ON A RECENT ALLOTMENT OF PROBABILITIES TO OPEN AND CLOSED SENTENCES

HUGUES LEBLANC

Probabilities, though frequently allotted to closed sentences, have rarely been allotted to open ones. The recent scheme by Kemeny, Mirkil, Snell, and Thompson in *Finite Mathematical Structures* for allotting probabilities to sentences of the form 'f(x) = a' is therefore of considerable interest.¹ It has, however, a shortcoming which I should like to discuss here and, possibly, remedy.

Let 'f' be a functional constant, 'x' an individual variable, and 'a' an individual constant; let U be the (finite) set of values of 'x'; and let A be the subset of U whose members satisfy f(x) = a'. Kemeny et al. then take the probability of f(x) = a' to be m(A), where m(A) is the measure (in some appropriate sense of the word 'measure') of A^2 . Their scheme is attractive enough and mirrors to some extent what mathematicians understand by the probability of a set.³ Kemeny et al. are careful, of course, to restrict it to open sentences of the form $f(x) = a^{\prime}$. Consider, however, a closed sentence of the kindred form f(b) = a', where 'b' is an individual constant. Since f(b) = a' does not contain any occurrence of 'x', it would normally be held to be satisfied by every member of U when true, by none when false. One would accordingly expect Kemeny et al. to take the probability of f(b) = a'to be 1 when f(b) = a' is true, 0 when f(b) = a' is false. Yet in their scheme for allotting probabilities to closed sentences, a scheme I shall go into below, they let the probability of a closed sentence equal 1 only when the sentence is logically true, 0 only when it is logically false.⁴ '(b) = a'being neither logically true nor logically false, its probability must therefore differ by that scheme from either one of 1 and 0, a disturbing enough result.

The difficulty becomes even more acute when the calculus, call it C, to whose sentences probabilities are allotted is a simple applied predicate calculus of the first order with identity.

Assume indeed that a set D of individuals has been singled out as the domain of C, a member of D paired with each individual constant W of C as the individual designated by W, and a class of ordered *n*-tuples of members of D paired with each *n*-adic predicate constant F of C as the extension of

F. Assume next that an assignment Asst of members of D to the individual variables of C is said to satisfy a sentence S of C under the following circumstances:

D1. (a) Let S be of the form $F(W_1, W_2, \ldots, W_n)$, where F is an n-adic predicate constant and W_1, W_2, \ldots , and W_n are n individual constants or variables. If the ordered n-tuple made up of the members of D respectively designated by or assigned by Asst to W_1, W_2, \ldots , and W_n belongs to the extension of F, then Asst satisfies S;

(b) Let S be of the form $W_1 = W_2$, where W_1 and W_2 are two individual constants or variables. If the members of D respectively designated by or assigned by Asst to W_1 and W_2 are the same, then Asst satisfies S.

(c) Let S be of the form \sim (S'). If Asst does not satisfy S', then Asst satisfies S.

(d) Let S be of the form $(S') \supset (S')$. If Asst does not satisfy S' or Asst satisfies S'', then Asst satisfies S.

(e1) Let S be of the form (VW) (S'), where W is an individual variable and W is not free in S'. If Asst satisfies S', then Asst satisfies S.

(e2) Let S be of the form (VW) (S'), where W is an individual variable and W is free in S'. If Asst satisfies S' and every assignment of members of D to the individual variables of L which is like Asst except for the member of D it assigns to W also satisfies S', then Asst satisfies S.⁵ Assume finally that probabilities are allotted to the sentences of C as follows:

D2. Let S be a sentence of C. Then the probability of S equals $m(Asst_S)$, where $Asst_S$ is the set of assignments of members of D to the individual variables of C which satisfy S and $m(Asst_S)$ is the measure (in some appropriate sense of the word 'measure') of $Asst_S$.

It is clear that if the sentence S in D1-D2 is allowed to be closed as well as open, if a closed sentence S of C is taken, as usual, to be true when S is satisfied by all assignments of members of D to the individual variables of C, and if a closed sentence S of C is taken, as usual again, to be false when S is not true, then the probability of a closed sentence S of Cwill automatically equal 1 or 0, when S is true, 0 when S is false. If, on the other hand, the sentence S in D1-D2 is presumed to be open, then other probabilities besides 1 and 0 may consistently be allotted to the closed sentences of C. Note, however, that with the sentence S in D1-D2 thus presumed to be open, the probability of $(W = W) \supset (S)$, where W is an individual variable of C and S is a closed sentence of C, will nonetheless equal 1 or 0, 1 when S is true, 0 when S is false.⁶ One could therefore not allot probabilities other than 1 and 0 to S without thereby allotting different probabilities to S and $(W = W) \supset (S)$. But S and $(W = W) \supset (S)$ are logically equivalent. One could therefore not allot probabilities other than 1 and 0to S without thereby allotting different probabilities to logically equivalent sentences, a distressing result.

I would accordingly recommend that (1) the Kemeny *et al.* scheme for allotting probabilities to open sentences of the form f(x) = a be made to cover as well closed sentences of the form f(b) = a. I would also

recommend, when it comes to allotting probabilities to the sentences of C, that (2) the sentence S in D1-D2 be suffered to be open as well as closed, or that (3) the probability of a closed sentence S of C be taken to be that of the open sentence (W = W) \supset (S) we just considered.⁸ In all three cases the probability of a closed sentence, be it of the form 'f(b) = a' or any other, would equal 1 or 0, and in the last two cases the requirement that equivalent sentences be allotted equal probabilities would be met.

The scheme Kemeny *et al.* used to allot probabilities to closed sentences is roughly as follows. A (finite) set U of so-called logical possibilities is assumed to be given; a subset A of U, consisting of all the members of U which are not precluded (so to speak) by a closed sentence S, is then paired with S as the so-called truth-set of S; the probability of S is finally taken to be m(A), where m(A) is the measure (in some appropriate sense of the word 'measure') of the truth-set A of S. It is clear from my brief description of the scheme that the probability of a closed sentence S, where S is neither logically true nor logically false, must be other than 1 or 0.9

This allotment of probabilities, reminiscent of Carnap's Logical Foundations of Probabilities, is at variance with the one I just recommended.¹⁰ It might nonetheless be retained alongside mine if a distinction which Kemeny *et al.* ignore were drawn, that between the truth-value of a sentence and an estimate of the truth-value of a sentence. The probability I have just allotted to a closed sentence S coincides with the truth-value of S. The one Kemeny *et al.* allot, on the other hand, to such a sentence has all the earmarks of an estimate of the truth-value of S. But there is room in inductive logic for estimates of truth-values as well as for truth-values. The Kemeny *et al.* allotment of probabilities to closed sentences might thus be retained-subject to the above reinterpretation-alongside mine. It might even be extended in one interesting direction.

Whereas, indeed, the probability Kemeny *et al.* allot to a closed sentence has all the earmarks of an estimate of a truth-value, the one they allot to an open sentence has all these of a truth-value in a generalized sense of the word 'truth-value'. As a matter of fact, when the members of the domain D of such a calculus as C are paired in a one-to-one fashion with the individual constants of C, the probability allotted by D2 to an open sentence S of C proves to be a weighted average of the truth-values (in the usual sense of the word) of the so-called instances of S.¹¹ There being room in inductive logic for estimates of the truth-values of open sentences as well as of closed ones, the Kemeny *et al.* allotment of probabilities to closed sentences might therefore be extended to cover open sentences as well.

I cannot recount here the various steps to be taken in carrying out that extension.¹² Once they are taken, however, a sentence S (be it closed or open) comes to be allotted two probabilities: one, the truth-value of S either in the traditional sense or in a generalized sense of the word, has a statistical flavor of its own and, for that reason, might be dubbed *the statistical probability of S*; the other, an estimate of the truth-value of S, has

an inductive flavor of its own and, for that reason, might be dubbed the inductive probability of S.

Kemeny *et al.* ignore, I said, the distinction I urged above between a truth-value and an estimate of a truth-value. They also ignore as a result the distinction I urge here between a statistical probability and an inductive one.¹³ They do so, however, at the price, as I hope to have shown, of allotting different probabilities to the two equivalent sentences S and $(W = W) \supset (S)$.¹⁴

NOTES

[1] See John G. Kemeny, Hazelton Mirkil, J. Laurie Snell, and Gerald L. Thompson, *Finite Mathematical Structures*, Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1959, chapter 2, section 4, and chapter 3, section 1.

[2] For a definition of the word 'measure', see *Finite Mathematical Structures*, p. 113.

[3] Kemeny *et al.* transfer indeed to the defining condition of a set, understood here as an open sentence, the probability which mathematicians normally allot to the set of elements satisfying that condition.

[4] See Finite Mathematical Structures, chapter 2, section 3, and chapter 3, sections 1 and 2.

[5] Some additions, which the reader can easily supply, should be made to the text if C contained functional constants as well as individual and predicate constants.

[6] A new definition of the phrase 'S is true', which the reader can easily supply, would of course be required here.

[7] The same result would hold if C were a simple applied predicate calculus of the first order without identity. The open sentence $((F(W)) \supset (F(W))) \supset (S)$, where F is, say, the alphabetically first predicate constant of C, could then serve in lieu of $(W = W) \supset (S)$.

[8] A different scheme for allotting what I shall call below statistical probabilities will be found in the author's "On chances and estimated chances of being true," *Revue Philosophique de Louvain*, vol. 57 (Mai 1959), pp. 225-239.

[9] See references in footnote 4.

[10] See Rudolph Carnap, Logical Foundations of Probability, Chicago: The University of Chicago Press, 1950, chapter V.

[11] This point is made in the author's "On chances and estimated chances of being true," theorem T3.12, for a special weighting of the truth-values of the instances of S. It can be made for all weighting of the truth-values in question once D3.1(b), (c1), and (c2) are suitably generalized.

[12] See the author's "On chances and estimated chances of being true," where the extension in question is carried out for a family of calculi C.

[13] In A Philosopher Looks at Science, Princeton, N. J.: D. Van Nostrand Company, Inc., 1959, chapter 4, Kemeny distinguishes between two kinds of probabilities. The distinction he draws there, however, is not reproduced in Finite Mathematical Structures.

[14] This paper was given by title at the 1960 International Congress for Logic, Methodology and Philosophy of Science, Stanford University, Stanford, California.

Bryn Mawr College Bryn Mawr, Pennsylvania