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COMBINATORIAL DESIGNS ON INFINITE SETS

WILLIAM J. FRASCELLA

I. INTRODUCTION

§1. Generalities1. Roughly speaking, the field of combinatorial mathe-
matics can be said to deal with those problems of arranging objects
according to some fixed pattern and in determining how many distinct ways
this can be accomplished2. Observe that no restriction is placed on the set
to which the objects can be considered to belong. Consequently, a
combinatorics of the infinite naturally evolves when investigations are
concerned with arrangements of sets which are not finite. Frequently it
happens that a meaningful question of a combinatorial nature, initially
posed with reference to a finite collection, retains its interest when one
allows the collection to be infinite. The generalization is usually realized
by permitting one or more of those symbols, which represents a natural
number in the finite formulation of the problem, to now stand for an
arbitrary cardinal number. Very often, however, such a simplistic
generalization trivializes a very interesting finite problem. In some cases,
therefore, to recapture the spirit of a finite combinatorial problem in the
infinite case, it is necessary to effect more sophisticated alterations in the
hypotheses of the original problem.

In the course of the present report this method of generalization will
be exhibited. Our interests will converge upon a single, yet important,
area of combinatorial research: the existence and construction of designs.
Design problems in combinatorics, which are both intriguing and difficult,
almost always deal with arrangements of finite sets. The aim, herewith, is
to develop a theory of combinatorial designs on infinite sets which bears a

1. The present researches constitute a part of the author's doctoral dissertation,
Block Designs On Infinite Sets, written under the direction of Professor
B. Sobociϊίski and accepted by the University of Notre Dame in partial fulfullment
of the requirements of the degree of Ph.D. in Mathematics, February, 1966.

2. M. Hall [5] asserts this as a working definition of combinatorial analysis.
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strong resemblance to the existing theory in the finite case. To accomplish
this we follow the procedure that was outlined above. It will become more
than evident, however, that our results are far from complete and that
many open questions remain. On the other hand, we do hope to offer an
adequate formulation of the notion of a combinatorial design on an infinite
set and to establish the existence, on every infinite set, of a wide class of
these designs. Hopefully this will provide a sufficient foundation upon which
a more elaborate theory can rest.

§2. Designs. Generally, when one speaks of a mathematical design it is
taken to mean a certain arrangement which can be imposed on some given
set. In a very abstract manner we may define a mathematical design to be
an ordered quadruple <S, P, L, R> where S is a set, P and L are families
of subsets of S, and R is a relation of 'incidence' between these two
families. Clearly this concept, under one form or another, is found in
almost every branch of mathematics.

Combinatorics, however, is the place where the notion of a design
reveals itself with particular clarity. The official appearance of the design
concept in combinatorial analysis occurred in 1853. In that year the
well-known geometer Jacob Steiner, while investigating a problem in
algebraic geometry, posed in [13] his now famous problem of triples. He
asked which finite sets could be decomposed into a collection of unordered
triples such that any two distinct elements of the original set be contained
in exactly one triple of the collection. Six years later the problem was
completely solved by M. Reiss [9] who showed that a finite set could be so
decomposed if and only if its cardinality were congruent to 1 or 3 modulo 6.
Steiner triple systems, as such decompositions were to be called, are the
first of the many combinatorial designs that were to follow.

As with most problems in combinatorics, the only significant param-
eter in the Steiner problem is the cardinality of the finite set. In fact,
instead of asking which finite sets possess Steiner triple systems we could
unambiguously inquire as to which natural numbers possess Steiner triple
systems. All this follows from the fact that if one set possesses a Steiner
triple system we can, in the obvious way, construct a Steiner triple system
on every other set having the same cardinality. The notion of a Steiner
triple system can easily be extended to the non-finite case by asking which
infinite sets (or, equivalently, which non-finite cardinal numbers) can be
decomposed into unordered triples such that every two distinct elements
of the set are contained in exactly one triple. In 1945 W. Sierpiήski [11]
settled this question by proving every infinite set possesses a Steiner triple
system. This appears to be the first time the designs of finite combina-
torics were formally considered to be imposed on infinite sets.

§3. Tactical configurations. At the turn of the century, due largely to the
effort of E. H. Moore [8], the design concept in combinatorics was con-
siderably widened. This enlargement is called a tactical configuration.
Although always considered to be an arrangement of a finite set, we may
regard a tactical configuration to be defined more generally as follows.
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Definition T.I. Let n, k and p be non-zero cardinal numbers. A set S, of
cardinality v, (or, equiυalently, a cardinal number v) is said to possess a
(k, n, p)-tactical configuration if there exists a family F of subsets of S
such that 1) each member of F is of cardinality n and 2) every subset of S,
having cardinality k, is contained in exactly p members of the family F.

Definition 1.2. The symbol C[v, k, n, p]will be used to assert the fact that
the cardinal number v possesses a {k, n, p)-tactical configuration.

The notion of a tactical configuration subsumes, as special cases, most
designs of interest to the combinatorialist. The major question raised here
is one of existence. More precisely, given natural numbers k, n and p, for
what natural numbers v do we have C[v, k, n, p]? As mentioned above,
when k = 2, n = 3 and p = 1, Reiss [9] determined the precise range of v.
On the other hand, the general existence question for finite tactical configu-
rations remains unanswered. In recent times, however, numerous partial
results have been obtained by methods ranging from strictly counting
arguments to those which employ the Hasse-Minkowski theory of algebraic
numbers. In the way of examples, the range of v has been determined by
very nice arithmetical conditions when i) k = 2, n = 3, p= 2, (Bose [1]);
it) k = 29 n = 3 and 4, p arbitrary (Hanani [6]); Hi) n = 3, p = 4,p arbitrary
(Hanani [7]). Yet no satisfactory theory which would unify the study of
tactical configurations on finite sets has appeared. These designs remain
one of the genuine mysteries in finite combinatorics.

§4. Tactical configurations on infinite sets. As previously mentioned,
Sierpiήski [11] showed C[v, 2, 3, l] for every non-finite cardinal number v.
It is interesting to note that Sierpiήski employs the axiom of choice to
achieve this result and, in fact, remarks that it seems the axiom's role is
essential since, without its use, he was unable to prove C[c, 2, 3, l] where
c represents the cardinality of the set of all real numbers3. This remark
led B. Sobociήski [12] to prove that the statement, "'C[v9 2, 3, l]ίor every
non-finite cardinal number v", is equivalent to the axiom of choice. In
Frascella [2, 3] both these results are extended where it is shown for every
natural number n > 2, "C[v9 n - 1, n, 1] for every non-finite cardinal
number t>," and, furthermore, each such statement is equivalent to the
axiom of choice. At this point we mention that H. Rubin and J. Rubin [10],
working independently from the present author, have duplicated some
results which will appear here. In particular, they have shown if k and n
are natural numbers such that 1 < k < n, then the following statement is
equivalent to the axiom of choice: "C[v, k, n, 1] for all non-finite cardinal
numbers v". That this statement follows from the axiom of choice can be
deduced from more general results given in Section IΠ of the present
report. We intend to publish the converse statement along with other

3. That C[c, 2, 3, l] is provable without the axiom of choice was shown by the present
author in [4].
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metamathematical consequences of block designs on infinite sets in a
forthcoming paper.

§5. A new design-concept for infinite sets. A natural extension to the
existence results for tactical configurations on infinite sets would be the
following.

(A) Let k, n and p be natural numbers such that k < n. Then, for
every non-finite cardinal number v, C[v, k, n, p\.

In fact, this statement is true and will be verified in III, (cf a, remark
following the proof of Theorem III. 12). Continuing in a desire for greater
generality we would like to let, not only v, but the symbols k, n and p
represent arbitrary cardinal numbers. However, the following result
thwarts our hope.

(B) Let ky n 'and v be any cardinal numbers such that 1) k < n < v and
2) k is non-finite. Then C[v, k, n, p] is not true for each non-zero
cardinal number p < v.

The proof of (B) will also be offered in III, (cf. Theorem III. 1). It is
clear from (B) that the straightforward generalization of (A) to the higher
cardinals is not realizable. To circumvent this difficulty we will structure
a new notion of a combinatorial design on an infinite set. It will be clear
that such a definition will subsume, as a very special case, the notion of a
tactical configuration. Then we shall prove that every infinite set
possesses a wide class of such designs. This class of designs will include
those mentioned in (A) together with a collection of designs which can be
considered "generalized tactical configurations". The structuring of this
definition will be the chief concern of section II.

§6. Conventions and notations. The subject matter of the present re-
searches are primarily of mathematical interest. Hence the presentation
of results will not be totally formalized. The Zermelo-Fraenkel axioms
will be assumed as the basis for the set theory considered here. The axiom
of regularity will not be employed. The axiom of choice, however, will be
relied upon heavily throughout this work. This axiom, in one form or
another, is essential to practically all proofs given here. With this axiom
we may conclude that n + m = nm = max (n, m) whenever m and n are
cardinal numbers such that at least one is non-finite.

Most of the notation employed will be standard. If x is a set, |ΛΓ| will
represent the cardinality of x and P(#)will denote the power set of x. Also
if n is any cardinal number such that n ύ \x\9 then [x]n = {ycz xι\y\ =n}.
For any cardinal number n, o(n) will signify the first ordinal number whose
cardinality is n. If δ is an ordinal number, δ represents the cardinality of
δ. Let x and y be any two sets. Then x U y, x Π y, x—y and x® y represent
the union, intersection, difference and cartesian product of the set x
with the set y9 respectively. Let /be any index set such that X{ is a set for
each i e I. Then \J{xi lie l] will represent the union ranging over all sets
x% such that i e I. Similarly for f\{%i ιi e ί}. If F is any family of sets one
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briefly writes [jF to mean (J{#:# € &}• T n e expression x<z y is taken to
mean the set x is included within the set y, improper inclusion not being
excluded, x ή. y represents the logical negation of this notion.

II. GENERAL DESIGNS ON INFINITE SETS

§1. Definitions. It is very natural to view a combinatorial design on a set
S in terms of 'covering' one family of subsets of S by another such family.

Definition Π.l* Let M be any set and p some non-zero cardinal number
and suppose F is some family of subsets of M. A family G is said to be a
p-Steiner cover of the family F if every member of F is contained, as a
subset, in exactly p members of G.

In terms of Steiner covers it is clear that a set M possesses a (k,n9p)-
tactical configuration if and only if the family [M]k possesses a p-Steiner
cover G such that G c [M]n. In this way a combinatorial design on a set M
represents the covering of a certain family of subsets by another such
family. Consequently, an abstract formulation of a combinatorial design on
a set could be given as follows.

Definition IL2, Let M be any set. A combinatorial design 2) on the set M is
an ordered triple <A, B, p > where A and B are both collections of families
of subsets of M (ioe<> A, B e P2(M)) and p a non-zero cardinal number such
that for each family F e A there exists a family G e B which is a p-Steiner
cover of F>

Example Π.3. Let M be any set. If A = {[M]fe}and B = { F c P(M) : \x\=n
for every x e F}, where k and n are non-zero cardinal numbers such that
k < n< \M\9 then 2) = <A, B, p> is nothing other than a (k,n,p)-tactical
configuration of M.

§2. Specialization of the design concept. For purposes of the present paper
the full generality of II.2 will not be useful. Rather we shall greatly
restrict ourselves to combinatorial designs which bear a striking resem-
blance to the tactical configurations. To do this we introduce the following.

Definition IIΛo Let M be any set and p a non-zero cardinal number such
that p = \M\. A family F of distinct subsets of M is called a p-tuple family
of M if 1) \F\ = IMI, 2) F c [M]p and 3) ifx, y e F such that x *y9 then
x 4- y and y d x.

Remark Π.5. If p is finite the family [M]p is a/>-tuple family of M. This,
of course, cannot be said when p is anon-finite cardinal number. In fact,
it appears that this is the source of trouble which prohibits us from
asserting C[v9 k9 n9 p]when k is non-finite and p < v (c/o, (B)).

With the aid of the p -tuple families we can formulate the sought-for
generalization of tactical configurations.

Definition IL6O Let M be any set and k, n and p be non-zero cardinal
numbers. A combinatorial design <A, B, p> of M is said to be a (k9 n9 p)-
generalized configuration of M if the following conditions are satisfied:
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i) A is the collection of all k-tuple families of M
it) B = {F:F C [M]n}.

It is clear from the above definition that if a set M possesses a
(k, n, p)-generalized configuration then any other set M\ having the same
cardinality as M, will also possess such a configuration. This argues in
favor of the following notation.

Definition 11.7. Let υ, k, n and p be non-zero cardinal numbers. Then the
symbol C*[v, k, n, p] will assert the fact that some (and therefore any) set
of cardinality v possesses a (k, n, p)-generalized configuration.

Remark Π.8. It follows from//. 3 and//.5that if k,n and/) are finite cardinal
numbers, then C*[t>, k9 n, p] implies C[v, k, n, p] for every non-finite
cardinal number v.

The time has come to state the chief result of the present paper. The
major concern of section III will be to establish its proof.

Main Theorem. If υ, k, n and p are non-zero cardinal numbers such that

1) v is non-finite, 2) k <n <v and 3) p = υ, then C*[v, k, n9 p].

III. THEOREMS AND PROOFS

§1. The proof of (B). The next theorem will show the non-existence of
certain tactical configurations on infinite sets and, in so doing, estab-
lish (B).

Theorem III.l. Let k, n and v be any non-zero cardinal numbers such that
a) n <v and b) k is non-finite. Then C[v, k, n, p] is not true for all
non-zero cardinal numbers p such that p < υ.

Proof. Let k, n and v be given as above. Also let p be a non-zero cardinal
number such that

(1) C[v, k, n, p] is true.

It will be sufficient for our proof to show that p ^ v must follow. By (1)
there must exist an infinite set M and a family G of subsets of M such that

(2) \M\=υ

(3) G c [M]n

and

(4) for every x e [M] there exists at least one y e G such that x c y.

The fact that p is a non-zero cardinal number establishes (4). It is
immediate from (3) and (4) that

(5) (J G = M.

Let x be given such that

(6) x e [M]k.
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We will show that x is contained in at least υ members of the family G. By

(4) there must exist y0 e G such that

(7) x cy0.

We now construct a transfinite sequence4 of type O ( | M | ) , each of whose

terms are distinct members of G which contain the set x. Define φ0 to be

y0. Suppose δ to be an ordinal number such that

(8) 0 < δ <O(\M\).

Moreover, for each ξ < δ, let ψt be given and endowed with the following

properties:

(9) φξ e G

(10) x c <pξ

(11) φξι ^φ^2 whenever ξx φ ξ 2 .

Let 3;* = \J{cpξ : ξ < δ}. It is clear from (3) and (9) that

(12) \y*\ ύ rib .

But a) (8), (12) and the fact that O ( | M | ) is an initial number give

(13) | y * | < \M\.

Moreover, (13) together with the axiom of choice yields

(14) | M - y * l = \M\.

In particular, there exists an element e such that

(15) e e M - y*.

Let xe = x U {e}. Since k is a non-finite cardinal number, (6) and the axiom

of choice imply

(16) \xe | = | * | = k.

By (4) there must exist a z e G such that

(17) xe c 2.

Finally, set φ§ = z. It is clear from (17) and the construction of the set xe

that

(18) x c z.

Thus (9) and (10) are satisfied for ξ = δ. But (15), (17) and the construction

of xe indicate

(19) e k ψξfor each ξ < δ

4. Once and for all we state that use of transfinite sequences in this paper is justified
by appeal to the axiom of choice in the form of the well-ordering principle.
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and

(20) e e φδ

which, in turn, shows that ψξ 4= ̂ f o r each | < δ.
In this manner a sub-family

(21) Gx = {φi :ξ<o(\M\)}

of G is constructed such that each member ψξ of Gx satisfies (9), (10) and
(11). Yet from the fact that φ^ 4= <pξ2, whenever ξi 4= ξ2, one obtains

(22) \GX\= I M | .

But from this we may conclude p ^ \M\ = t>. Q.E.D.

§2. Outline of the proof of the Main Theorem. To establish the Main
Theorem we must show C*[v9 k9 n9 p] whenever v, k, n and p are non-zero
cardinal numbers such that υ is non-finite, k < n < v and p ύ v. By
Definitions II.6 and 11.7 this means we must show that there exists a
non-finite set M, of cardinality v, such that every &-tuple family of M
possesses a />-Steiner cover G contained in [M]n. However, the next
theorem shows that a search for a £-Steiner cover may be reduced to
finding p many i-Steiner covers which are mutually disjoint.

Theorem IΠ.2. Let M be a non-finite set, p a non-zero cardinal number
and F a family of subsets of M. For each ordinal number ξ < o(p) let G|
be a family of subsets of M which is a 1-Steiner cover of F. If G^f) Gξ2 =
φ whenever ξx + ξ2, then the family G = \J{Gξ :ξ < o(p)} is a p-Steiner cover
of F.

Proof. Let x e F. Now for each ξ <#(/>) there exists exactly one member
of Gξ which contains x. Denote this member by Gζ(x). Therefore

(23) {yeG:x^y}= {Gk{x)'Λ < o(p)} .

But since Gξx Π Gζ2 = φ whenever ξx =1= ξ2 and Gξ(x) e Gξ for each ξ < o(p) it
must be that

(24) Gξl(#) 4= GξaW whenever ξx 4= ξ2

which together with (23) yields

(25) |{^€ G:x c y} l=P .

But since (25) holds for each xe F9 G is a/>-Steiner cover of F. Q.E.D.

Our attack upon the Main Theorem now becomes clear. First, for any
non-zero cardinal numbers k, n and v such that k < n < # we prove
C*[f, &, ft, I ] . In other words we show that for a non-finite set M, of
cardinality v9 every k-tuple family of M possesses a i-Steiner cover
contained in [M]n. Then to complete the job we assert, for any p = v,
C*[v9 k9 n9 />], by exhibiting p many mutually disjoint i-Steiner covers
contained in [M]n of any k -tuple family of M. We begin our program by
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establishing certain properties of k -tuple families which will be crucial to
what follows.

§3. A preparation lemma. The following result about &-tuple families will
be used throughout this section.

Lemma Πΐ.3. Let M be any non-finite set and k and n any non-zero
cardinal numbers such that k,n < \M\. Let F = {xξ :ξ < O ( | M | ) } be a family
of distinct subsets of M such that \xξ I -k for each ξ < O ( | M | ) . Then there
exists a well defined set function Δ, defined on F, such that a) A(x) e [M]n

for each xeF, b) A(x) Π A(y) = φ whenever x =(= y and c) A (xδ) Π Xξ = φ for
each ξ = δ, where δ is any ordinal number less than O{\M\).

Remark. The reader will observe that any k-tuple family of M satisfies the
hypotheses of Lemma III.3.

Proof. It is clear that Uol =k. Since M is non-finite and k9n < | M | , there
exists a set Na M such that \N\ = n and N Π x0 = φ. Define A(x0) = N. Now
suppose δ to be an ordinal number such that

(26) 0<6<O(\M\)

and, in addition, suppose Δ is defined on the segment F$ = {xξiξ < δ} of F
such that Δ possesses properties a) - c) of IΠ.3. Let

(27) X= \J{A(xξ):ϊ<δ}

and

(28) Y= U { * « : * = δ>

From (27), (28) and the fact that A(pc^) e [M]n for each ξ < δ, one obtains

(29) \x\^nΈ

and

(30) \γ\*kδ.

But since O ( | M | ) is an initial number, (26), (29), (30) and the axiom of
choice yield \x U Y\ < \M\. Consequently

(31) \M - (X U Y ) \ = \ M \ .

This shows there must exist a set AT* c M— (X \jY) such that

(32) \N*\=.n.

Put A(xξ,) = JV*. It is clear that Δ is now defined on the segment ^5 + 1 =
{xξ:ζ < δ + l}. However, (32) and the induction assumption show Δ, defined
on F g + 1 , possesses property a). Properties b) and c) follow from the
induction assumption and the fact that the set Δ(^) was constructed to
satisfy

(33) A(xδ) Π (X u Y) = 0.
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In this way the principle of transfinite induction insures Δ to be defined on
all of F with the required properties a) - c). Q.E.D.

§4. The case when p = 1. The present paragraph will show C*[v, k, n, l]
whenever v, k and n are non-zero cardinal numbers such that v is
non-finite and k ύ n % v. We always assume M to be a set of cardinality v.
It is easy to verify the following observations:

(34) if n = v, the family G = {M} is a 1-Steiner cover for every k-tuple
family of M

and

(35) if k = n, every k-tuple family of M is, in fact, a 1-Steiner cover of
itself.

Thus, in light of (34) and (35), to prove C*[v, k, n, I] when v is non-finite
and k i n^ v it is only necessary to consider the case when k < n < v. In
pursuit of this end we prove a slightly weaker result.

Theorem III.4. Let M be a non-finite set of cardinality v and suppose k and

n are non-zero cardinal numbers such that k < n < t>. Then every k-tuple

family F of M, such that \\JF\ = \M\, possesses a 1-Steiner cover

contained in [M]n.

Remark. This theorem shows that certain &-tuple families F of M (viz.,

those with l U ^ I = 1^1) possess the appropriate I-Steiner cover. This
restriction will be dispensed with in Theorem Πΐ.5.

Proof. Since Fis a£-tuple family of M it is possible to express

(36) F= {xξ:ξ<o(υ)}

and define, in virtue of Lemma HI.3, a set Δ(#|) e [M]w" f e, for each Xξ e F,
such that

(37) Δ(*ξi) π Δ (*ξ 2 ) = Φ whenever £i + £2

and

(38) A(xδ) Π # ξ = φ for each ξ ^ δ

One observes that III.3 applies in this case since for all non-zero cardinal
numbers n and k such that k < n < v, it must be that n-k is a non-zero
cardinal number < v. Continuing, one constructs the family G1 =
{yζ'ξ <o(v)}, where y% = x% U Δ(ffξ). It is clear that for each ξ <o(v) one
has

(39) l^i I = |#ξ U Δ (# ξ ) I = k + (n -k) = n .

This follows from the fact that Xξ and Δ(#ξ) are disjoint sets. Hence the
family Gf is contained in [M]n and covers F in the sense that every member
of F is contained in, at least, one member of G\ The aim now is to select
a subfamily G of Gr which will be a I-Steiner cover of F. To accomplish
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this one uses a transfinite sequence. Let φ0 = 0. Now suppose δ to be an
ordinal number such that

(40) 0 < δ < o(v).

Assume φ^ has been defined for all ξ < δ. Let φ§ be the smallest ordinal
number μ < o(v) satisfying

(41) xμ ct yφy for each ξ < δ.

To show the sequence {φξ}ζ<o(v) is well-defined it is expedient to proceed
by contradiction. Suppose there exists an ordinal number δ < o(v) such that
the statement

(42) xμ c yφ for some ξ < δ

holds for each μ < o(v). However, (42) gives

(43) \J{x^'Λ<o{v)} c(J{^:ξ<δ}.

But it is clear from (39) that

(44) HJί^:ξ<δ}| ίnΈ<v.

Yet by hypothesis

(45) ILK*i : * < ° f a ) } | = 1 ^ 1 = v

which clearly contradicts (43) and (44). Thus the sequence {<pξ}ξ<o(t/) is
well-defined.

In addition, this sequence is strictly increasing. To establish this
assume, to the contrary, either of the following:

Case Γ η < λ < o(υ) and φη = φλ

Case 2° η < λ < o(v) and φη > φ\

Suppose Case Γ occurs. Now <£χis defined to be the smallest ordinal
number μ < o(v) such that

(46) Xμ ^ yφ> for each ξ < λ.

But since rj<λ9 (46) yields

(47) Xφλ4 yφη

Here yφ = yφχ. Hence we have xφχ φ yφλ, contradicting the construction of
yφχ. Therefore Case 1° cannot obtain.

Suppose Case 2?. By construction, ψη is the smallest ordinal number
μ < o(v) such that

(48) χμ ct yφ^ for each ξ < η.

But since r\ < λ, it must be that x<pλ<k yφ^fov each | < η. In this case,
however, φη< φλ. Thus (48) is satisfied for μ = φλwhich is less than φη,
a contradiction. Therefore Case 2° cannot obtain. Neither of the cases
holding, the sequence \φ^<o{v) must be strictly increasing.
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Proceed now by defining the sub-family

(49) G = {xφξ U A(xφ^) :ξ<o(v)}

of G\ One can show G to be a 2-Steiner cover of F. Let xe F. In light of
(36) there exists an ordinal number μ < o(v) such that x = xμ. Since the
sequence iφξ}ξ<O(V) * s strictly increasing and of type o(v) there must exist
an ordinal number δ < o(v) such that

(50) φδ > μ.

By the construction of φδ, an ordinal number λ < δ must exist such that
xμ c 3tyλ; otherwise, by (50), μ would be less than φδ such that xμ φ yφt for
each ξ < δ. But this would contradict the construction of φδ. Hence

(51) xβ c yΨχ

and, consequently, every member of the family F is contained in, at least,
one member of the family G.

To show G is a 2-Steiner cover of F assume, to the contrary, the
existence of an x = xμ e F such that

(52) Xβ C {Xφη U Δ(Xφη)) Π (Xψχ U Δ(*<pλ))

for η < λ < o(v). But since {<pξ}ξ<o<i/) i s strictly increasing, it must be that

(53) φv< φχ<o(v).

Now (52) implies

(54) Xμ C (χφη Π XφJ U (xφη Π A(xφ$) U (A(x<pJ Π Xφ^j U (Δ(xφη) Π Δ(ΛΓ^Λ)) .

However, (37), (38), (53) and (54) yield

(55) Xμ C (XφηΓiXφj) U ( Δ ( ^ ) Π ΛΓ̂ λ)

from which follows Xμ c Λ:<̂ λ. But F is a & -tuple family which forces

(56) Xμ = Xφχ.

Consequently (52) and (56) give

(57) Xφχ C {Xψy] U Δ(Xφη)) = yΨη .

However (57) and the fact that η < λ contradict the very construction of Xφχ,
showing (52) cannot obtain. Thus G is a I-Steiner cover of F. Q.E.D.

We now strengthen the preceding theorem with the following

Theorem HI.5. Let M by any non-finite set of cardinality v and let k and n
be any non-zero cardinal numbers such that k < n < v. Then every k-tuple
family F of M possesses a 1-Steiner cover contained in [ M ] W .

Proof. In light of HI.4 it is only necessary to consider the case when

I ( J F\ < v. Then, with the aid of the axiom of choice, it is known that

\M — ( J F | = v- Since vk = v, it is possible to decompose the set M — ( J J P
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into a family of cardinality v, of disjoint subsets, each of whose cardinality
is k. Let

(58) M - ( J F = \JiNV>Z<o(v)}

represent such a decomposition of the set M — \jF. Now consider the
family F* = {iVξ:ξ < o(v)} U F. Since F is a &-tuple family and since the
family {iVξiξ < o(v)} consists of disjoint subsets which are elements of [M]k

and whose union does not meet any member of F, it follows that F* is a

ife-tuple family of M. But it is clear from (58) that \J F* = M and hence

| ( J ^ * I = \M\ = v. Thus, by Theorem III.4, there exists a family G*
contained in [M]n which is a 2-Steiner cover of F*. Yet F being a sub-
family of F* forces G* to be a i-Steiner cover for F. Q.E.D.

In view of remarks (34) and (35), Theorem III.5 allows us to realize the
aim of the present paragraph:

Theorem III. 6. Let v, k and n be any non-zero cardinal numbers such that
v is nan-finite and k = n = v. Then C*[v, k, n, i] .

§5. Proof of the Main Theorem. Let v, k, n and p be non-zero cardinal
numbers such that υ is non-finite, k < n < υ and p i v. To show
C*[v, ky n, p] it is sufficient to prove, given any set Mof cardinality v and
any &-tuple family F of M, the existence of a family G c [M]n which is a
p-Steiner cover of F. But, in view of Theorem III.2, it is sufficient to
exhibit p many 1-Steiner covers of F which are contained in [M]n and
mutually disjoint. The next theorem does exactly this.

Theorem III.7. Let M be any non-finite set of cardinality v and let k, n and
p be non-zero cardinal numbers such that a) k <n <v and b) p = v. Let F
be any k-tuple family of M. Then for each ordinal number ξ < o(p) there
exists a family Gξ of subsets of M such that

i) Gξ c [Mf
ii) Gξ is a 1-Steiner cover of F

and

in) GξL Π Gξ2 = Φ whenever ξi Ψ ξ2-

Remark. To prove the above theorem it is sufficient to consider the case

when I (J F\ = \M\. For if I (J F\ < \ M\ we may embed the family F into
a larger family F* with the property \JF* = M and then every i-Steiner
cover Gξ of F* would also be a i-Steiner cover of F. This procedure was
followed in the proof of Theorem III. 5.

Proof. Constructing the Gξ's will be accomplished by transfinite induction.
In doing this a series of lemmas will be employed. They will be stated and
proved within the body of the proof of Theorem III.7 and will be considered
under the hypotheses of this same theorem.

The conditions of Theorem III.7 satisfy the hypotheses of Theorem III.5
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from which one may conclude the existence of a family Go of subsets of M
such that

(59) Go c [M]n

and

(60) Go is a 1-Steiner cover of F.

Now let γ be an arbitrary ordinal number (which will remain fixed through-
out the proof of HI.7) such that

(61) 0<γ<o(p)

and suppose for each ξ < y a family Gξ of subsets of M has been constructed
such that

(62) Gξ c [Mf

(63) Gξ is a 1-Steiner cover of F

and

(64) Gξi Π Gξ2 = φ whenever ξi 4 I2.

U remains no*? to construct the family Gγ. The following three lemmas
will be employed to help arrive at this construction. (One will observe that
many of the subsequent arguments will closely follow those given in §4.) On
the basis of (62), (63) and (64) for each ordinal number ξ < y a family Gξ
is assumed to be a given i-Steiner cover of F. This justifies

Definition HI.8. Let ξ be an arbitrary ordinal number less than γ. Then
for each x e F9 let the symbol Gξ(χ) represent the unique member of the
1-Steiner cover Gξ of F which contains x.

Lemma IΠ.9. Let the k-tuple family F be expressed as F = {xξiξ < o(υ)}.
Then there exists a well-defined set-function Δ such that

i) Δ(#) € [M]n~k for each x e F

ii) Δ(x) Π A(y) = φ whenever x 4= y

in) Δ(xv) Π ΛΓξ = φ for each ξ ̂  v

and

iv) A(χp) Π \J{Gξ(xu): ξ < γ} = φ for each v < o(v).

Proof. Let v be any ordinal number less than o(v). Then set

(65) Zv = \J{Gξ(xv):ξ< γ}.

From (62) and Definition UL8 one may obtain

(66) \zv\*nγ

which with (61) and the fact that p ύ v yields

(67) \ZV I < v for each v < o(v).
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Since F c [M]k it is clear that Uol = k. Therefore in view of the axiom of
choice, (67) and the facts that M is non-finite and k, n<v, there exists a
set JVc M — (xo U Zo) such that \N\ = n - k. Define Δ(x0) = N. Now suppose
δ to be an arbitrary ordinal number such that

(68) 0< δ< o(v)

and, in addition, suppose Δ is defined on the segment F$ = {xξ :ξ < δ} of F
in such a way that Δ possesses properties i) - iv) of ΠL9. Let

(69) X= \J{A(χU:t<δ}

and

(70) F = | J { ^ : ξ ^ δ}.

From (69), (70) and the fact that Δ(#ξ) e [M]w"^ for each ξ < δ (by induction
assumption) one obtains

(71) Lxii (n-*)δ

and

(72) [rl^fcfi

But since o(z ) is an initial number (67), (68), (71), (72) and the axiom of
choice yield

(73) \XU Y U Zδ\< v

and consequently

(74) | M ~ ( I U F U Zδ)\ = v.

By (74) the set M — ( l U F U Z ^ ) is not empty and since n - k < v there
must exist a set Nδ c M — (X U Y U Zδ) such that

(75) | j \ r δ |= n -&.

Let Δ(λrδ) = NQ. It is clear that Δ is now defined on the segment Fδ+1 =
{#ξ:ξ < δ+l}of F. Hence (75) and the induction assumption show Δ, defined
of -F<5+i, possesses property i). Properties ii), Hi) and iv) follow from the
induction assumption and the fact that the set Δ(ΛΓ$) was constructed to
satisfy

(76) Mχδ)n (x u Y u zδ) = φ.

Thus the principle σf tranefimte induction insures A to be defined on the
whole of F with the properties i) - iv) and consequently Lemma ΐΐl.9 is
proved.

Continuing with the proof of Theorem HI.7 and, in particular, with the
construction of the family Gy, one defines a family of subsets of M by
letting

(77) G* = {yξ = xξ U Δ(*|): ξ < o(v)}.
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It is immediate from property in) of Lemma III.7 that

(78) Xξ Π Δ(xξ) = φ for each ξ < o(v)

and consequently

(79) |*ξ U Δ (χξ) I = & + (n -&) = n.

Therefore (77) and (79) yield

(80) G% c [M]w.

Another important property of this family is exhibited in the following
lemma.

Lemma III. 10. Let v be any ordinal number less than γ. Then Gv Π G* = φ.

Proof. The conclusion of 111.10 will be established if one can show no
member of G% is identical with any member of Gv. To this end let

(81) x € G*.

By (77) there must exist a λ < o(v) such that

(82) x =xχ U A(xλ) where x\ e F.

However Gv is assumed in (63) to be a 1-Steiner cover of F. Thus there
exists a unique Gv(xχ) e Gv such that

(83) xλ^Gv(x\).

Therefore one has

(84) xλ 4 y for each y e Gv — {Gp(xχ)}.

But by property iv) of ΠL9 one obtains

(85) A(xλ) Π \J{Gξ(xλ): ξ < y)} = φ

which a fortiori yields

(86) Δ(xλ)Π Gv(xχ)= φ

since v is given to be an ordinal number less than γ. By (84) one observes
that the element x e G^ cannot be identical with any member of the family
Gv — {Gv(xχ)}. Yet (82) and (86) insure that x cannot be identical with the
elements Gv {xχ) of Gv and consequently cannot be identical with any
member of Gv. This proves Lemma III.10.

Although G* itself is not a 2-Steiner cover of F it possesses a sub-
family which is. This is seen in the following

Lemma III.11. There exists a sub-family G of G£ such that G is a 1-Steiner
cover of F.

Proof. The argument used here will follow very closely the one used in the
proof of III.4. The Sierpiήski sequence5 will again be the main tool.

5. For a complete discussion of the Sierpiήski sequence see the Appendix.
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Repeating (77) one has

(87) G* = {yk = xξ U Δ(* ξ): ξ < 0(v)}.

Constructing the Sierpiήski sequence one sets φ0 = 0. Then suppose δ to be

an ordinal number such that

(88) 0 < δ < o(v).

Assume φ^ has been defined for all ξ < δ. Let φ$ be the smallest ordinal

number μ < o(v) satisfying

(89) xμ φ yφ for each ξ < δ.

To show the sequence {(pξ}ξ<o(t,)
 i s well-defined proceed by contradiction.

Suppose there exists an ordinal number δ < o(v) such that the statement

(90) xu c yφ for some ξ < δ

holds for each μ < o{υ). However, (90) gives

(91) U {*« : ξ < Φ ) ) c \J{yφ^ I < δ}.

But it is clear from (79) and (88) that

(92) | U ί ^ : ξ < δ } | ^ n δ < ^ .

Yet by the properties of F one obtains

(93) I LK*ξ ••*<<>(*)} I = l U ^ I = »
which clearly contradicts (91) and (92). Hence the transfinite sequence

{φξ}ζ<O(v) i s well-defined. Moreover, the sequence can be shown to be

strictly increasing in exactly the same manner as was done in III A.

Continuing one defines a sub-family

(94) G - {yφ^ = xφ^ U A(xφξ): ξ < o(v)}

of G%. One can show G to be a i-Steiner cover of F. Let x e F. Then there

must exist an ordinal number μ < o(\ F\) = o(v) such that x = Xμ. Since the

sequence {φ^}ξ<O(v) ^ s strictly increasing and of type o(υ) there must also

exist an ordinal number δ < o(v) such that

(95) φδ > μ .

By the definition of φ$, an ordinal number λ < δ must exist such that

Xμ c yφλ; otherwise, by (95), μ would be less than φ§ such that Xμ φ yφ, for

each ξ < δ. But this would contradict the construction of φ$. Hence

(96) xμ c JVλ

and, consequently, every member of the family F is contained in, at least,

one member of the family G.

To show G is a I-Steiner cover of Fy assume, to the contrary, the

existence of an x = % e F such that

(97) Xμ C (Xφη U Δ(Xφη)) Π (Xφχ U Δ(Λ^λ))
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for η < λ < o(v). But since {φξ}ζ<0(v) is strictly increasing, it must be that

(98) φη <φλ<o(v).

Now (97) implies

(99) Xμ C (Xφηnxφχ) U (xφη Π Δ-(#<pχ)) U (A(Xφη) Π #<pλ) U (Δfo^) Π Δ(#<pλ)).

However, (98), (99) and the properties of the set-function Δ yield

(100) Xβ C (Xφη Π *(pλ) U (A(Xφη) Π #<pλ)

from which follows xβ c #φ λ . But F is given to be a fc -tuple family of
M thus forcing

(101) #μ = xφχ

Consequently (97) and (101) give

(102) Xφχ C (Xφη U A(Xφχ)) = yφ^ .

However (102) and the fact that η < λ contradict the very construction of
xφλ9 showing (97) cannot obtain. Thus G is a 2-Steiner cover of F. This
completes the proof of Lemma III.11.

With the establishment of Lemmas TΠ.9, III.10 and ΠL11 one is in a
position to complete the construction of the Gξ's which was initiated at the
outset of the proof of Theorem III. 7. To do this it only remains to define a
family Gy having the following properties:

(103) Gy c [Mf

(104) Gy is a 1-Steiner cover of F

and

(105) Gξ Π Gy = ψ for each ξ <γ.

Set Gy = G. Lemma III.11 and (80) immediately show G to satisfy (103)
and (104). That G satisfies (105) is seen from Lemma III. 10 and the fact
that G is a sub-family of G*. Thus one has produced a Gy with the required
properties. In this manner, for each ξ < o(p) a family Ĝ  of subsets of M
can be constructed such that

(106) Gξ c [M]n

(107) Gξ is a 1-Steiner cover of F

and

(108) G | t Π G | 2 = φ whenever ξi 4= ξ 2 .

Q.E.D.

From III. 7 we can now assert our chief existence result of combinato-
rial designs on infinite sets.

Main Theorem 111.12. Let v9k,n and p be non-zero cardinal numbers such
that 1) v is nσn-finite, 2)k <n <v and 3) p =v. Then C*[v,k,n,p].

In light of Π.7 is is clear that the above theorem verfies (A),
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IV. APPENDIX: THE SIERPINSKI SEQUENCE

Without exaggeration it can be said that the entire theory of block designs on

infinite sets, presented in this work, developed as an outgrowth of Sierpiήski's

original four-page note [11], The transfinite sequence which he employs there with

great success to construct a Steiner triple system can be considered the cornerstone

of the entire theory presented. These facts justify a separate investigation into the

nature of Sierpiϊίski's sequence.

To show a non-finite set M possesses a Steiner triple system it is necessary to

construct a family F of triples of M such that every two elements a9 b e M are

together in one and only one member of F. Essentially, Sierpiiίski first forms a

family F*of triples of M with the property that every two elements of M are together

in, at least, one member of this family. Then, using a transfinite sequence, he selects

a sub-family of F * which has the desired property to solve the Steiner problem.

Being more explicit, with the aid of the axiom of choice it may be supposed that

(1) M = { ξ : ξ < o ( | M | ) } .

That is, M is the set of all ordinal numbers less than the first ordinal number whose

cardinality is \M\. Then Sierpiϊίski considers the set

(2) P *= \ < a , β > : a < β < o ( \ M \ ) }

of all ordered pairs of distinct ordinal numbers a and β which are elements of M.

Using a well-known ordering Sierpiήski remarks that the set P can be well-ordered

according to the ordinal number o(\M\). Hence the set P can be expressed as

(3) P= {<oiξ,βξ >:ξ < o( |ΛΓ|) } .

Now to construct the family F* it is sufficient to augment to each <a^, βξ > an element

of M not equal to either a% or βξ. Using standard theorems concerning ordinal

addition the ordinal number o>ξ + β% + ξ !, where ξ1 is some ordinal number > ξ, can be

shown to be an element of M which has this property. In view of this, he constructs

the family

(4) F* = {{oiξ9βξ,aξ + βi + ξ f } : l < o ( | M | ) } .

It becomes immediate that such a family has the property that every two distinct

elements a,b e Mare together in, at least, one member of F*.

The aim, now, is to discard from F* members which make this family redundant

with respect to the above property. Sierpiήski's solution to this problem reduces to

this. The two distinct elements, constituting the coordinates of the first ordered pair

of the well-ordered set P (i.e. the elements o^ and βι) are together in the member

{oίi, βi, ai + βi + I1}. This member of F* will be retained. Now look to the elements

ci2 and β2 of M. If these two elements are not together in the member {aί} βιtθίχ +

βι + lτ} their "private cover" given in F*, namely {a2, β2, OL2 + β2 +2'},will also be

kept to form the new family. If, however, {a2) β2} C {o>i, βι, on + βi+ 1'} one then

removes from F* the cover {a2, β2, oι2 + β2 +2'} and goes on to look at the elements

o>3 and βz of M. If the set {α3,β3} is contained on one of the previously retained

members of F* the member {a3, β3, a3 + β3 + 31} e F* may be discarded. If not, one

must retain this member. In this way one may construct, using the retained members

of F*, a sub-family F of F* which inherits the property of F* that every two distinct

elements of M are together in, at least, one member of the family F. The trick that

really solves the problem is that if the assignment of a third element to every .two

distinct elements of M is made "nice enough" (here one assigns to the elements a%

and βξ the element o>% + βξ + £f) the family F also enjoys the crucial property that

every two distinct elements of M are together in, at most, one member of F. In this

way F can be shown to be a Steiner triple system of M.
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Extracting the family F from F* is the work of the Sierpiήski sequence.

Precisely, it is defined in the following manner. Let ψι = i . Suppose δ is an arbitrary

ordinal number such that

(5) 1 <δ <o(\M\)

and suppose <p% is defined for all £ < δ. Then let φ% be the smallest ordinal number

μ which enjoys the property

(6) {aμt βμ} ct {aφv β^, α ^ + βφ% + ξ' } /or £αc/* ξ < δ .

Thus in the manner of transfinite induction, the sequence {ψξ\ %<o{\tA\) * S defined.

Using very standard properties of ordinal numbers this definition is shown to be

non-vacuous and the sequence defined by it strictly increasing. In virtue of all this it

can then be established that the family

(7) F = {{(XφVβφt,Olφξ + β φ ξ + ξ 1 } 'ξ <θ(\M\)}

is a Steiner triple system of M.

All generalizations obtained in this paper concerning the existence of block

designs can be considered as an elaboration, to a greater or less degree, of the very

simple, but powerful, idea which is at the core of the Sierpiήski sequence. Probably

more than any other result presented in this work, the preparation lemma, given in

ΠI, §3, exemplifies this point. There, the notion of "niceness of the assignment",

mentioned above, is rigorously precised. Once this is accomplished the Sierpiϊiski

sequence becomes the chief weapon employed in almost all the proofs of section III.
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