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EQUATIONAL CLASSES OF RELATIVE STONE ALGEBRAS

T. HECHT and TIBOR KATRINAK

In this note, we shall show that the lattice of equational classes of
relative Stone algebras forms a chain. We shall also show that each class
of these algebras can be described by a single equation which joins the
equations characterizing Brouwerian algebras. Furthermore, we shall
characterize each class of relative Stone algebras in terms of prime
filters. In the second part another characterization of the equational
classes of L-algebras will be given.

1. Relative Stone algebvas. A Brouwerian algebra is a universal algebra
(A, U, N, ¥, where (A, U,N) is a lattice, and * is a binary operation such
that

x <y xz if and only if x Ny <z for all elements x, vy, z€A.

Every Brouwerian algebra is distributive and has the greatest element
x *x, denoted by 1. It is known, that the class of all Brouwerian algebras
is an equationally one (see [1, 1, §11] or [7] or [8]).

Definition. A velative Stone algebrva % is a Brouwevian algebra which
satisfies the equation

(x *y)U(y xx)=1forall x, ye A.

Let Fy denote the set {xe A; x = 1(@)} for a congruence relation ® on a
Brouwerian algebra #. Fg forms a filter of %. The following statement
proved in [10] characterizes the congruence relation on a Brouwerian
algebra

Lemma 1. Let N be a Brouwevian algebva. If @ is a congruence
relation on A, then

x = YO) if and only if x N d =y N d for a suitable de Fg. If F is a filter
of A, then the binary relation O(F) defined as follows:

x= yO(F)) if and only if xNd=yNd for a suitable de F is a con-
gruence velation on %.

By lemma 1 the lattice of congruence relations @(A) on a Brouwerian
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algebra % is isomorphic to the lattice F(A) of all filters of . But F(A) is
distributive. Therefore we can apply to a class of relative Stone algebras
the following known result by B. Jénsson [5].

Lemma 2. Let each algebra % of an equational class K have a distvibu-
tive congruence velations lattice. If a finite algebra N e X genevates K then
each subdivect ivreducible algebra BeH is a homomorvphic image of a
subalgebra of 4 (Be HS (A)).

An equational class of algebras is entirely characterized by its
subdirectly irreducible algebras. If A is such a class and &) is the
subclass of all subdirectly irreducible algebras from J, then & = HSP(X)).
It is known that a chain with the greatest element forms a relative Stone
algebra, the RS-chain algebra. The following lemma (for the proof see [7])
describes the subdirectly irreducible relative Stone algebras.

Lemma 3. A non-trivial' wvelative Stone algebva % is subdivectly
irveducible if and only if 8 forms a chain with a dual atom.?

Lemma 4. A homomorphic image of an RS-chain algebra is an RS-
chain algebra. If € is an RS-chain algebva and % C € then A forms a
subalgebrva of € if and only if 1€ %.

The proof is straightforward.

Let €, denote the RS-chain algebra with »n elements, &, the equational
class of all relative Stone algebras generated by €, and &, the class of all
relative Stone algebras. By lemmas 2 and 4 €, ¢ A, if and only if 1 <k <n.
Therefore

(1) K CHC...CHC ... C Heo

Lemma 5. Every equational class K of relative Stone algebras is
generated by its finite subdivect ivveducible algebras.

Proof. Let € be an infinite RS-chain algebra from #. Let the equation
p(x1, .+ ., %) =q(x%, ..., %) fail to hold in € (p, q are terms from the
absolutely free relative Stone algebra). Then there exist such elements
@, ..., €@ thatp(a,, ..., @) #q(ay, ..., a,). Bylemmad,{l,a,...,
a,} is a finite subalgebra of €. Evidently {1, a;, ..., a,je X and p(x,, . . . ,
%p) = q(%1, . . ., %,) does not hold in this finite RS~chain algebra.

Theorem 1. The lattice of all equational classes of velative Stone
algebras is isomorphic to the chain (1) above of the type w + 1.

Proof. Let A be an equational class of relative Stone algebras. There
are two possibilities:

1. Containing more than one element.

2. An element ¢ in a lattice with 1 is called a dual atom if c< 1 and ¢ < ¥< 1 imply
that ¢ = 1.
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(i) There exists a natural number [ for which %, C & and %, & A.
(ii) &, C A for all natural n.

If 4, C A and A4, ¢ K, then H contains, by lemma 4, only finite RS-chain
algebras. €@,e implies n < [, again by lemma 4. Therefore & =%;. If
H, C K for all n, then K contains all €, and, as a consequence all finite
subdirect irreducible relative Stone algebras. Thus & = &, by lemma 5.

Let p,(%y, . . . , %) (n = 2) denote the polynomial defined recursively:
(1) palxr, x2) =Xz U (a3 * x1),
(ii) pn(x“ ) xn) = xnU [xn * Pr~1 (x]., LR ] xﬂ-l)] .

We can check without difficulties that the RS-chain algebra €, (n = 2), as
well as &, satisfies the following equations:

(E)) (% * %) U (g *+ X%3) U . .U @, *%,4,) =1,
(E)  pulx1, oo 5 %,) = 1.
The RS-chain algebra €, ={a;, > a,>...>a,> @ > ...>a, (m>n)

does not satisfy the equations (E,) and (E,) (set a; = x;). Thus we have

Theorem 2. Fov a Brouwevian algebva ¥, the following two conditions
ave equivalent (n = 2):

(1) A e Ky, '
(2) 9 satisfies the equation (E,) (o (E,)).

Now we are going to characterize the algebras from 4 ,(n > 2) in
terms of prime filters. For the class ., of all relative Stone algebras it
was done in [12].

Theorem 3. For a Bvouwevian algebva %, the following two conditions
are equivalent (n = 1):

(1) a € J{n,
(2) The family of all prime filters of % including a prime filter of % forms
a chain (by inclusion) with at most n elements.

Proof. Let We H,(n>1) and F be a prime filter of . Evidently 9 is
a relative Stone algebra. The quotient algebra %/F is a chain (see [4,
lemma 1.1]). Since %/Fe HA,, ¥/F has at most n elements. Let v: A — %/F
be the natural epimorphism. For a prime filter F' D F the image v(F') is a
filter of %/F and there exists such an element f' e¥/F that v(F') = [f")?
holds. By lemma 1 and F' D F it is clear that the inverse image v™*{[ f")} =
F'. Let now F,, F, be prime filters of ¥ containing F. There exist
elements f,,f.e A/F with v(F) =[f), v(Fy) = [f,). %/F is a chain. and
therefore F, = v {[f)}C Fy=v {[fs)}or F, C F,. For F, #+ F, [f)) #[f2)
must hold. Thus we have proved the condition (2).

Let the condition (2) be fulfilled by a Brouwerian algebra 9. By [12], %

3. Ifn={xeU/F;x>fr}.
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is a relative Stone algebra. Let J denote the set of all prime filters of %.
9 is a distributive lattice with 1 and by the known ‘‘Stone’s theorem’’ [1) =

/}F holds. By lemma 1, /\@(F) is the identical congruence relation on
Fe Fed

9. Therefore ¥ is a subdirect product of relative Stone algebras 4/6(F) =
%/F (FeJ). Above we have proved that f'e /F (Fe¥) if and only if
v~ [f"} is a prime filter containing F. By our assumption, %/F (Fe ) is
a chain with at most n elements which implies %/Fe X, for all Fe 3 and
consequently U € K.

2. L-algebras An universal algebra (A4, U, N, %, 0) is called a Heyting
algebra if (A, U, N, ¥ is a Brouwerian algebra and 0 is the smallest
element of A. An L-algebra is a Heyting algebra for which (A4, U, N, ) is a
relative Stone algebra (see [4]). It is easy to see that both classes of
Heyting and L-algebras are equational ones. All the results of section 1
are true also for the L-algebras. Especially, a chain C with the greatest
element and the smallest element is an L-algebra, the chain L-algebra. An
L-algebra ¥ is subdirect irreducible if and only if ¥ forms a chain
L-algebra with a dual atom. Let %, denote the equational class of all
L-algebras generated by the chain L-algebra €, with n elements. Let %
denote the class of all L-algebras. Repeating the proof of Theorem 1 we
can obtain an analogous result for L-algebras: The lattice of all equational
classes of L-algebras forms a chain

(2 . C%C...C%C...C%,

of type w + 1. Furthermore for a Heyting algebra %: e Z,(n = 2) if and
only if % satisfies the equation (E,) (o7 (E;)).

For our next considerations we need some new conceptions concerning
Brouwerian, Heyting and L-algebras. A Brouwerian algebra -satisfies the
following equations (see [1])

(B) (xNy) *xz=xx*(=*2),
(4) x*x(yNnz)=(x*y) N(xx*z).

In a Heyting algebra the elements a x 0 will be denoted by a*. An
element a of a Heyting algebra # will be called closed (dense) if a =
a** (a* = 0). The set C(A) = {ae A; a = a**} forms a Boolean algebra, the
Boolean algebra of closed elements. The set D(A) = {ae A; a* = 0} forms a
filter, the filter of dense elements. It is easy to see that D(A) forms a
Brouwerian algebra (more precisely the Brouwerian subalgebra of %). For
each element x of a Heyting algebra 9 there exists a suitable dense element
de D(A) for which

(5) x=ax**Nd

holds.

It is known that C(A) is a sublattice of ¥ if A is an L-algebra.
Moreover, for a closed element y of an L-algebra the element x % y is also
closed and
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(6) x*xy=x*Uy

is true (see [10, lemma 4.2]). In [2], [6] and [11], the L-algebras were
characterized as follows:

Theorem 4. A Heyting algebva ¥ is an L-algebra if and only if the
following conditions ave fulfilled:

(i) C(A) is a subalgebra of 4,
(ii) D(A) is a relative Stone algebra.

We wish to give an analogous characterization of L-algebras from
£, n=2).

Lemma 6. Let & be an equational class of Heyting algebras. Then the
class of all Brouwevian algebras D(A) for $ e K is an equational one.

Pyoof. Let £ denote the class of all algebras D(A) for e H. It
satisfies to prove that direct products, epimorphic images and subalgebras
of members from & are again algebras from £. Let D(4,)e & for ae | and

A= HAa. Evidently §e #. Then a = (a,),€ D(A) if and only if a,e D(A4,) for

all ael. Thus D(A) =HD(Aa)e A.

Let now D(A4,) e £ be an epimorphic image of D(A,)e #. By lemma 1,
there exists such a filter F of D(4,) that D(4,)/F is isomorphic to D(4,).
Consider A,/Fe#. x =y(@(F)) implies x** = y**¥(@(F)) and consequently
x*¥* N d=y**Nd for a suitable de F. Since F C D(A,), we obtain x** = y**,
Denote x — x the natural epimorphism from A, onto A,/F. If xe D(4,/F),
then x**e¢ F for xeX and because F C D(4,), we have x** =1, Hence
x€D(A,). Evidently xe D(4,) implies Xe D(A,/F). Therefore D(A,/F) is
isomorphic to D(A4,)/F.

Let, finally, ® be a Brouwerian subalgebra of D(A)e £. @' = @ U {0} is
a Heyting subalgebra of e #. Hence ®'e #. It is easy to see that D(G') =
@ and, consequently, Ge¢ £.

Lemma 7. #,-, is the class of all D(A) for He %, (n = 2).

Pyoof. Let K denote the class of all algebras D(A) for He &, n = 2).
By lemma 6, & is an equational class of relative Stone algebras. ¢, is
generated by the chain L-algebra €,. D(C,) = €,-; and €,_,, considered as
an RS-chain algebra, generates &#,_,. Thus &,., C K. If €, = D(A) for an
algebra % e &,, then €,;, = €, U {0} would be an L-subalgebra of % and, thus,
@€,41€ £, which would be a contradiction. Hence the subdirect irreducible
algebras from & are €; for 1 <! < - 1 and this implies #,-, = .

Theorem 5. Let U be a Heyting algebva. Then Y € &, (n = 2) if and only
if the following conditions ave fulfilled:

(i) C(A) is a subalgebra of A.
(ii) D(A) e A,-1.

Pyoof. Since ¥,C Z«, the necessity follows by Theorem 4 and
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lemma 7. Now we can assume that n > 2 and a Heyting algebra # satisfies
the conditions (i) and (ii). Evidently % € £«, by Theorem 4. We shall prove
the algebra % satisfies the equation (E,). For the elements x,, . .., X, €A
there exist such dense elements d,, . . . , d,y; € D(A) that

x;=xF*nd; (1 <i<smn+1).

Now x; * X4 z, G nd) x (X ndiy) = [P nd) k) n[(xf*nd) «
digr) = [di % &7« 2T 10 [0F* % (d; xd;y)] for 1 <i <n, by (4) and (5).
Thus,

(301 % %p) U (2 * X3) U .o U (% % Xpgr) = [(xF* N dy) x (k3N dy) U ... U [(xF*U
da) * (55 N0 dyp)] = [(dy * (% x3%) 0 (0 % (dy * dy))]U ..o U [(dn % (00 %
X)) 0 (™ * (dy * dpy))].

By (6), we have d; x (x}* x x¥¥) = dF U (xF* x x¥}) = 2T U x¥} for all 1 <
i <n. If we put

a; = xf Uxihand b = xF* % (d; * d;y)
for 1 <i < n, then we obtain
(iii) (x]_ *xg) J...U (x,, *xn+1) = (al N bl) J...U (a,, N bn).

Since b; > d; * d;,€D(A) (1 <i <n) and D(A)eH,-,, we can conclude by
Theorem 2 and (ii)

(iv) brU.. . Ubp=(di *dy) U...U(dp-y ¥dy) =1 and
byU... . Ub,yUa,=2(dy xdy)U...U(dy xdy) = 1.

Evidently a; Ua;qy; = (xFUuxX) U (xF,uxlt) = 1 (1 si <sn-1) because
2 U xffl = 1 follows from (i). Hence

(v) ey U...Ue,=1,if ¢; = a;, ¢jy1 = a4, for some 1 <i <n-1and
ciefa;, bjifor 1 <j<mandi#j#i+1.

Since d; * d;+; = 0 (1 < i <n), we obtain
xF = a0 <aTFx(dxdip) = b;
and, as a cconsequence,
(vi) ;o Ub; = (X, UuxTHuxt>xFust=1for2 <i <n.
Therefore,

(vii) c,U...U¢c,=1,if ¢; = a;, ¢;4, = iy for some 1 <i <n-1and
cie{aj, bj}for 1 <j <mandi#j+i+1.

It is known that a Heyting algebra is distributive. Applying the distribu-
tivity law on the right hand side of (iii) and considering (iv)-(vii), we obtain,

(2 % %) U (2 * ) U v o .U (% % Xpgy) = 1,

what was to be proved.
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