
211
Notre Dame Journal of Formal Logic
Volume XIII, Number 2, April 1972
NDJFAM

REAL FIELDS WITH CHARACTERIZATION
OF THE NATURAL NUMBERS

EUGENE W. MADISON

Introduction. This paper is a sequel to [3]. Its purpose is two-fold:
On the one hand, it is to inform the reader of the state of affairs regarding
the concept of structures being elementarily closed (relative to the natural
numbers) since the publication of Theorems 3D, 4A of [2] where the concept
(without name) was introduced for the first time. And, on the other hand,
our purpose is to give some clarification to results of [3]. In [3] the term
"elementarily closed" was introduced to apply to the general structure
which satisfies the conclusions of Theorems 3D, 4A of [2]. However, recent
studies have led us to conclude that a stronger form of our definition is
more interesting and natural from the point of view of our results in [2].
We shall attempt to be more specific after giving a precise frame of
reference.

1 Basic Definitions and Remarks. We are here interested in structures of
the form 9 = {F, JslQ, +,- ,<, 0}, where F is the set-part for a field of
characteristic zero, _/V0 the set of natural numbers, "+" and "•" the
ternary relations of addition and multiplication, respectively, and " < " the
binary relation of order. (In some cases we choose to drop "<" . ) By the
language of 9, say Σ j , is meant a convenient formulation of the lower
predicate calculus which contains the extralogical constants N(x), E'(x,y),
S(#, y, z), P(x, y, z) and H(x, y) whose intended interpretations are "X€jty0",
x = y,x + y = z,x y = z, and x < y, r espec t ive ly .

Let 9 and Q be two structures and A c F u G . Recall that 9 and Q are
said to be elementarily equivalent with respect to A in case 9 \=X if and
only if Q^X, for any sentence X which is defined in the language of 9 (and
Q) and whose individual constants correspond to elements of A. 9 and Q
are said to be elementarily equivalent in case they are elementarily
equivalent with respect to φ. 9 is an elementary extension of Q in case 9
is an extension of Q and 9 and Q are elementarily equivalent with respect
to G.

It is interesting to observe that a certain abnormality occurs for
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structures viewed within our framework where we have chosen to dis-
tinguish the natural numbers. For example, the field H of real numbers is
not an elementary extension of the field RQ of real algebraic numbers. See
[2] and [5]. This is to say, the theorem of Tarski, namely, " a real-closed
field is an elementary extension of each of its real-closed subfields" does
not hold.

We now give the stronger form of the definition of "elementarily
closed" which was alluded to in the introduction. The same term (ele-
mentarily closed) has been retained for the present concept.

Definition. A structure 9 (abbreviated 9 = {F; 7V0}) is elementarily
closed (relative to 7V0) in case

(a) every proper elementary extension of 9 enlarges τV0, and

(b) whenever extensions of 9, 9* = {F*; TV*} and *J = {*F; . V*} are
elementarily equivalent with respect to F U TV* then J * ^ *7.

It is clear that there are lots of structures which are not elementarily
closed relative to _yV0. Let 9 = {F, Λo} be any uncountable structure (having
only finitely many relations). A theorem of Tarski and Vaught (see [6])
guarantees the existence of a proper elementary substructure 9r = {F'9 τV<J}
of 9, Clearly, . Vό = τVoj therefore, 9* is not elementarily closed relative
toW0.

The main theorem of [3] gives a sufficient condition for a structure to
be elementarily closed relative to _yV0. However, our application of this
theorem (i.e., the last theorem of [3]) which asserts, "every AD -structure
9 = {F, _yV0} is elementarily closed relative to 7V0", is false. A counter-
example to this theorem and an alternative theorem (with stronger
hypotheses) are discussed in the sections that follow.

2 A Counterexample to a Theorem of [3]. Let {C; _yV0} denote the field of
complex numbers with the natural numbers _yV0 distinguished. Let <RC

denote the field of computable real numbers. It is easily shown that the
transcendence degree of Hc over Q is tf0. Simply, let {al9 a2, . . . , otny . . .}
be a denumerable set of real algebraic numbers which is linearly indepen-
dent over Q. The set {e*1, ea2, . . . , ea", . . .} c Jξc and is algebraically
independent over Q. This is an immediate consequence of a theorem of
Lindemann which asserts that if {βl9 β2, . . . , βn} is a linearly independent
set of algebraic numbers over Q then {eβl, eβ2> . . . , eβ*} is algebraically
independent over Q.

Now, let {tly t2, . . . , tn, . . .} be a transcendence basis of <RC over Q.
Then, clearly, the algebraic closure of Q(tχ, . . . , tn, . . .) is Rc(i).

Theorem (A. Robinson). If A is an algebraically closed field of
characteristic zero, {tlf . . . , tn, . . .} a subset of A algebraically indepen-
dent over Q, and A the algebraic closure of Q(tu . . . , £ „ , . . . ) , then A is an
elementary extension of A.

An immediate conclusion is that {C, V̂o}
 i s a n elementary extension of
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{Λc{ϊ)> -NO}. I*1 other words, Λc(i) is not elementarily closed relative to _yV0.
In [1] we proved that ftc is an AD-structure; hence, Rc{ι) is an AD-
structure.

Our conclusion is that not every AD-structure is elementarily closed
relative to τV0

3 Structures Elementarily Closed Relative to Jsί0.

Lemma 1. Let {<R0, 7V0} be a structure such that there is an injectiυe
function ψ: β0 -> JsjQ such that the predicate ψ(x) = y is expressible in Σ^ .
Then <K0 is elementarily closed relative to Jsl0.

Proof. Let 0: _yV0 -> Jξ0 be defined by:

,, v (a, in case ψ(a) = n
0 W = to, otherwise.

Clearly, the predicate φ(x) = y is expressible in Σ^Q. Also, φ is iV-bijective
in the sense of [3]. Therefore, by our theorem of [3], <#0 is elementarily
closed relative to _yV0.

Lemma 2. If Λo is an AD -structure such that some admissible index-
ing of JZ0 is expressible in Σ^ then <R0 is elementarily closed relative
to Άo.

The following theorem shows that the last theorem of [3] does hold for
a reasonably large class of AD-structures.

Theorem 3. If {<K0, Άo} is an AD-ordered subfield of real numbers,
then <Ro is elementarily closed relative to τV0.

Proof. First of all, we observe that the greatest integer function (ί[x] = y"
is expressible in Σ^ Q . Secondly, if λ is a fixed admissible indexing of RQ

then λ|_Λo is expressible in Σ^ Q . NOW we define ψ; <RQ —* Js[Q by: \p(a) = β if
and only if

3.1. K(β) A (Vn) [N(n)=>(3f) [([(n+ l)α] - t) A ([λ(n+ 1) ' β] = λ(ί))]],

holds in < 0̂, where (([z]" denotes the greatest integer function, "[z]"
denotes the greatest integer function in the arithmetical representation of
<#0, " . ' " denotes multiplication in the arithmetical representation of <#0,
and K(̂ ) denotes the predicate "ze λ{J?0)."

Clearly, 3.1 is expressible in Σ^ . Since ψ is an isomorphism between
Jϊo and its arithmetical representation, it is clear that ψ is injective.
Therefore, by Lemma 1, <#0 is elementarily closed relative to _yV0.

Remarks. We observe in [3] that several familiar structures are
elementarily closed relative to _yV0, for example, the ring of Gaussian
integers, the field of real algebraic numbers, the fields of solvable and
constructible numbers.

In earlier paragraphs we showed that Rc{j) is not elementarily closed
relative to _yV0. However, as an immediate consequence of Theorem 3, we
have that <RC is elementarily closed relative to JV0.
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It is interesting to raise the question as to whether or not the converse
of Theorem 3 holds. A consequence of our next theorem is that the
converse of Theorem 3 is false.

Theorem 4. There exists a subfίeld Λi of real numbers such that <Rι

is elementarily closed {relative to J^o) and Rγ is not AD -ordered.

Proof. Let B(ΛΓ, y) be the predicate of 3.1. Note that B(#, y) defines a
function ψ: <RC -* jV0 (i.e., ψ(a) = m if and only if B(α, m) holds in Λc) such
that ψ is injective.

Let <#' be any subfield of &c. Then the function φ: <R* -• 7V0, defined
by φ(a) = m if and only if B(α, m) holds in Rc (i.e., φ = ψl^r), is a function
of the type of Lemma 1, since (\Λy) (3!ΛΓ)B(ΛΓ, 3;) holds in every subfield of
Rc. It follows from Lemma 1 that dξr is elementarily closed (relative to
JV0). In summary, every subfield of Hc is elementarily closed (relative to
Wo).

Since there are only countably many arithmetically definable ordered
fields, it suffices to show that <RC has uncountably many non-(order)
isomorphic subfields. Indeed, we have established that the transcendence
degree of Rc over Q is No, hence any such field has infinitely many
non-(order) isomorphic subfields.

Let T = {S\S c Δ}, where Δ is a transcendence basis for ilc over Q.
Clearly, T is uncountable. Let Ks = Q(S). If S Φ S' then clearly Ks is not
order isomorphic to κ's, lest they be identical, which is impossible. But,
since S Φ S' there exists a te Sr such that t jίS (or just the other way). For
notation, assume the former. Now Su{ί} is algebraically independent;
therefore, t { K$, while t e Ks . Our theorem is proved.

4 Some Embedding Theorems. The following is well-known.

(c) A field is Archimedean ordered if and only if it can be embedded
in the field of real numbers.

In this section we seek a non-standard analogue of (c). Let R =
{#, J\l0, +,*,—} be the ordered field of real numbers with _yV0 the natural
numbers as a distinguished subject. Any proper elementary extension of R
will be referred to as a non-standard model of analysis. It is easy to see
that any non-standard model of analysis enlarges the cardinality of _yV0

Before stating our analogue of (c) we prove the following lemma.

Lemma 5. // R2 ={^2; Άo}is an extension of Jtc, then <RC is arithmeti-
cally definable in Λ2 (i e*> there is a predicate G{x) which is expressible in
the language of <R2 such that G(a) holds in <R2 if and only if ae Rc).

Proof. Our method of proof is reminiscent of the proof that Rc is an AD -
ordered field. See [1]. Since the set of partial recursive functions is
recursively enumerable, we can find an arithmetical predicate, say
C(#, y, z), (i.e., C(x, y, z) is expressible in the language of <#2) which
expresses " a total function ψx is defined and has value z at y." Of course,
ψx: Άo —> JSIQ. Let G(u) be the predicate

4.0 (3X)[N(Λ) A(Vy)(V«)[NCv)ΆN(«)AC( ,̂ y, z) A (y Φ 0)]=#>[ \u-p{z) I < 3Γ1]],
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where p is a fixed effective indexing of natural numbers with rationale.
Clearly, G(u) is expressible in the language of Si2 and G(a) holds in J?.2 if
and only if a e Rc. Our lemma is proved.

We may, in fact, take as our definition of Sic the following: Rc =
{aeR\G{a) holds in R}. An immediate consequence of Lemma 5 is that
every element of Rc is definable in the sense that if αeRc then there is a
predicate Fα(x) which is defined in TV such that (i) Fα(α) holds in Jξc and
(ii) (V y) [F2(;y)=> E(α, 3;)] holds in Sic. Indeed, each αe Sic is definable in
every subfield of Sic containing α. Simply use 4.0.

Now we proceed with our discussion of a non-standard analogue of
property (c). Consider the following:

(d) Let Si* = {R*\ TV*} be a non-standard model of analysis. If *Si =
{*R;M*} is a model of KU P, where K is the axioms for the concept of
"Archimedean ordered field" and P the true sentences of TV0 relativised by
N(#), then *Si can be embedded in Si*.

The statement of (d) is a direct analogue of (c) and can be shown to be
false. Simply let Xr>s(β) denote the sentence r<β<x, where re Q,
se (Q* - Q) (where Q* denotes the quotient field of M* in Si*), and β an
individual constant. Let U = {Xr,s(β) \r e Q I Λ se (Q* - Q)}. We claim that the
set V, consisting of the complete diagram of TV* union with U and the field
axioms, is consistent. Easily, any finite subset of V is consistent.

Let Si = {R; TV**} be a model of V. Clearly, _yV** D W* and, moreover,
<Rι = {Q*(β)> ->V*} can be shown to be a model of K U P . Clearly, Slx cannot
be embedded in Λ* since no element of <#* determines the same " ra t ional"
cut as β determines in Siλ.

Our next theorem and its converse constitute what seems to be about
the strongest non-standard analogue of property (a) that one can expect.

Theorem 6. For each model of analysis Si* ={β*;τV*} there is an
elementary extension of Sic, say *Si - {R; TV*}, (i.e., corresponding to the
same model of arithmetic TV*) such that Si* contains an isomorphic copy
of*«.

Proof. Let G(u) be as in Lemma 5. Let *RC = {αe#*|G(α!) holds in
SI*}. Clearly, *Sic is an extension of Sic\ Let (3^)X(^) be such that it is
defined in Sic and holds in * Sic\ Then {lz)[X{z) ΛG(Z)] holds in si*, whence
holds in Si. Therefore, [ X ( « ) A G ( « ) ] holds in Si, for someaeR, i.e., X(a)
holds in Si, aeRc. Obviously, X(α) holds in *Sic\ aeSic. Therefore, by the
classical theorem of Tarski and Vaught, *Sic is an elementary extension
of Sic.

Theorem 7. Let Si\ be a computable ordered subfield of Si. Any model
of analysis Si* - {R*; JV*} contains an elementary extension of Sily say *Si =
{*R; TV*} (i.e., corresponding to the same TV*).

Proof. From the proof of Theorem 6 it is clear that it suffices to show
that Siλ is arithmetically definable in Sic in the sense of Lemma 5. Let
A(x, u) be the predicate
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( V 3 θ ( V * ) [ C ( * , y , Z)A (y Φ 0 ) = > \u - p { z ) \ < y ' 1 ] ,

with the quantifiers "Vy" and "Vz" relativized by H{x). Clearly,
(V#)(Vi;)(Vtt)[A(#, U)ΛA(X, V)=$>(U = v)] and (VM)(3!*)A(#, w) (the quantifiers

" V M " and "V.x" being relativized by N(x)) hold in all subfields of Λc. For
toβjMo and αe Λ?*7, A(£o, of) expresses " there is a 'total partial recursive'
function with G'όdel number tQ which computes a". Of course, the predicate
A(ί0, #) defines a in Λ^.

Let I = {xeJslo\{Ίz)A{x, z) holds in Λ?o}. We claim that I is an arithmeti-
cal set. Choose an admissible indexing φ which renders Λ?o computable.
Clearly, φ\Ά0 is an arithmetical function. Let A(x, z) be the predicate
resulting from relativising A(x, z) by the predicate ~R{x) (where ~R(x) is the
arithmetical predicate which defines the set φ(X0)) and replacing the
relational ^symbols S(#, y, z), P(x, y, z), Q{x, z), and N(x) by the predicates
s(^j y, z)> P(̂ > y, z), Q(χ, z)> and N(ΛΓ) (i.e., the arithmetical relations of the
arithmetical representation of ^ J .

Use T for 0(1). T is arithmetical, since #€TΞ<N(Λ;) Λ (1Z)\R(Z) ΛΊ\(X, Z)]

holds in Js/O\ Use T(ΛΓ) for "jveT". _

Now, xe\ = <(lz)A(x, z) holds in ^ Ξ (3J ; ) (3^) [0W = 3̂  Λ A(ΛΓ, ^)] holds
in TV0

?. Use I (AT) for "xe Γ'. At this point we can observe that xe Rx =
'(ly)[\(y)* A(y, x)\ holds in XCS This is to say Λi is arithmetically
definable in d?c, hence in ^?, where our defining predicate is (3y)[\(y)*
A(y, x)] which we choose to denote by H(x). To complete our proof we
simply continue as in the proof of Theorem 6. Our theorem is proved.

Theorem 8. Let Rx c tfc, R* = {#*; W*} a non-standard model of
analysis. Every elementary extension *<R = {*#; _yV*} of <R1 is isomorphic
to a subfield of <R*.

Proof. Consider the predicate A(x, u) of the proof of Theorem 7. Since
^1\=(Vu)(lx)A(x, u), we have that */J t=(Vu)(3x)A(x, u); and so, for ae*<R
there is a ί o 6 j V * such that */?»= A(ί0, a). Let ψt : W* — ̂ V* be defined by
<Pto{<*) = b ΞW*f=C(ί0, α,6). Further, let A = {p*(ψ J α ) ) - a'1 \(aΦθ) *(ae 7V*)},
where p* is the natural extension of p to W*.

We claim that supκ A exists. Let b = [of] +1, where [a] denotes greatest
element of .yV* in a. So δe^V*. lίow if T(w, f) denotes the predicate
(Vx)(Vy)[C(u, x, y) A(P*(^) - Λ:"1) = v] then two facts are immediate:

4.1) r e A =Q*t=T(*0, r ) ,

4.2) Q*t=(Vι;)[T(*o, ^ = H " ^ &)].

Moreover, since there is a predicate Q(#) defined in Σ ^ such that
reQ*= /f*EQ(r), we have

4.3) reA = «**T(to,r),

4.4) /f*l=(V!;)[T(ίo,v)=Φ(« ^ 6 ) ]

Now, if U(w, f) is any predicate (with no individual constants) and X is
the sentence
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(V#)(V:y)[(Vtt)[U(x, u)=Φ(u ^y)]==>(V.w)(Vu)[[\J(x, u)
=5>(U^W)]Λ(VV)[\J(X, U)=Φ(U < v)]^{w < v)\],

then^l=X. Thus Jξ*tX. It follows that

***=(VM)[T(f0, u)=>(u< &)]=#>(3!M>)(VW)[[T(/0, W)
=#>(w^ ^)]Λ(Vy)[T(ί0, w)=^(w ^ υ)]==>(w< v)]

and so

*/?^=(3!w;)(Vw)[[T(ί0, u)=Φ(u^w)]Λ(Vυ)[l(t0, u)=>(u< υ)]=Φ(w^υ)].

This is to say, supR*A exists.
One can define a function λ: * β —» β* as follows: Given cue *β, choose

A as above then λ(a) = supΛ A. Our claim is that λ is a monomorphism.
First of all, it is known that for any ordered group, if sup C and sup D exist
then sup(C + D) = sup C + sup D. Thus, let a, βe *R. Then determine sets A
and 5, corresponding to a and j3, respectively. Thus

λ(a) + λ(j3) = supΛ*A + supR*B = supβ*(A + B)

and supΛ*(A + B) is easily seen to be equal to λ(a + β). Also, it is clear that
if a ^ β then λ(a) ̂  λ(/3). In summary, the ordered commutative group of
*<# is embedded in <#* via λ.

It suffices to show that λ{aβ) = λ(a)λ(β). This also follows along the
lines{ of a very standard proof. For, let ae *R and a Φ 0; denote by Tα the
function defined by the equation Tα(β) = aβ (i.e., Tα: *β —> *β). It is known
that for any ordered group Ίa there is an automorphism, Tα_! = (Tα)"1 and
λ ° T α = Tλ(α)°λ.

Let a > 0. Then λ(ofβ) = λ ° ( T a ° O ( a 0 ) = λ°(T f l° Tα-i)(αβ) = (λ°Tα)(β) =
Tχ(α) ° λ(β) = Tλ(α)(λ(β)) = λ(a)λ(β). For a < 0, -α > 0; therefore, since λ(-#) =
-λ(x), we have λ(cϋβ) = -λ(-α)λ(β) = λ(of)λ(β). Of course, if a = 0, then λ(αβ) =
λ(0) = λ(O)λ(β). Our theorem is proved.

Corollary 9. Let Jξγ be a computable ordered subfίeld of </?, <#* =
{β*; TV*} &̂  a non-standard model of analysis. Every elementary extension
*<R = {*β; TV*} o/ <#i is isomorphic to a subfield of <#*.

Proof. Every computable ordered subfield of R is properly contained in
βc. See [1].

Remark. It is worth noting that the result of Theorem 7 becomes a
consequence of Theorem 8, when one recalls from [2] that given any
AD-structure S = {S, _/V} and any non-standard model of arithmetic _yV*
there is an elementary extension of £, say g* = {s*; TV*} (i.e., an elemen-
tary extension of S determined by TV*). Then use Theorem 8 to embed *<#
in <#*.
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