one set we may consider the set
of rational functions of the roots of a polynomial~these functions are called
natural irrationalities. One such natural irrationality may be called higher
than another if the second is a rational function of the first but not vice
versa. Under this definition the natural irrationalities constitute a partially
ordered set. On the other hand, we may consider the groups of permutations
of the roots of our polynomial. If in connection with every natural irration-
ality we consider the group of pemutations of the roots under which the
natural irrationality is invariant we have established a correspondence be-
tween the two partially ordered sets, the set of natural irrationalities and
the set of groups of permutations ordered by inclusion. It is true that when
a natural itrationality @ is a rational function of 8 the permutations that
do not affect 8 would not affect o so that when ¢ is higher than 8 its group
includes the group of 8. There is then a connection between the partial
orders of the two sets. This forms the basis of the Lagrange-Galois theory.

If there is a correspondence between two partially ordered sets such
that whenever an element o of the first set is higher than an element B it is
true that the corresponding elements of the second set are in the same order
relation we say that the partially ordered sets are isotaxic; the tetm *Galois
connected” is used with about the same meaning. The two sets considered
above in connection with an algebraic equation are isotaxic.
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A very simple example of two isotaxic sets is given by a monotone in-
creasing sequence q, of real numbers. The set of indices 7 and the set of
numbers of the sequence are both ordered (by magnitude; order is a special
case of partial order) and the fact that @, > @, when m > n means that the
sets are isotaxic.

Another classical example of isotaxic sets is given by the so called
Erlanger Program. One set here is the set of geometries (Euclidean, Pro-
jective, Affine, Equiaffine, Equiform, Inversive). A geometry may be called
higher than another if every proposition of the first is a significant and true
proposition of the second (it is enough to ascertain that every axiom of the
second is provable in the first). On the other hand to every geometry (whose
proposition or axioms form a categorical set) may be assigned a group, and
it is true that (possibly after some adjustment of terminology) a higher ge-
ometry has a higher group. The set of geometries is then isotaxic with the
set of groups.

As the last example we shall consider a definition of a Riemann inte-
gral (slightly generalized). Here we begin with an interval I = (a, b) of
treal numbers. We consider the divisions of I into subintervals, such a di-
vision being brought about by inserting between a and b a (finite) number
of dividing points. Of two such divisions o and 8 we consider B higher
(or finer) if it is obtained from o by inserting additional dividing points.
We consider next a real valued function f defined on I. Given a division
of I we consider in connection with every subinterval 7 of | what we shall
call a vertical interval, namely the interval whose endpoints are the lower
and upper bounds of the set of values that f takes on i. We then form a sum
S of products whose second factors are the lengths of the subintervals of
the division and whose first factors are some numbers belonging to the
corresponding vertical subinterval. There are many such sums correspond-
ing to a given division because we have freedom to choose as the first
factors any numbers in the vertical intervals.3 We'll speak of the sum-sets
corresponding to a division of I (we consider a fixed function f which we do
not change during the whole discussion). We want to show now that if we
have two divisions A and B and if B is finer than A then the sum-set cor-
responding to B is part of the sum-set corresponding to A.

To do this it is enough to show that every new sum corresponding to
a division obtained by inserting one additional point (we consider the same
function [ throughout) will be equal to one of the old sums. Denoting the
new dividing point by y and the next smaller and the next larger points of
the old division by x and z, so that x < y < z we have to compare the term
p (z — x) of the old sum with the sum of two terms

Py (y=2)+py(z=)

of the new sum. We must prove that given p; and p, we can find p so that
the two expressions are equal. Obviously we must choose as the number
p the number

y-x z=-y
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We must prove that this number belongs to the vertical interval correspond-
ing to the interval (x, z) if p; and p, belong to the vertical intervals corre-
sponding to (x, y) and (y, 2) respectively. If by <bywe have

y-x Z=y y=x  Z=y

pl:plz—rx-‘-plz-—xs'pl z-x+p2z—x
y-x z-y
< +70 =
_pzz—x 2z-x P2

So that p is between p; and p, and we obtain the same result in a similar
fashion when p; > p,. Since p; and p, are in the vertical intervals corre-
sponding to (x, y) and (y, z) the number p must be in the vertical interval
corresponding to (x, z) because the endpoints of that interval are the small-
er of the two lower bounds and the larger of the two upper bounds of the
other two vertical intervals. It follows that every sum corresponding to a
finer division is equal to one of the sums corresponding to the original di-
vision and this proves the isotaxy of the lattices.

Of course we may consider special cases and generalizations. In the
direction of specialization, if all the sum-sets corresponding to all possible
divisions have only one point in common we call this point or number the
integral of f over I. For example, if f is continuous in [ it follows without
effort that the integral exists.

On the other hand, we may consider instead of an interval of real num-
bers a more general domain such as an arc or a surface (in the second case
we will have dividing contours instead of dividing points), instead of nu-
merical function—a function whose values are vectors or tensors, and in-
stead of products of two numbers for instance products of two vectors, one
of which is connected with the dividing contour (corresponding to the dif-
ference of the end-points of the subinterval) and the other is the value of a
vector valued function defined on the domain. —We have thus as a special
case a surface integral.
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