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STUDIES IN THE AXIOMATIC
FOUNDATIONS OF BOOLEAN ALGEBRA

CZESLAW LEJEWSKI

Section IV

In Section II we made use of the rule for writing propositional definitions
in order to define singular inclusion in terms of weak inclusion within the
framework of © (or 21*). Our definition had the form of the following
expression:

D6. [a b] :•: a ε b . = : : h c] . ~ {a C c) . a C b : : [c d] .'. c C a . D : aC
c . v . cCd a

It is obvious that D6 can also serve as a definition of singular inclusion
within the framework of 21.

One might expect, on purely intuitive grounds, that the familiar propo-
sition

DQD1. [ab] , \ aCb . = : [ c ] : c ε a . 3 . c ε b

could in turn be used as a definition of weak inclusion in terms of singular
inclusion, and that the functor of singular inclusion could be employed as a
primitive constant term in a system of Boolean Algebra with definitions.
Interestingly enough DQD1 does not seem to be derivable within 2ί unless
we strengthen

Al. [ a b ] / . a C b . = : [ c d e] : - ( c C d) . c C e . c C a . D . [ i f g] . ~

(/ C g) . / C e . f C b

by subjoining to it

Al.l [a b] :.: ~ (a C b) . D : : [3 c d] : : - (c C <*) . c C a : : [e /] .'. e C c .
D r c C e . v . e C /

Within the framework of 21 proposition A 2. 2 appears to be independent
of proposition A.I. This statement, however, will have to be regarded as a
conjecture until an interpretation is found which satisfies Al and the rules
of 21, including the rule for writing nominal definitions, but fails to satisfy
ALL12
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Since we do not know whether Al.l can be derived from Al within the
framework of 21, we cannot regard Al as an adequate axiom for the purpose
of ontological interpretation. For from the point of view of this interpreta-
tion Al.l, which in virtue of Dl and D6 is inferentially equivalent to the
proposition

[a] : ex (a) . 3 . h fe] . b Z a

raises no intuitive objections, and, consequently, ought to be included among
the theses available in the system.

The totality of theses derivable from Al and Al.l in virtue of the rules
Rl — R5 will be described as Basic Ontology with nominal definitions. In
what follows two systems of Basic Ontology with nominal definitions will
be outlined and shown to be inferentially equivalent. The one to be referred
to as System 21Q is based on a single axiom, which takes the form of the
following proposition:

Aol. [a b] : : a C b . = :•: [c] :•: c C a : : [d e] .'. d C c . 3 : c C d . v . d C

e::D.cCb

Rl - R5 serve as rules of inference in 2l0 . The other system will be re-
ferred to as System £) . Its single axiom says that

DQ1. [a b] : : a ε b . = .'. h e ] . c ε a . c Z b .'. [c d] : c ε a . d ε a . 3 .
c ε d

Among the rules of © 0 we have Rl - R4, and instead of R5 we have DR5
This is a rule for writing nominal definitions, which allows us to add to the
system new theses of the form

XIV [a...] : a Z x . s . [^b] . a ε b . φ (b)

provided κa Z xy and fφ (b)9 in these theses satisfy certain conditions anal-
ogous to those postulated by R5.

Before we proceed to establish inferential equivalence between §IQ and
35£ we have to convince ourselves that AQ 1 is inferentially equivalent to
Al and Al.l taken together.

Let us, therefore, assume

HI = Al.

H2 = A1.1

and let us proceed with the deductions as follows:

H3. [a b f g h] :": [c] :•: c C a : : [d e] .'. d C c . D : c C d . v . d C e : : D
. c C b \ \ ~ (f C g) . f C b . f C a\ \ D . [^i f\ . *- (i C j) . i C b . i C b

Proof:

[abfgb] :•;

(1) [c] :•: c C a : : [d e] .'. d C c . 3 : c C </ . v . d C e : : 3 . c C 6 :

(2) ~ ( / C g ) .

(3) / C b .
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(4) fCa: D : . :

(5) - ( i C ) . ( r ,

(6) i C / : s I [ H 2 > 2 ]

(7) [A 3 .-. * C i . 3 : i C λ . v . k C / : : )

(8) £ C h . [S2, 6, 3]

(9) i C β . [S2, 6, 4]

(10) iCfc: : [1,9,7]

[ ^ I / ] . ~ ( i C j ) . i C h . ί C b [5, 8, 10]

H4. [a b] : Ί [c] :•: c C a : : [d e] . ' . «? C c . D : c C «f . v . d C e : : D . c C

& :•: 3 . Λ C &

Proof:

[a b] I :

(1) [c] :.: c C a : : Id e] . ' . d C c . D : c C rf . v . d C e : : D . c C b :•: 3 .-.

(2) [c rf e] : - (c C <0 . c C e . c C a . D . [^ / g] . - (/ C g) . / C e . / C b . ' .

[//3, 1]
αCi> [HI, 2]

H5=A o 2. [52, JM]

Now, let us assume

/i-V
From this assumption we derive

J2. [al.aCa [Aoί\

J3. [abc]:aCb.cCa.D.cCb [ΛQ2]

J4. [ab c d e] : aCb . r-(cCd) . c Ce . c Ca .D Λl / g ] . « ( / C g ) .

/ C e ./Cfc

Proo/:

[Λ έ? c d e] ,'.

(1) Λ C K

(2) « (c C «0

(3) c C e .

(4) c C f l . D :

(5) c C έ : [/3, 1, 4]

[ 3 fg\.~(fCg).fCe.fCb [2,3,5]

/5. [ β H ] : . : [ c ^ ] : - ( c C ή . c C e . c C f l . 3 . [ ] / g ] . ~ ( / C g ) . / C

e . / C b .'. h C α : : [c d] .'. c C h . 3 : h C c . v . c C a? : : - (h C b)::

D . hCb

Proof:

[ a b h] :.:

( 1 ) [ c d e ] : r ( c C d ) . c C e . c C a . D . [ 3 f g] . « ( / C g ) . / C e . / C f c . ' .

( 2 ) Kα::
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(3) [c d] .'. c C h . D : h C c . v . c C d : :
(4) ~ (A C *) : : D :

(5) ~ < / C g ) . )

(6) / C i . > [1, 4 ,/2, 2]

(7) / C * . )

(8) A C / : [3, 6, 5]
K έ [/3, 7, 8]

/6. [ ^ ] Λ [ c ί / e ] - ( c C 4 . c C g . c C f l . 3 , [ j / g ] . . ( / C g ) . / C

e . / C έ : 3 . ώ C έ

Proof:

[a b] ;
(1) [c d e] : - (c Cd) . c C e . c C a .D .[^ f g\ . ~ <J C g) . f C e . f Cb .\

(2) [c] :•: c C a : : [d e] .'. d C c . D : c C d . v . d C e : : D . c C b : :

[/5, 1]
flC!) [/I, 2]

/7-Ai. t/4, /6]

/δ = A2. [J ί\

These deductions complete the proof that AQ1 is inferentially equiva-

lent to the set of axioms consisting of AI and Al. 1.

In order to establish inferential equivalence between System St0 a n d

System S>0 we shall have to derive DQ1 and DQD1 within the framework of

3ίφ . We shall also have to prove that any thesis that could be added to ® o

by applying DR5, could be obtained in Sίp. Then, assuming DQ1 and DQD1,

we shall have to deduce AQ1 and D6. In addition we shall have to prove that

in 2/0 we could derive any thesis that could be added to %$ in virtue of R5.

Since AQ1 implies A2, and since the rules of inference in 21 and in Sίo

are the same, we can assume that all the theses derived so far in 21 have

been derived in 3 ί 0 . Our deductions within the framework of 210 continue

as follows:

T67. [ab c] : aCb . c ε a . D . c *ε b

Proof:

[a b c] :•:

(1) aCb .

(2) c ε a . D : :

(3) [^ d].~(cCd): \

(4) c C a : : > [D6, 2]

(5) [d e] .'. d C c . D : c C d . v . d C e : : )

(6) cCb:: [Aol, 1 , 4 , 5 ]

c ε A [D6y 3, 6, 5]

T68. [α A d] :•: [c] : c ε a . 3 . c ε 6 .\ <* C a : : [e /] .*. e C rf . D : ί/ C e .

v . e C / : : - ( ί / C ^ ) : : D . ^ C ^
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Proof:

[a b d] :.:
(1) [c] : c za . D . c Zb .\
(2) d C a : :

(3) [e f] .\ e C d . D : d C e . v . e C f : :
(4) ~ W C έ ) : : D .

(5) rf ε a . [D6, 4, 2, 3]
(6) dZb . [ l , 5]

dCb [D6, 6]

T 6 9 . [ a b] .-. [ c ] : c ε a . D . c z b : D . a C b

Proof:

[a b] ;.;
(1) [c] : c ςa.D . c Z b :D\\
(2) [c] :•: c C α : : [d e] .*. β? C c . 3 : c C α* . v . d C e : : D . c C b : :

[T68, 1]

tfC6 L^O2, 2]

T70 = D o D ί . [α 6] / . α C b . = : [c] : c ε α . D . c ε b [T699 T67]

T7L [ α l . α C β U Q I ]

T72. [ ^ ] : f l ε i . 3 . β ε β [D6, T7l]

T73. [ab] : a zb ,D .[3 c] . c Z a . c Zb [T72]

T74. [ab c] : aZb.cςa.D.aZc

Proof:

[a b c] :.:

(1) a ε b .
(2) c ε Λ . D : :
(3) [ ] d] . ~ ( α C d ) : : ) r ,

(4) [rf e] .". rf C α . 3 : β C ^ . v . d C e : : / L ' J

( 5 ) [ 3 d . - ( c C Λ : | [ D 6 > 2 ]

(6) c C a . )
(7) flCc: [4, 6, 5]

a Z c [D69 3, 7, 4]

T75. [ab c d] : a Zb . c ςa . d Sa.D . c zd

Proof:

[abed]:

(1) a Z b .

(2) c ε a .

(3) </ ε a . D .
(4) Λ ε ^ . [T74, 1, 3]
(5) aQd . [D6, 4]

c ε d [T67, 5, 2]

T76. [a e f] : : [c d] : c ε a . d Z a . D . c ε d .'. e C <z . - (a C e) . ~ (e C
/) . ' . D : αC β . v . e C/
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Proof:

[a e f] •:•
(1) [c d] : c £a . d £ a . D . c £ d .-.
(2) e C a .
(3) - (a C β) .
(4) ~ ( β C / ) . . D : :

(5) g C β : : ( r ,
( 6 ) [ h i ] .-. h C g . D : g C h . y . h C i : : I ° ' 3 J

(7) - (g C e) .

(8) g ε a : I [D6, 7, 5, 6]

[3 « :•: )
(9) A C e : : f f ,

(10) [» /] .'. i C A . D : 4 C i . v . i C / : : ( ° ' J

(11) ~{hCf). )
(12) ί ΐ « . [D6, 11, 9, 10]
(13) A ε « . \T67, 2, 12]
(14) g ζh\\ [1, 8, 13]
(15) g ε e . [T67,9, 14]
(16) g C β [D6, 15]

α C e . v . e C / [7, 16]

T77. [c a] : c ε a . D . [q d] . ~ (a C d)

Proof:

[c a] .'.

(1) c Za.D:

[q ^ .
(2) - (c C a") . [D6, 1]
(3) - ( c ε < 0 . lD6, 2]
(4) ~{aCd): [T67, 1, 3l

[ j d . - ( β C d ) [4]

Γ 7 8 . [a b c] : : c £ a . c £ b .'. [d e] : d ς a . e £ a . D . d z e .'. D.azb

Proof:

[a b c] :•:
(1) c ε a .
(2) c ε * .-.
(3) [a" e] : «? ε a . e ε a . D . d ε e .'. 3 : :
(4) [3 d . ~ (β C <0 : : [T77, l ]
(5) [d e] .-. d C a . Z> : a C d . v . d C e : : [T76, 3]
(6) a ε a . [D6, 4, 771, 5]
(7) a ε c . [3, 6, 1]
(8) cQb [D6, 2]

a tb [T67, 8, 7]

779 = DQl. [a b] : : a £ b . = , .[ϊ c] . c £ a . c £ b .'. [c d] : c £ a . d£a.
3 .c £d [T73, Ί75, T78]
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T80. [a h φ] : [b] : : b C a . = .\ [c d] .'. ~ ( c C d) . c C b . D : [3 g / ] : ,
(e C /) . e C c : [q g] . e C g . 0 (g) :•: A ε Λ :•: D . h c] . * & c . 0
(c) 3

Proo/:

[β A 0) : :
(1) [b] : : b C a . = .'.[c d] .'. r- (c C d) . c C b . D : [^ e f] : ~ (e C f) . e C

c : [3 g] . e Cg . ^ (g) :-:
(2) h ε α :•: 3 :

(5) Hi: [Γ72, 2]
[i c d e\ . \

(6) McCή. /
(7) c C i . V. [1, 4, 3, Γ7I]
(8) c C β . ί
(9) ^ ( β ) .

(10) hZc. [D6,2, 7, 6]
(11) Ke. [52, 10, 8]
(12) He: [767, 11, 5]

[3 cl.kc.^c) [12, 9]

T 8 1 . [ c d h i φ ] .-. h ζ i . φ ( i ) . r . . ( c C d ) . c C h . D : [ ^ e / ] : ~ ( e C / ) .
e C c : [̂  g] . e C g . φ (g)

Proof:

[c dhi φ] ,: :

(1) h ε i .

(2) < £ ( * ) •
(3) ~ (c C d) .
(4) c C i . D .-.
(5) b C 1 . [D6, 1]
(6) c C i .-. [S2, 4, 5]

[3 e /] : - (β C /) . e C c : [3 g] . e C g . φ (g) [3, 77J, 6, 2]

T82. [a A ̂ ] ί ! [ί»] : : ί> C α . s .-. [c </] .'. «r (c C d) . c C fe . D : [g e /] . -
(e C /) . e C c : [3 g] . e C g . <£ (g) :•: h ε i . φ (i) :•: 3 . A έ α

Proo/.

Uiψlii
(1) [b] : : b C a . = .*. [c if] / . - (c C d) . c C b . D : [̂  e / ] . : ~ (e C /) . e C

c : [3 g] . e Cg . 0 (g) :•:
(2) bZi.
( 3 ) 9<> (£) :•: 3 : :
(4) [c d .'. - (c C d) . c C A . D : [g e /] : <- (e C /) . e C c : [a g] . β C g .

ψ (g) : : [7*81, 2, 3]
(5) Kα. [1, 4]
(6) h£ h :: [T71, 2]

A ε a [T67, 5, 6]
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T 8 3 . [ a φ ] \ \ [ b ] : : b C a . ^ . ' . [ c d] , \ ~ { c C d ) . c C b ^ : [ ^ e f ] : ^

( e C f ) . e C c : [ i g] . e C g . φ ( g ) : : D : [ b ] : b ε α . = . D j c] . b €

c . <£ (c) [Γ80, T82]

It is evident from T79 and T70 that D Q 2 and # o # 2 are derivable within

the framework of SIQ . Moreover, T83 shows that any thesis that could be

obtained in © 0 by applying DR5 can be obtained in 510 with the aid of R5.

In order to complete our proof that $IQ and ΦQ are inferentially equivalent,

we assume DQ1, DQD1, and the rules of S)Q , and we proceed to show that

from these assumptions we can derive AQ1 and D6. In addition we derive a

thesis which makes it evident that any thesis obtainable in %$ in virtue of

R5, can be obtained in 3)^ .

T83*DoD2. [a] : α ε Λ . 2 . [3 b] . a ε b . b ε b . - (b t b)
[by applying DR5]

T83*l. [a] . - (a εΛ) [T83*DQD2]

T83*2. [ab] : a £b . 3 . a ε a [DQ1 = T79]

T83*3. [a b] : a ε b . 3 . [3 c] . ~ (a C c)

Proo/;

U b] Λ.

(1) Λ ε b . 3 :

(2) a t a. [T83*2, l]

(3) ~ (a CΛ) : [DoDi=T70, 2, T83* l]

[3 c ] . ~ ( β C c) [3]

Proo/:

[β fed::
(1) a Zb .

(2) c ε β . D . .

(3) a ε a . [T83*2, 1]

(4) β εc. [Dol=T79y 1, 3, 2]

(5) [de]:d z c .e s c .D .d Ze .: [DQ1=T79, 2]

c εέ7 [Dol=T79, 4, 1, 5l

T83*5. [^]: f l^.D.f lCί»

Proof:

[ab]::

(1) α ε ^ . 3 .*.

(2) [c] : c ε * . 3 . c ε fc .-. [T83*4, l]

flCί> [DoD2=T70, 2]

T83*6. [ab c d] .'. a Z b.c C a . ~ (a C c) . -^ (c C d) . D : a C c . v . c C d

Proof:

[abed]::
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(1) a t b .
(2) cCa.
(3) ~(aCc).
(4) ~(cCd).D.\

(5) e t c . [DoDl=Γ70, 4]
(6) e t a : [DoDί=Γ70, 2, 5]

(7) / ε « . \\.DoDUT70, 3]
(8) ~ (/ ε c ) . )
(9) / ε e . [DO1=T79, 1, 7, 6]

(10) / ε c . . [T83*4. 5,9)
aCc .v . cCd [8, 10]

Γ83*7. [a e β :•: [c Λ?] .'. c C a . 3 : u C c . v . c C d : : e t a . ft a : : 3 .

etf

Proof:

[a e f] :.:
(1) [c d] .-. c C a . D : a C c . v . c C d : :
(2) e ε a .
(3) / ε « : : 3 :
(4) [q g] . - (/ C g) : [T83*3, 3]
(5) fCa. [T83*5, 3]
(6) aCf: [1,5,4]

e ε / [DQDl=T70, 6, 2]

T83*8. [a b e] :-. ?- (a C e) . a C b : :[c d] . . c C a . D : a C c . v . c C d: :D
. a tb

Proof:

[a b e] :•:
(1) ~ ( « C e ) .
(2) aCb : :
(3) [c d] .-. c C a . 1 : a C c . v . c C d : : D .\
(4) [c d] : c t a . d t a . 1 . c Z d .-. [T83*7, 3]

[ 3 c ] .
(5) e t a . [DoDl=T70, l]
(6) c £ fc .'. [DoD2=Γ70, 2, 5]

* ε & [Doί=T79, 5, 6, 4]

T83*9=D6. [ a i ] : . : a ε b . = : : h c] . - (α C c) : α C b : : [c ίfl .*. c C α . D
: a C c . v . c C d [T83*3, T83*5, T83*6, T83*8]

T83* 10. [a b c] : a C b . c C a . D . c C b [ D Q D 1 = T 7 0 ]

T83*Π. [ a b f] \ [ c ] :•: cCa : : [d e] .-. dCc . D : cCd . v . dCe : : D
cCbllf t a- D . f tb

Proof:

[a b f] \\
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(1) [c] :•: c C a : : [d e] .'. d C c . D : c C d . v . d C e : : D . c C b \ I
(2) / ε a \ \ D : :

(3) [^ c] . - (/ C c) : ^
(4) fCa: : I [T83*9, 2]
(5) [d e] .'. dCf .J : fCd .v . dCe : : )
(6) / C 6 : : [ 1 , 4, 5]

/ ε fc [T83*9, 3, 6, 5]

T 8 3 * 1 2 . [ a b ] ' : \ [ c ] :•: c C a : : [ d e] .'. d C c . D : c C d . v . d C e : : D . c
Cb :•: D . aCb

Proof:

[a b] : :
(1) [c] :.: c C a : : [d e] .'. d C c . D : c C d . v . d C e : : D . c C b :•: J .'.
(2) [c] : c ε β . D . c ε fc . ' . [T83*ll, l]

β C ^ [DoDl=T70, 2]

T83*13=Aol. [ab]\\aCb . = :•: [c] :•: c C α : : [d e] .'. d C c . D : c C d .
v J C e O . c C έ [T83* 20, T83* 22]

T83*14. lade f φ] : :[b] : b Z a . = Λ^ c] . b £ c . c z c . φ (c) .'. d C a.
~{eCf). eCd .\D Λ^gb] .-(gQb) .gCe .φ(g)

Proof:

[adefφ] :•:
(1) [b] 1 b Z a . = . [^ c] . b Z c . c Z c . φ (c) .'.
(2) ^ C a .
(3) - (e C /) .
(4) e Cd .'. D : :

[3 d .'.
(5) g e e . [DoD2=T70, 3]
(6) g ε d [DoDUT70, 4, 5]

(7) g ε a.\ [DoDl=T70, 2,6]

[3 b] :
(8) g ε b .
(9) A ε h . I [1, 7]

(10) φ{h). )
(11) ^ ε g [T83*l, 9, 8]
(12) Ue: [T83*4, 5, 11]
(13) [] i] . ~ ( K f ) [T83*3, 9]
(14) hCe : : [T83*5, 12]

[j g h] . ,̂ (g C h) . g C e . φ (g) [13, 14, 10]

T83* 15. [abcde\:azb.cCa.dZc.eZc.D.dZe

Proof:

[a b c d e] :
(1) a ε & .
(2) c C * .
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(3) d ε c .

(4) e £c . 3 .

(5) d£ a. [DoDl=T70, 2, 3\

(6) e ε α . [DoDί=T70, 2, 4]

</έβ [Doί=T79, 1, 5, 6]

T83* 16. [a e b φ] : : [b] : b £ a . = Λh c] . b £ c . c £ c . φ (c) .'. [c d] :*-

(c C «0 c C e . D . [3 / g] . - (/ C g) . / C c . φ (/) . \ h £ e .: D .

h ε a

Proof:

[a e b φ\ :•:

(1) [b] : b £ a . = . [j, c] . b £ c . c e c . φ (c) / .

(2) [c 4 : ^ ( c C ή . k e . 3 . [ i / g] . *• (f C g) . f Cc . φ if) .'.

(3) A ε β . ' . D : :

(4) Aε 4 : [T83*2, 3]

(5) fa :] . - ( A G O : | [ T 8 3 . 9 > 3 ]

(6) 0 C e : : j

(7) ~ ( / C g ) . ( [ 2 5 6]

(8) fCh. I LA5, OJ
(9) φ(f). )

(10) hCf [T83*9, 3, 8, 7]

(11) A ε / . \ [DoDl=T70, 10, 4]

(12) U y] : i ε / . / ε / . 3 . i ε / / . [T83* 25, 3, 8]

(13) /ε / : : [Dol=T79, 11, 12]

h ε a [1, 10, 13, 9]

T83* 17. {a e φ] : : [b] : fc ε a . Ξ . [gj c] . 6 ε c . c ε c . 0 (c) . \ [c d : -

( c C ή . c C e . D . [ j / g ] . - ( / C g ) . / C c . ψ ( / ) Λ D . e C β
^ [T83*26, D o D I = T 7 0 ]

T83*18. [aφ] : :[b] : b ε a . = . [ | c] . b Z c . c ε c . 0 (c) : D . ' . [ & ] . \ ^

C β . = : [ c < ί ] : « ( c C f l ί ) . c C έ . D . [ 3 e / l . ^ e C / l . e C c . ^ e )

[T83*14, T83*17]

By deriving T83*13, T83*9, and T83* 18 we have shown that ΛQ2, D6,

and any thesis introduced into System %$ in virtue of R5 are all obtainable

within the framework of System ©Q , which completes the proof that the two

systems are inferentially equivalent.

When we compare 2ίD with 2Dφ , we can hardly fail to notice that while

the axioms of the two systems are of equal complexity, the rule for writing

nominal definitions in DQ is much simpler than the corresponding rule in

%$ . In fact, DR5 appears to coincide with our intuitions about definitions

in ordinary discourse. For in ordinary discourse we often define an object

as being so and so if and only if it is something that satisfies such and such

conditions. Now, this way of talking finds its expression in the form postu-

lated for nominal definitions by DR5. It is the intuitiveness of DR5 that

provides justification for R5, which although a little more difficult to grasp

is nevertheless inferentially equivalent to DR5.
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A more formal justification of the two rules for writing nominal defini-

tions amounts to proving consistency of φ ^ or $L , and involves a re-inter-

pretation of *£* or *C9 which makes 23Q or Jf0 part of a system known to be

consistent.

A very simple re-interpretation of ' £ ' for the purpose of proving con-

sistency of Lesniewski's Ontology has been suggested by the late Mr. Krus-

zewski. Following his idea we re-interpret *£' as the functor of conjunc-

tion for propositional arguments, and we re-interpret the nominal variables

of 3)0 as propositional variables. On this re-interpretation DQ1 becomes a

thesis of Protothetic, which is Lesniewski's system of the logic of proposi-

tions, while the rules of inference available in ©0 turn into valid proto-

thetical rules. The case of DQl and Rl - R4 appears to be obvious. Now,

any proposition of the form

[p . . .] : p . x . = . [jj q] . p . q . φ (q)

which satisfies DR5 on the latter*s re-interpretation, is easily derivable

from the corresponding proposition of the form

[ . . . ] : * . s . [ g q]. q.φ(q)

which, considering the stipulations of DR5, can be regarded as a proto-

thetic al definition.

Consistency of %Q follows from the fact that 2ί 0 is inferentially equiv-

alent to©Q . It can, however, be established independently by re-interpret-

ing *C9 as the functor of implication.

It is obvious that the proposition

[p q] .'. p D q . == : [r] : r D p . D . r D q

holds in Protothetic. Since the proposition

[p q r] p D q . v . qD r

also holds, A^l will hold on re-interpreting *C as *D\

Moreover, a proposition of the form

K. ! > . . . ] / . p D x . = : [ q r ] : ~ ( q D r ) . q D p . D . [ 3 s ί ] . - ( s D ί ) . s D

q. Φ (s)

which satisfies R5 under our re-interpretation, can be derived from the cor-

responding proposition of the form

Kl. [ . . . ] . \ χ = : [qr] : ~ ( 9 3 r ) . D . [3 s t] . ~ (s D t) . s D q . φ (s)

which, in view of the stipulations of R5, can be regarded as a protothetical

definition. The following simple deductions show that Kl implies K.

K2. lp q r . . . ] p D x . - (q D r) . qD p . D . U s t] . ~ (s J t) . s D q . φ

(s) 3

Proof:

[p qr...] .'.

(1) pDx .
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(2) ~ ( ? 3 r ) .

(3) q 3 p . 3 :

(4) q . [2]

(5) p . [ 3 , 4]

( 6 ) x : [ 1 , 5]

[g s <] . ~ ( s 3 ί ) . s 3 q . φ (s) [Kl, 6, 2]

K3. [p uv . . . ] : :[qr] :~(qDτ) . qDp . 3 . [ ] s t] . ~ ( s 3 ί ) . s 3 9 .

φ (s) .-. p . ~ (a 3 v) .-. 3 . [3 s ί] . - (s 3 ί) . s 3 u . φ (s)

Proof:

[p u v . . . ] : :

( 1 ) [qr]:~(qDr).qDp.D.h s t] . - (s 3 t) . s 3 q . φ (s) . ' .

(2) p .

(3) -.(lίDι ) . . 3 :

(4) u 3 p : [2]

[3 s ί] . ~ (s 3 ί) . s 3 « . s& (s) [ 1 , 3, 4]

K4. [ ί . . . ] : : [ ί f ] : ~ ( ί > ) . ί 3 p . 3 . [ i s ί ] . ~ ( s D ί ) . i D q .φ(s)
.- .p. . D x

Proo/.

(1) [ ? r ] : ~ ( ^ r ) . ^ ? . 3 . h s ί ] . - ( s D 0 . 5 D 9 . ( ^ ( s ) Λ
(2) p . . D . .

(3) [ q r] : ~ ( q l r) . D . [ ] s t] . ~ ( s D t) . s D q . φ ( s ) / . [K3, 1, 2]

x [Kl, 3l

Now, K2 and K4 imply K.

Our justification of R5 having been concluded it remains to consider

the relationship between Boolean Algebra with definitions and Lesniewski's

Ontology. It is evident from the preceding discussion that Boolean Algebra

with definitions is part of Basic Ontology with nominal definitions. For by

Basic Ontology with nominal definitions we understand the totality of theses

derivable from Λl and Al.l in virtue of the rules Rl - R5 whereas Boolean

Algebra with definitions has been described above as the totality of theses

so derivable from A1 alone. In what follows I will briefly indicate a series

of steps which lead from Basic Ontology with nominal definitions to Ontology

proper. They all concern the rules of inference.

(i) Since Ontology is conceived as containing a system of the logic of

propositions, the condition of R4 and R5 which bars semantical categories

obtainable in the logic of propositions from appearing in the definienda of

either propositional or nominal definitions has to be dropped.

(ii) We have to generalise R4 and R5 in order to accommodate many-

link functions. In definitions which satisfy the stipulations of R4 or R5 in

their present form new functors are always constant terms* The rules of

definition in Ontology proper allow for definitions in which new functors

are functional expressions. This generalisation seems to be entirely in
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keeping with certain tendencies in ordinary usage, and it increases the flexi-

bility of the ontological syntax enormously. ^

(iii) Moreover, the rule for writing nominal definitions has to be strength-

ened to allow for definitions of the following form:

XV [a . . . ] : a ε x . = . φ (a)

The stipulations of the new rule can be outlined as follows. On the as-

sumption that a thesis T is the last thesis in the system, an expression E

of type XV can be added to the system as a new thesis provided the follow-

ing conditions are fulfilled: *x9 in E is a constant name which does not

occur in T or in any thesis preceding T in the system, or it is a nominal

function; if the latter is the case then the functor of the first link (in a

simple nominal function there is only one link) is a constant term which

does not occur in T or in any thesis preceding T in the system while the

arguments in the links are all variables; none of the variables in κa ε x9 oc-

curs in that expression more than once; *φ (a)9 in E is of the form *a ε y9 or

it is a conjunction with at least one conjunct of the form *a £ y9; *φ (a)9 in

E is, with respect to T, a meaningful prepositional expression, i.e., every

constant in xφ (a)9 occurs in T or in a thesis preceding T in the system, and

every variable occurring in *φ {a)9 belongs to a semantical category (logical

type) already available in the system; every variable occurring in *a £ x9

occurs as a free variable in *φ (a)9 and every free variable in xφ (a)9 occurs

in *a ε x9; there are no free variables in E.

In this version the rule for writing nominal definitions enables us to

derive the proposition

[a b] : a = b . φ (a) . D . φ (b)

from the propositions

[abc]:a£b.b£c.D.a£c

and

[ab] : aS b .D . a za

without employing any law of extensionality. It also enables us to replace
DQ1 as the axiom of Ontology by the following simple thesis

[α b] : a ε b . = . U c] . a ε c . c ε b16

(iv) Finally, two rules of extensionality have to be adopted: the rule

of propositional extensionality and the rule of nominal extensionality.

For a detailed and authoritative statement of the rules of inference in

Ontology the reader will be well advised to consult S. Lesniewski, tGrund-

zϋge eines neuen Systems der Grundlagen der Mathematik', Fundamenta

Mathematicae 14 (1929) and *Uber die Grundlagen der Ontologie', Comptes

rendus des seances de la Societe de Sciences et des Lettres de Varsovie,
Classe III, XXIII Annee, Warszawa 1930.1 7
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NOTES

11. Introduction, Section I, and Section II of my 'Studies in the axiomatic
foundations of Boolean Algebra* have been published in Vol. I No. 1 of
Notre Dame Journal of Formal Logic, pp. 23-47; Section III of the essay
has appeared in Vol. I No. 3 of the Journal, pp. 91-106.

12. Al and Al.l can be shown to be mutually independent in a system with
Rl - R4 as its only rules of inference.

13. For historical details concerning D 1 and AQl see my On Lesniewski's
Ontology', Ratio 1 (1957-58), pp. 15°0-176.

14. See J. Stupecki, *S. Lesniewski's Calculus of Names', Studia Logic a,
3(1955), p. 66.βι

15. The idea of many-link functions in Protothetic is explained informally
by B. Sobociήski in his 'On the single axioms of protothetic', Notre
Dame Journal of Formal Logic, vol. I (I960), pp. 52-73.

16. See B. Sobocinski, Ό kolejnych uproszczeniach aksjomatyki nontolo-
gji" prof. St. Lesniewskiego' (On Successive Simplifications of the
Axiom-system of Lesniewski's 'Ontology'), Ksiega Pamiatkowa Frag-
menty Filozoficzne, Warszawa 1934.

17. In preparing the present essay for publication I have been helped by
generous advice and illuminating criticism from Professor Sobocinski.
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