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ON RECURSIVE TRANSCENDENCE

R. L. GOODSTEIN AND J. HOOLEY

1. Let P, (x) be the nth polynomial in an enumeration of all one-variable
polynomials with integral coefficients; let ||z|| = ||x + iy|| = |x| + |y| be
called the norm of a rational complex number z = x + 7y and let {sn} be a
sequence of rational real or complex numbers. Then lim s, is transcenden-
tal if

M (1R (3N @ 2N ||P, (s)]] > 27} (1.1)

The convergence of {sn} is expressed by the condition:

k) (3 v)(n) in >/V—>l|sn—-svl|<2_(k+2)}. (1.2)

Let v (k) be the least value of v for which (1.2) holds, so that n 2 v (k) »
s, - s,,(k)ll < 27(k+2) " apd let k, and N, be the least values of k and N for
which (1.1) holds, so that

n 2N, > ||P, (s)|| > 27*r. (1.3)
Now if M = 05’2;‘(“ {HS’H + I}, and if P *(x) is the sum of the absolute

values of the terms of P; (x), the first derivative of Pr (x), then

[IP, (s,) = P, (s )| < ||s,, = s,ll BX(M),

and, calling the exponent of the least power of 2 which exceeds P* (M), c,,

we have
m,n2v(k+c)-||P (s )=P, (s)|| <277, (1.4)

If s, is general recursive and general recursively convergent, so that
the function v (k) is general recursive, and if further, the functions N, and
kr in (1.3) are both general recursive, then the general recursive real (com-
plex) number {sn} is said to be general recursively transcendental.

1f s,, v (k), N, and k, are all primitive recursive (p.r.), then the p.r.
real (complex) number {sn} is said to be primitive recursively (p.r.) transcen-
dental.
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In particular, taking P, (x) to be a linear function of x, we obtain the
corresponding definitions of irrationality.

From (1.3) and (1.4), taking k, for k and N, +v(k +c, +1) forn, we
find, writing v, (k) for v (k + c, + 1), that

1B, (s, Il > 277", whence

" (3 BB, (s, Il > 2%, (1.5)

If {sn} is general recursive and general recursively convergent, and if
lim s, is transcendental, then {sn§ is general recursively transcendental.
For, by hypothesis, s, and v, (k) are general recursive and so if A is the
least value of & satisfying (1.5) then A_ is general recursive, and

A1
WP Gs, o MI>2 77"

Using (1.4) again with & = )\r + 1 we have
n2v, (}\r) > HP, (sn)H > 2—)"‘.2

which proves that {sn} is general recursively transcendental. Of course it
is not the case that a p.r. pumber which is transcendental is necessarily
p.r. transcendental. However, we shall prove that e and 7 are p.r. tran-
scendental in the sense that any p.r. real number whose classical limit is
e or 7 is p.r. transcendental.

2. We start by showing that every algebraic number is a p.r. algebraic
m

number, i.e. that to each root of a polynomial, f (x) = Z a, x7, there cor-
r=o

responds a p.r. real (complex) number, ® , such that f (®,) » 0 primitive
recursively. N

Firstly, considering real roots, we note that if @, = 1, and if |x| > A =
m
Z la,|, then |x| > I and |/ (x)| > 0; i.e. all the roots of  (x) lie in the circle
r=o

|x| < A. ;

Let F (x) = Z brx' be the quotient on dividing f (x) by the highest com-

r=o
mon factor of { (x) and [' (x); then the br are rational functions of the a,.
Let o (1€ ll\< [) denote the real roots of f (x) (hence of F (x)) and, if
p < !let a, (u <i< m) denote the complex roots. Supposing > I, if b <k

s @, then

I 2 _ Y l(l—1)—
icjcr (B0 oF = A <(ay, -0 21 (24) % b
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and so la, —a, | > [A]AA)A o5

say, where O is rational since |A| is rational. Divide (-A, A) into sub-
intervals of length at most & by points 8, (= ~A), 6, (=-A +8), . . ., 8y
(= -A + (k = 1)d), 5K (= A) and evaluate F (51.) for each j (0 <7< k).

If (i) F (8)) =0 for some j, then we define e, = 8]., and no other real root
lies in either (5]._’, 5]-) or (5]., 8’.+1);

(ii) F (6') <0, F(6'") > 0 where &', 8'' are the end points of some sub-
interval, then there is just one root of f (x) in this interval. Let p, = (o' +
8'')/2; if F (p,) = 0 then define @, = p,; if F (p,) > 0 define @, = &' and if
F (po) <0 define @, = 8''. To complete the recursive definition of {@n}, let
=(p, + ©,)/2 and then

Opipis = Ppyw 0 20V i F (p, ) =0,

pn+1

®n+1 =0, if F (p,,,) has the same sign as F (p ),

©) =p, if F (p, ) has the opposite sign to F (p,).

n+1

{9,} satisfies n > v > |0, - e, < 827", and so it is p.r. convergent.
Further

l
|F ®,) <| F(8,)~F(p)| <|0, —p,| 3 16]i 4™

]=0
= ‘®n - pnl A*, say.

Thus n 2 v » |F (@n)l < A*S 27V, showing that F (@n) — and hence also
{ (®,) — tends p.r. to zero. A subinterval with end points &', ' con-
tains no root of f (x) if F (6') and F (8'') have the same sign.

If u < 1, the same construction can be carried out, though of course,
the 6 will not have its previous importance.

If o + i3 is a root of { (x), there are polynomials P (x, y), Q (x, y) such
that P (a,3) = Q (a,8) = 0, from which we arrive at R, (a) = 0 on elimi-
nating 8 and R, (8) = 0 on eliminating o, where R, and R, are polynomials
obtained rationally from P, Q. Since o and 3 are thus p.r. algebraic real
numbers, then o + i3 is a p.r. algebraic complex number.

3. If {an§ =a, {/3,2} = 3 are two p.r. real numbers, we write @ = (3 (and
say o, (3 are p.r. equal) if there is a p.r. function eq (k) such that » > eq (k)
> e, =B, <27 we write o <3 if there are integers 7, j such that

ﬂ>/]'->ﬁn-—a">/2_t;

anda > 3 if 8 <a.

Using the results of para. 2 we now construct a decision procedure for
deciding of two algebraic real numbers a, 8 whichof a < 3, =03, a>f
holds (the proof also ensures that one of these relations must hold.)

3.1 Given a primitive recursive real number a = {an}, a root of amx""H +

...+ ax* + x (rational at), then it is decidable whether a, > 0 or not (&= 0

or not).
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m m
Proof:  Choose k so large that 257 > Z la,|, then if |x| < 27k, IZ ax’|<

=1 =1

7k | k=t _ 1 whence

m
lzarx’+1|>%.
r=1

Choose 7, such that n > n, > |a, — anll <3, Z"k; then
m
(i) if |an1| < 7% we have |an| <ok (n 2 n;) so that [an {Z “ra,,' 4
r=1

> la,|/2,
whence o - 0 primitive recursively, since the left-hand side does so.
I.e. a=0.

(ii) if |, | > 2757, then for all n 2 n,, |a,| > 6727

showing that &, A0, ie. a# 0.

In case (ii) it follows of course that

m m
|, {Za’an' + 1 >6 . 27* |E aa + 1

r=1 =1
i.e. that & is a root of amx’” + ...t ax+ 1.
3.2 If [o | > € >0 for all n, choose n, such that n 2n, > |a, —a, | <e¢/3.
2
Then

(i) if a, > €/2 we have

n>,n,—>otn>e/6,i.e.a>0;

and
(ii) if o, < e/2 we have

n>n, > a, <5¢/6, but
lOl,,l >eand soa, <—e€(n2n,), i.e. a<0.

3.3 Given two p.r. algebraic real numbers @ ={a_} and 8 = {B_}, roots of
integral polynomials f (x) and g (x) respectively, then y = {yn} = {an - Bn} is
also a p.r. real number and we can construct rationally from f (x) and g (x) a
polynomial with integral coefficients having y as a root. For [ (8 + y) =0
and can be expressed in the form

[ B+ [ B™ 4.+ fy ().

We also have g (8) = 0, whence, on eliminating 3 we arrive at the desired
polynomial with y as a root. Using (3.1) and (3.2) on y we can thus decide
a<fB,a=pLora>f.
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4. In Goodstein [1] and [2] the p.r. irrationality of p.r. sequences with
(classical) limits e* (rational x) and 7 was established: here we prove the
p.r. transcendence of sequences for e and 7.

We use the p.r. real numbers E (n, x) (rational x) defined by

E@O x)=1,E@®n+1,x)=E (n, x) + x"/(n + I)!

The following inequalities are needed:

E (n, m)<S{E (n, DI™ (integral m 2 0) (4.1)
Proof: by induction on m.
{E (n, DI™ < E (mn, m) (4.2)
Proof: by induction on m using the easily proved
E (p,a) . E(g,0) SE(p+ g, a+ b)
(b, 9, a, b integers 2 0.)
For rational x and y, and n > 2 (|x| + |y|)

2( + |y )72+1
|E (n,%) . E (n,y) = E (n,x + y)| § 'L?L—Jrl'ﬁll— (4.3)
Proof: procedure obvious.
E (n,m) < 3™ (4.4)

Proof: by (4.1) and the familiar comparison with a geometric series.

To prove that E (n, 1) is p.r. transcendental, define ¢ (x) to be the
polynomial

xp—t m 4 1 14
[_I (x=nr| = Z cx
@ -1l [m= b1 &

where v =mp + p ~ 1 and the ¢ _(p — 1 <7< v) are integers.
Evidently ¢ (0) = %) (0) =0, 1<k <p = 2; O™ (0) = {(= 1" m}P £
0 (mod p) if p be taken prime and p > m; also

¢(P+f) 0) = %_"’% Cp+r = 0 (mod p), 0 r<mp - 1.

14

Let L ($(x)) = 3 #*) (x), then L (4(0)) £ 0 (mod p) but is an integer

k=0
and so non-zero.
1 1 4
. 7 .
For each k, 1S k< m, we may write ¢(x) = (_—P — % L, & (x—k) with
r=

integral ¢, _, showing that

&7 (B) =0, 08 r<p - 1, and ¢®+ (k) = 0 (mod p).
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Therefore L (¢p(k)) = 0 (mod p), ISk<Sm.

14 14
However L (¢(k)) = Y zqg(') (0) k™5 /(r — s)!

S=0 r=s

v
=Y 6O E b

t=0

v n-r
=L ($(0)) E(mn,k) - 3 ) (0) k7 3 kS/(r + s), for n>v.

r=0 S=1

v n—r v A4
Now |3 pT O K R+ s <Y (" (0) |7 E(n, &)

L L4

(p—])' 'l;[: (k + r£| E(n, k)

(H (m o+ ryp?

= E(n, m).
(p=1)'m

Let a_(0 < r< m) be integers, with a, >0, then by the above

L((0)) Z a, E(n,k) = Z a, L(¢p(k)) + Z [Z d)(r) (0) &7 ZkS/(ﬁs)t:l

k= =0 r=o0

and |Z a, {Z AL (O)k'Z ES /(rs)1)|

S=1

a{rﬁo (men)P
<I= T

max
(n, m) (where a= ., |4,

@®-n
am? m m
< 3 (where M = II (m +7))
-1 =o

2M
2aM3™ = U, say.

<1/2 if p>1+2M+M
(2m)!

m
Also Z a, L (¢(k)) is then a non-zero integer.
k=0

Then |L(4(0)) Y. @, E(nk)| >1-1/2=1/2

k=0
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for p > U and n > v, so that

1D @, E(nk)| > 1/2| L($(0))], forn>v.
k=0

Now using inequalities (4.1) and (4.2)

m m
13> a, tE(r, DI* = 37 a, E(n,0)|
k=0 k=0
m
< Z |a, | {E (nk, k) — E (n, k)}
k=0
< Zm: la, | 7 (k=DK" < ma nmm” (for n > m)
k—o k n! n!

< 1/4 |L($0))]|, if n>1+ v+ (m¥/v)am® 4|L(¢(0)) |
= V, say, where v = 2m.

Thus for p > U and n > V we have

| D2 @, {E(n, DIF| > (1/2 = 1/4)/|L ($(0))] = 1/4|L ($(0))].
k=0

m
If Z a, x* is the pth member of some recursive enumeration of the poly-
k=0

nomials of one variable with integer coefficients, then the m, Gy o ooy @y,

are p.r. functions of p, and therefore so are the L (¢(0)), U and V, estab-
lishing the p.r. transcendence of E (n, ).

m
Let y, be a real root of Z a, xk, then we can find a p.r. function

k=0
N () such that

m
n2NG) | gy k| <1/i
k=0

Taking i > 8|L (¢(0))| and 7 > max {N (i), V} we have

13> g ly,k ~(E(n, D)}| > 178 |L ($(0)) |-
k=0

Now |3 o iyf —(E(, D]
k=0
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< ly, ~ E(n, 1| Z |a,| & AR (where A = max{3, a})
k=0

= C lyn - E(n, )|, say.

Thus [yn — E(n, 1)| > 1/8 C|L (¢(0))|, showing by how much at least E (n, 1)
differs from a given algebraic real number.

5. For the purposes of this section, we need some properties of the norm
||z!| ; we take the following for granted:

12 + w]| < [2]] + ||, (5.1)
llz £ wi] >||l] - ||ll, (5.2)
|z ~wl| < [l=l] - Il (5.3)
212 < {l=]]2 < 2|27, (5.4)
z «wl|| > %]|2]| - ||w]|. (5.5)

An inequality similar to (4.3) but with norms replacing moduli is proved in
the same way, using (5.1) — (5.5) above.

Let 7, be the p.r. sequence defined in Goodstein [2] § 2: we shall show
that this is p.r. transcendental.

N
Let a, (= @), oy, - - - , &y be the roots of Z ax" (integral a); let
=0
Ala,| +. ..+ |ay]) = A and 2NA = B (then Ha || < A). Denote ia, by
By and ia, byﬁ 7< N), then for 1 €7 <2N [1B;11 < A. Next let
VN OANEIN Z’N -1= M) consist of all possible sums of the numbers /3 taken
k at a time (I < &< 2N) so that the ys will be the roots of a polynomxal

M
OEDIREY (integral b )

and ||y || <B(I<s < M).
Let ¢ (x)= 1) {Q(x)}p
pM+p—

= e— Cx,

(p_l)! r=p—1 ’

where p is a prime exceeding both |6, | and [b,|.

pPM+p—1
Again write L ({(x)) = Z t,[l(’) (x), then L (¥/(0)) is an integer not di-
r=0

visible by p. Further, if x is a root of Q(x) then l/l(r) (x) =0 for r < p—1;
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M
and E t//(’) (y,,) is an integer divisible by p, for 7 > p.

m=1

N
Let T, = I (I1+E(n,B)) so that
r=1

M
T = Z+EE(ﬂ,yr)+ U,

r=1

2n—2
where [|U,|| <2 M Z (E (»,A) B™*/(n + I)!

=0
=2 M* B /(n + 1)! , say

pM+p—1 n—r
But L(¥(0)) E(n,y) = L( () + E w0y y PIPAAED)!

=0

for n>pM+p—1=uy, say.

Now, HZ ZSZI(’)(O))’, Z Y, /(r+ Y| <M E(n,B) Z e, |B7/(p=1)!

t=o r=o r=p—1

m
1 B’ LAl b, |B*
But =i > le,lB p 1)‘ IZ 164

g

>0asp- o

M M
Therefore L (/(0)) E Egn,yt) =L (Z YD) e,

t=o t=o
M
where &> 0asp->ooand L (Z ¥ (y,)) is an integer divisible by p.
t=o0

M
Hence L ((ONT, =L (0)+ LY ¥y +le, + U} L)

t=o
Choose p so that ||e,|| < 1/3, then for 7 > 6|L (¢ (0))|M*BB+/B1
we have 2|L (¢ (0))|M* B™ /(n + I)! < 1/3 and therefore
[|L@WONT || >1~1/3~1/3.
However

Tl <1+ E(n,i0)||4CN A <||1 + E(n,ic)||4B

whence |1+ E(nic)|| > 1/3L (% (0))45.
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Now for n > 14 (see Goodstein [2]),
[|11+E@n+1,in)||<1/10" < 1/12|L ((0))[45

if n2|L® (O))|4B+1 . Therefore
|E(2n + 1, i) ~E(2n+ 1, i m)|| > 1/|L (¢ (0))|4B+

for n > ¢ = max{|L (y (0)}4B**, 3|L (y(0)|M BB*/B1}.
Since ||i7,|| < 4 and ||ia)| < 4, taking C to be max {4,A}, we see that
IE@2n+ 1), ie) ~E(2n+ 1,im)|| < ||la-7,||E(2n, C)
<|je—m 3¢

and therefore ||a—7 || > 1/|L (¢ (0)|4° 3€ for n>c.

It then follows that
N
132 a1l 2 Hlagl - [, tie, =, 1/28

> [|ay1/IL (@ @)|N 22BN 3NC for n 2 c.

6. Having proved the p.r. transcendence of E(n, 1) and 7,, we must show
that any other p.r. real numbers with classical limit e or 7 are also p.r.
transcendental. This follows from:

6.1 Any two p.r. numbers which are classically equal are also p.r. equal;
and

6.2 if {a;f} and {ﬁn} are p.r. equal and {dn} is p.r. transcendental, then
{B,} is p.r. transcendental.

Proof of (6.1) Classical equality of to } and {3} is expressed by (k)(] N)
(min 2N |la, =B || <27*7*}. There is a p.r. v (k) such that

n2vk) - |la, - a H<2'_k'—3 &

Y(k)
5 —k—3
- <2
18, =By I
Then it follows that (|, (, )~ Byl < 3.27%,
whence n2v(k)~ |la, - 8,]|| < 2k,

Proof of (6.2)  For some p.r. N_, k,, in the notation of para. 1

nAN, s [Pl >27F 0 )
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There is a p.r. eq(k) such that
n2eqk) - |la, - B || < 27*.
1P, () =B, (B < e, = B, B (S)

whete $ is an upper bound for ||e, || and ||5, ||, and if 2°7 is the least power
of 2 to exceed P} (S), then

n>eqk, +c,+ 1) ||P(a,) = P(B,)]|| <27,
From this and (i) follows

n> max{N , eq(k, +c, + D} > ||P,(B)]] > 7k
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