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TRANSITIVITY, SUPERTRANSITIVITY AND INDUCTION

W. RUSSELL BELDING, RICHARD L. POSS and
PAUL J. WELSH, Jr.

In [3] and [6] Montague and Tarski, respectively, published without
proofs the following general principles of induction as theorems of
Zermelo-Fraenkel set theory (ZF).

A. (Montague) If the formula φ(x) does not contain the variable y and the
relation R is well-founded then

(y) (y e Fldfl A (X) (xRy - φ{x)) - φ(y)) - ( y) ( y e Fldfl - φ(y)).

B. (Tarski) // the formula φ(x) does not contain the variable y then

(y) [(*) (x e y - ψ{x)) - φ(y)] - (y) (φ(y)).

In this paper we shall present, in Gδdel-Bernays set theory (GB), some
results concerning general principles of induction, relating them to A and B
above. In section 1 we list our notation and definitions. In section 2, since
Montague and Tarski published their results without proofs, we shall for
the sake of completeness give our proofs of their results. We shall also
prove the following general induction principle:

C. If the formula φ(x) does not contain the variable y and A is a transitive
class then

(y)[yeAΛ(x)(xey-> φ(x)) — φ(y)]-> (y)(yeA -> φ(y)).

We also show that it is necessary that A be transitive for this principle to
hold. We also present a transitive decomposition formula for classes. In
section 3 we introduce the notion of supertransitivity for classes, give
examples of supertransitive classes and discuss the relationship between
supertransitivity and transitivity. Finally in section 4 we present a
supertransitive decomposition formula for classes and prove the following
induction principle for supertransitive classes.

D. Let A be a supertransitive class and φ(x) be a formula not containing
the variable y. If φ has the property that for every sequence of sets {θn}n<ω
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in A such that an+i c an for every n = 0, there is at least one integer m such
that φ(am), then

(y) [y e A Λ (X) (X C y — φ(χ)) — φ(y)] -> (y) (yeA -> <pft;)) .

We also show that if cαrd(Ao) is finite then it is necessary that A be super-
transitive for this principle to hold. The notation A% is defined in section 4.

1. Notation and Terminology. The small Latin letters a, b, c, . . . are used
for elements of classes; i, m,n are reserved for non-negative integers and
x, y, u, v for variables. The capital Latin letters A, B, C, . . . are used for
classes but R will always represent a relation. As usual 0 denotes the null
set and the symbols c and c denote inclusion and proper inclusion respec-
tively.

oo

U An= {x\(lm)(m > 0AXeAm)}.

oo

Π An={x\(m)(m Ξ 0 - xeAm)}.

φ -» ψ will denote material implication, while φΦψ will denote inferential
implication. We use the following definitions:

(a) A relation R is a class of ordered pairs (AT, y) such that xe domain R
and y e range R.
(b) R is well-founded if and only if there is no sequence of sets
{<««+i, an)}n<ωinR.
(c) ft is internal if and only if (u) (v) (x) ((xRu = xRv) = u = i>).
(d) Fid R (the /feZd of R) = domain ft U range R.
(e) If i is an integer, define the power of A, P\A) as follows:

(i) If ί = 0, />*'(A) = A for A a set or a class, (ii) If A is a set, P(A)
= {x\x c A}, (iii) If A is a class, />(A) = {#U c A and c i s a set}, (iv) If
i>0,J>i(A) = P{P^ι{A)).

(f) A is transitive if and only if (y) (y e A —> (#) (x e 3̂  -» Λ1 e A)).
(g) A is super transitive if and only if (^(yeA-^ (#) (x c 3; —* #e A)).

Remark: In [5], p. 270, supertransitivity is defined for certain sets.

2. Transitivity and Induction. It is known that every theorem of ZF is a
theorem of GB and that any theorem in GB about sets only is a theorem in
ZF. (Cohen has these proofs in [2], p. 77, for example.) Below, we prove
Montague's induction principle (A) in GB and show that Tar ski's induction
principle (B) is a special case of Montague's. Virtually the same proofs
will suffice to prove these principles in ZF.

Lemma 1. (Montague's A) If the formula φ(x) does not contain the variable
y and the relation R is well-founded then

(y)[ye Fldft A(X) (xRy - φ{x)) -> φ(y)]-+ (y)(ye Fldft - φ(y)).

Proof: We use an indirect proof. Let us assume the hypotheses of A and
that
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(1) (y) [y e Fid R A (x) (xRy - φ(χ)) - φ(y)]

(2) (ly)[yeF\6RA~(φ(y))].

Let a0 be such that aoe Fldfl and ~(<ρ(<zo)) First, suppose that a0 has no

predecessor in Fld#, that is, there is no be F\6R such that bRa0. Then

clearly

(3) αoe Fldfl Λ(AΓ) (#βα0 -> <?(#)) .

By (1) we may deduce φ(a0), which contradicts our supposition that ~(φ(a0)).

Thus we may suppose that α0 has at least one predecessor in Fldβ. If φ

holds for every precedessor of a0 then (3) holds and we can use (1) to

deduce φ(a0), again obtaining a contradiction. Consequently we have

(4) (ly){yRaoΛ~{φ(y))).

Let ax be such that axRaQ and ~(φ{a^)). Then a1eF\όR. If aλ has no

predecessors in Fldft or if φ holds for every predecessor of aλ we can

again use (1) to derive the contradiction φ{a^). Consequently we have

(5) (^y)(yRa1A^(φ(y))).

By induction we obtain a sequence {an}n<ωin FlάR such that an+ιRan for every

n Ξ 0. This contradicts the well-foundedness of R. Hence, Lemma 1

follows by contraposition.

The following lemma is needed to show that Tar ski's induction

principle B is a special case of Montague's principle A.

Lemma 2. Let {an}κ<ω be a sequence of sets. It is false that an+iean for

every n ^ 0.

Proof: If an+1 e an for every n ^ 0, the class {an\n z 0} contradicts the axiom

of regularity. Lemma 2 follows by contraposition.

Lemma 3. Tar ski9 s induction principle B is a special case of Montague's

induction principle A.

Proof: Let V be the class of all sets in GB. Let us assume that φ(χ) is a

formula not containing the variable y. We define a relation R as follows:

(1) ( x ) ( y ) ( x R y = x e V Λ y e V Λ X β y ) .

By Lemma 2 the relation R is well-founded. Clearly Fid ft = V. Montague's

principle thus yields

(2) (y)[ye F\όRA(x) (xRy-* φ(x)) - φ(y)]-> (y)(ye Fld# - φ(y)).

But (2) is equivalent to

(3) (y) [(x) (xey^ φ(x)) - φ(y)] - (y) (φ(y))

where quantification is over sets. This is Tarski's induction principle as

required.

We shall now discuss some results about transitive classes, develop a

transitive decomposition formula for classes, and prove induction principle

C.
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Lemma 4. (Belding) For every A, if A is a class, then the following
statements are equivalent: (i) A is transitive, ( i i ) Λ £ P\A) for every

oo

i ^ 0, and (iii) there is a class C such that A = ΓΊ/^ίC).
ί-0

Proof. Let A be a class. Then (i)=φ>(ii). We prove this by induction. By
Definition (e), we have

(1) A c P°(A).

By (i) and Definition (f), we have that A c P(A). Suppose inductively that
for a given i, A c P\A). Thus, it follows that (x)(xeA~* x c P'^A)). There-
fore, by the definitions of inclusion and power set, we have, A c Pt+1(A).
We conclude

(2) For every i > 0, if A c />'(A) then A c />'+1(A).

Therefore, by (1), (2) and induction over i, we have

(3) A c P\A) for every i z 0. oo

(ii)=>(iii). Put C = A and note that Π p\A) c / °̂(A) = A.

(iii)=^>(i). Assume (iii). Then there is a class C such that
oo

(4) A = Π P\C).

Therefore, by (4), we have

(5) (y)(x)(yeA-+ (xey-+ (i) (i z 0 - xeP\c)))).

By (5) we have

(6) (y)(x)(yeA^(xey^xeftp\C)fj.

Thus, by (4) and (6) we have

(7) (y)(yeA-> y^A).

Thus (iii)=#>(i) which concludes the proof of Lemma 4.

Lemma 5. For every A, if A is a class, then there is a unique maximal
transitive subclass of A.

Proof: If A is a class, define B by:
PO

(1) B = Γ\p\A).
ί-0

Then, by (1) and Lemma 4, B is a transitive subclass of A. Now let us
assume that K is any transitive subclass of A. Then, by Lemma (4), for
every i ^ 0, K c /^(ϋΓ) and, since K c A, we have at once: for every z Ξ 0,
/>'(#) c P\A). Hence we have:

(2) for every i z 0, KQ P\A)

which together with (1) gives K c B as required, also proving uniqueness.
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The following theorem yields a transitive decomposition formula for
classes.

Theorem 6. (Belding) If A is a class, B the maximal transitive subclass of
OO

A and An = {x\xe P\A) for 0 Ξ i % n and x i Pn+1 (A)}, then: (i) A = U Aw u £,

(ii) for every n Ξ 0, B Π An = 0, and (iii) /or βt^r y ra and n such that
m Φ 0 Φ n and m Φ n, Am Π An - 0.

Proof: Let A be a class. Then clearly
OO

(1) \JoAn\JB QA.

For every xeA, either (a) for every i ^ 0, xeP\A) or (b) there is a
smallest n such that xePn(A) and x$Pn+1(A). If point (a) holds, then,
clearly, xe B. If (b) holds, by definition of An, xeAn. Therefore, we have:

oo

(2) A C | J A « U B.
n-0

oo

Thus, by (1) and (2) we obtain A = U An U B, and (i) is proved.

By definition of An, for every x, if ΛreA«, then x^Pn+ι(A). Thus, for
every n, AnΓ\ B =0, and (ii) is proved.

Suppose m Φ n and m < n. Then for every #, ieAffl implies xi Pm+ι(A)
while Aw c Pm+1(A). Thus Aw ΠA« = 0 and (iii) is proved.

Example 1. Let a = {0}, A = {α, {α}}. Then ae A but a ^ ( A ) . Also
{a}eAΠ f{A) but {α}^/?2(A). Thus A =A0 U Ax and the maximal transitive
subset of A is 0.

Example 2. Let a be as in Example 1 and A = {a, {{a}}}. Here
{{a}}kP(A) so A =A0.

Example 3. Let a be as in Example 1 and A = {α, {α}, {{«}}, . . .}. Then
aeA but akPiA), so α e Ao. { φ A n ^ A ) but {^/^(A), so {α}e Aλ.

oo

Similarly each {. . . {a\ . . . }ne An. Hence A = U A W , each An having only

one member. The maximal transitive subset of A is 0.
Example 4. Let A = ω or A = On (the class of all ordinal numbers) or

A= V (the class of all sets). In each case, A is transitive and thus is its
own maximal transitive subclass.

Example 5. Let A = {0, {{0}}}. Here, {{0}}iP(A), so {{0}}eAo. But {0}
is transitive and, since A is not transitive, {0} is the maximal transitive
subset of A. Thus A = Ao u B, where Ao = {{{0}}} and B = {0}.

oo

Lemma 7. Let A be a class and LJ AnΌ Bthe transitive decomposition of

A. The following statements are equivalent:
(i) A is transitive,

(ϋ) Ao = 0,
(iii) A = B.



182 W. R. BELDING, R. L. POSS and P. J. WELSH

Proof: (i)=#>(ii). If A is transitive then A c P(A), i.e.: A - P(A) = 0 . But,
by definitions of An and P°(A), we have A O C A - P(A). Hence we have that
Ao = φ and (i)=^>(ii) is proved.

(ii)=>(iii). If (ii) holds, then, clearly, A c P(A) which by induction
gives:

(1) for every i Ξ 0, P\A) c Pi+1(A).

Thus, due to (1) we can conclude that for every i ^ 0, A c /*'(A); i.e., that A
is the maximal transitive subclass of A. Therefore, this fact and the
hypotheses of the lemma imply that A = B and thus (ii)=^>(iii) is proved.

(iii)=^>(i). Assume (iii). Then, clearly, from the definition of B, and
Lemma 4, it follows that A is transitive. Thus we have shown that (iii)=#>(i)
and the proof of Lemma 7 is complete.

From the following theorem we can easily deduce our induction
principle C mentioned earlier.

Theorem 8. (Poss). Let A be a class. A necessary and sufficient condition
for the following induction principle to hold is that A be transitive.

Let <p(x) be a formula which does not contain the variable y; then

(y)[yeAh(x)(xey-* <p(x)) -> φ(y)] — {y)(yeA-* φ(y)).

Proof: We give two proofs of the necessity part of the theorem, the second
being an application of Theorem 6. Let us assume that formula φ(x) does
not contain the variable y and that A is a class. Now assume also that

(1) (y)[yeAA(x)(xey- φ(x)) — φ(y)]-* (y)(yeA-+ φ(y)).

We define the formula φ(x), which satisfies the assumptions, as follows:

(2) (x)(φ(x) = XSAΛXQ A).

Then, clearly, by (2),

(3) (y)(ye A*{x){xey-^ φ(x)) -> φ(y)) .

Hence, by (1), (3) and (2), we have ( y) ( ye A -* y c A), i.e., A is transitive.
Alternative indirect proof. Under the same assumptions including (1)

suppose that A is not transitive. Then, by Theorem 6 there is the transitive
decomposition of A:

oo

(4) A = U An U B.

Now, define a formula φ(x), which satisfies the assumptions as follows:

(5) (x) (φ(x) s (3m)(*€ A - U An)j

By (4), the supposition, and Lemma 7, Ao Φ 0. Hence there is a b such that
beAQ which, together with the fact that b eA and (5), yields that ~(φ(b)).
Therefore, we have ~{(y)(yeA -* φ(y))). Whence, by (1), there is a z such
that z eA , (x) (x ez -» φ(x)), and ~{φ{z)). By ( 5 ) , ^ c A. There fore z eP(A).
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Hence z kA - fi(A); i.e., zeA - Ao which, together with (5) yields φ(z).
Since this contradicts ~(φ(z)), our supposition is false and, therefore, we
now have that A is transitive, which completes the indirect proof.

We now show that it is sufficient that A be transitive for the induction
principle to hold. Assume that formula φ(x) does not contain the variable y
and that A is a class, and that

(6) A is transitive

(7) (y)(yeAΛ(x)(xey-^ φ(x))-> φ(y))

and, in addition, suppose that

(8) ~((y)(yeA -> φ(y))).

By (8), there is an a0 such that

(9) aoeA and ~{φ(a0)).

By (7) and (9) we may conclude that there is an aλ such that

(10) aλea0 and -(^(αO) .

It follows from (6), (9), and (10) that aλeA. Continuing this process, we
obtain a sequence {^t}n<ωoϊ elements of A such that, for n ^ 0, an+1ean. But
this is impossible. (See Lemma 2). Thus (8) is false and the desired result
holds. This completes the proof of Theorem 8.

Corollary 8.1 (C). If the formula φ(x) does not contain the variable y and A
is a transitive class, then:

(y) [y eA A (x) (x e y -> φ(x)) — φ(y)] -» (y)(yeA — φ(y)) .

We now discuss the relationship that C has to A and B. For our first
result we need to use a theorem due to Mostowski in which the following
definition occurs. Given a set S the e-relation limited to S, es, is defined
as follows:

(x) (y) (x es y = xeSλyeSAxey)

Mostowski, in [4], Theorem 3, has proved the following:

For every well-founded and internal relation R whose field is a set, there
is a set S such that es is an internal relation, R is isomorphic with es, and
Fid es is transitive.

In particular, there is a bisection/ between Fldfl and Fid es such that faRf b
if and only if a e b, for a, b in Fid e s.

Lemma 9. If we consider only well-founded relations R which are internal
and whose fields are sets, then A is a special case of C.

Proof: Let / be the bisection given by Mostowski's theorem between F\όR
and Fid e s . By the definition of e s, Fid es c S and, hence is a set. By
Mostowski's theorem, Fid es is transitive, thus we may use our C. Hence,
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(1) (y) (ye Fid es A (X) (xe y - φ(x)) - φ(y)) - (3;) (ye Fid es - φ(y))

for formulas φ(x) not containing the variable y. By the properties of/and

Fid es, we have that ye Fid es = f'ye Fid R, and ye Fid es Λ xe y -* xe Fid e s.

Hence by (1) and the fact that / is an isomorphism, we have

(2) (u) (u e Fid R A (V) (VRU — ψ(υ)) — φ(u)) -> (u) (u e Fid R -> φ(u)).

Thus A holds for the relation R with the given properties.

The following result shows that C is a special case of Montague's A.

(Note that A does not imply that it is necessary that the class A be

transitive for the induction principle to hold on it).

Lemma 10 (Poss). The induction principle C is a special case of

Montague's induction principle A.

Proof: It is sufficient to show that, for any transitive class A, there is a

relation R such that Montague's principle for R is the same as principle C

for R. Let A be a transitive class. Define the relation R as follows:

(1) (x)(y)(xRy = xey^yeA) .

By (1), it is clear that R is well-founded and we have that Fld# = A. Hence

we can apply Montague's principle A and we obtain for formulas φ(x) not

containing the variable y:

(2) (y) (ye F\ORΛ(X) (xRy - φ(x)) - φ(y)) -> (y) (ye Fldfl - φ(y)).

By (1) and (2), we have

(3) (y)(yeA*(x)(xey*yeA — φ(x)) — φ(y)) -* (y)(yeA-+ φ(y)).

But (3) is the same as

(4) (y)(ye A Λ (x)(xe y -+ φ(x)) -> φ(y)) -• (y)(yeA-+ φ(y)).

But since A is transitive, (7) gives us C; thus Lemma 10 has been proved.

Theorem 11. (Poss) In the field of GB set theory, Tar ski9 s induction

principle B is a special case of C.

Proof: We need only find a transitive class A such that, when C is applied

to A, we obtain B. As mentioned above in Example 4, V, the class of all

sets, is transitive. Applying C to V, we obtain:

(1) (y)[ye V Λ(x)(xey-> φ(x))-* φ(y)]-* {y)(yeV-> φ(y)) .

Since, in B, the quantification is over sets, (1) is precisely the same as B.

Theorem 12. In the field of GB set theory, transfinite induction is a special

case ofC.

Proof: As in the proof of Theorem 11, we need only find a transitive class

A such that when C is applied to A, we obtain the principle of transfinite

induction. As mentioned above, in Example 4, On, the class of all ordinal

numbers, is transitive. Applying C to On, we obtain:
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(1) If φ(x) is a formula not containing the variable y, then (y) [ye On Λ
(x) (x e y -> <?(#)) — <?(?)] — (y) (y e On — φ(y)).

But, for ordinal numbers the e-relation is the same as the < relation.
Thus (1) is the same as:

(2) If φ(x) is a formula not containing the variable y, then (y) [ye On A

(x) (x <y — φ{x)) — φ(y)] — (y) ( y eOn — φ(y)).

But (2) is itself the principle of transfinite induction and our theorem is
proved.

3. Transitivity and Supertransitivity. Putting 0 = 0, 1 = {θ}, 2 = 1 u {1} and
so on, we have that the only supertransitive integers are 0 , 1 , and 2. By a
simple check each of these integers is supertransitive. Since 2 e 3 and
{{0}}c 2 but {{0}}4 3 we see that 3 is not supertransitive. If n is any
integer such that n % 3 then 2 en and {{0}}c 2, but {{0}}e n as {{$}} is not an
integer. So n is not supertransitive.

Lemma 13. For every A, if A is a class then P(A) is a supertransitive
class.

Proof. Let aeP(A) and b c a. Then a is a set, a QA and b c a. Since b
also is a set, beP(A). Thus P{A) is a supertransitive class.

Note that 1 = P{0) and 2=/>(l). From Lemma 13 and the previous
discussion we conclude that 1 and 2 are the only integers which are power
sets of other sets. From its definition we know that an integer is a
transitive set each of whose elements are transitive. Since 3 is not
supertransitive we have that transitivity does not imply supertransitivity.
The following example shows that supertransitivity does not imply transi-
tivity. Let aφφ and put A = P({a, {a}}). By Lemma 13, A is super-
transitive. Since {α}eA but a^A we see that A is not transitive. Hence
supertransitivity and transitivity are independent properties in GB (and
ZF).

Lemma 14. If A is a supertransitive class and b is a member of A such
that there is no br in A such that b c b' then A - {b} is a supertransitive
class.

Proof: If c e A - {b} and d Qc then d Φ b by hypothesis, so d e A - {b} by the
supertransitivity of A.

In particular, since every set is a class, if A is a set then P{A) - {A} is
a supertransitive set. If card (A) = n > 1 then card (/'(A) - {A}) = 2n - 1, thus
showing that not all supertransitive sets are power sets.

For any ordinal m ~ ω we can construct a set which is supertransitive,
transitive and has cardinality m. Define a0 = 0 and inductively define
On+i = {an} Then the set {αjo %Λ < ω} has cardinality tf0 and the set
{a{\θ Ξ i < m - 1} has cardinality In. It is easy to check that these sets are
transitive and supertransitive.
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Lemma 15. If there exists a set of cardinality p then there exists a
super transitive set of cardinality p.

Proof: By the above comment we only need consider the case p > tf0.
Suppose A is a set such that card (A) = p. Then B = {{a}|ae A} U {0} is
supertransitive and has cardinality p. For, ifbeB and c c b then c = φ or
c = b. In either case ce B.

It is clear from the proof of Lemma 15 that if A is a class such that
φ e A and the cardinality of each element in A - {0} is 1 then A is super-
transitive. While this condition is sufficient for supertransitivity it is not
necessary as some power sets have elements of cardinality greater than 1
and power sets are supertransitive.

It is already known that if A is a class then there is a smallest
transitive class containing A and this latter class is called the transitive
closure of A, (cf. [1], p. 136). We prove a similar result for supertransi-
tive classes.

Lemma 16. For any class A there is a smallest supertransitive class
containing Ay the supertransitive closure of A.

Proof: If A is supertransitive then A is the supertransitive closure of A.
If A is not supertransitive define Co = A, and define inductively

Cn+1 = C w u L L c w {*!*<= a}.
oo

Put C = U cn. Then C is the smallest supertransitive class containing A.

For, suppose ae C and b c a. Then ae Cn for some n and be Cn+ι by
definition of Cw + i. Thus be C and C is supertransitive. Now suppose that
B is some supertransitive set containing A. We wish to show that C c B.
Let ce C. If ce A = Co then ce B. Otherwise there is an integer n such that
ce Cn - Cn_x. By definition of the C, there is a finite sequence { Q | 0 ^ i ̂
n - 1} such that Q e Q and c c cw_x c cw_2 c . . . c c0. Thus c c c0 while
c o 6ΰ as 5 D A = CO. Since J5 is supertransitive we have ceB and hence
C C ^ a s required.

4. Supertransitivity and Induction. We now present some results about
supertransitivity which are analagous to those in section 2 about transi-
tivity.

Lemma 17. (Belding) For every A, if A is a class then the following
statements are equivalent'.

(i) A is supertransitive,
(ii) (x)(xeA-*P(x)eP(A)),

(iii) (Λ:) (#e A -> />*'(#) e /*'(A) for every i Ξ 0),
(iv) £/zer£ zs α cZαss C swcfr ίftαί A = CΠ {ffl/Όe) eP{C)}.

Proof: Let A be a class. Then
(i)=>(ii). Noting that P(x) c A means P(x)eP(A), (ii) is simply a

restatement of (i).
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(ii)=^>(iii). Given (ii) suppose inductively that for a given i, (x) (xeA —>
Pt(x)e Pι(A)). From this we can deduce consecutively

(1) (x)(xeA ->P\x) QP^iA))
(2) (x)(xeA -*Pi+1(x) QP\A))
(3) (x) (x eA - Pi+1(x) e Pi+1(A)).

(2) follows from (1) by taking power sets of P\x) and P{~l{A). (iii) follows
by induction over i.

(iii)=Φ>(iv). Given (iii) we certainly have (x)(xeA —> P(x) eP{A)) and
A = AΠ {x\P(χ) e P(A)} which follows directly from A =A. (iv) is im-
mediate.

(iv)=^>(i). Assume (iv), then (x)(xeA -> x e C Λ P(X) C C) and (x)(xeA ->
(y) (y Q x —* y e C)). Since the relation c is transitive we have,

(4) (x) {xeA - (y)(y QX -^yeCAP(y) c C))
(5) (x)(xeA -> (y)(y Qx->yeA)).

(5) means that A is supertransitive as required. Lemma 17 is proved.
In the following decomposition results we shall use Bs and As

n to denote
supertransitive component classes to distinguish this case from the
transitive case.

Lemma 18. For every A, if A is a class then there is a unique maximal
transitive subclass of A.

Proof. If A is a class define Bs by

(1) Bs = A n{x\P(x)eP(A)}.

By Lemma 17, Bs is supertransitive. Suppose now that K is a super-
transitive subclass of A. We show that K c Bs. Since K <z A and K is
supertransitive we deduce P(K) c P{A), (x) (x e K — P(x) e P(K)), and

(2) (x)(xeK-> P(x)eP(A)ΛXeA).

(2) means that K c Bs as required, also proving uniqueness.

Theorem 19. //A is a class, Bs the maximal supertransitive subclass of A
and As

n= {x\P\x) e P\A) for Oίi ί n and Pn+ι(x) <f Pn+ι(A)}, then:
oo

(i) A = U An u J5S

« = 0

(ii) for every n z 0, Bsn As

n = 0
(iii) /or βz βr^ m αnί? n such that m Φ 0 Φ n and m > n> Am Π An = 0.

Proof Let A be a class. Clearly
OO

(l) U As

nn BSC A.

For every xeA, either (a) for every i ^0, P\x) e P\A) or (b) there is a
smallest integer n such that P\x) e P\A) for 0 s i s n and Pn+1(x) kPn+1(A).
If point (a) holds then xe Bs and if (b) holds then xe An. Thus
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CO

(2) A c U ^ U Bs.

oo

(1) and (2) yield A = LJ A% U Bs and (i) is proved.

By definition of A*, for every x, if xeAs

n then Pn+1{x) iPn+1(A), and
xi Bs. Thus for every n ^ 0, As

n Γ\ Bs = 0. Hence (ii) is proved.
Suppose m Φ n and m > n > 0. Then for every x, x e An implies

Pn+ι(x) $Pn+ι(A). Hence As

m Π As

n = 0 and (iii) is proved.
OO

Lemma 20. Let A be a class andKJ As

n U Bs the super transitive decomposi-

tion of A* The following statements are equivalent:

(i) A is super transitive,
(π) Ao

s = 0,
(iii) A = 5 s .

Proof: Let A be a class. Then
(i)=>(ii). Suppose (i). In particular by Lemma 17 we have (x) (xeA —»

P(x) e P{A)) and

(1) AS

O = A -{x\P(x)eP(A)}=0.

Thus (ii) holds.
(ii)=φ(iii). Suppose (ii). In particular (1) holds so that (x)(xeA->

P(x) e P(A)). By Lemma 17 and by definition of Bs we deduce consecutively,

(2) (x) (xeA-> P\x) e P\A) for every i % 0)
(3) (x)(xeA -> xeBs).

Since Bs c A be definition, (3) yields £ 5 = A and (iii) is proved.
(iii)=^>(i). Assume (iii), so A = Bs. By Lemma 18, A is supertransitive

so (i) holds. Lemma 20 is proved.
From the following theorem we shall deduce induction principle D,

mentioned in the introduction, as a corollary.

Theorem 21. (Belding) Let A be a class and U An U Bs the supertransitive
n-Ό

decomposition of A. A sufficient condition for the following induction state-
ment to hold is that A be supertransitive (AQ = φ). //cαrd(Ao) is finite then
the super transitivity of A (AS = 0) is a necessary condition.

Let φ(x) be a formula not containing the variable y. Let φ be such that for
every sequence \βn\n<ω in A such that an+1 c an for every n = 0, there is at
least one m such that φ{am) holds. Then

(y) [y e A Λ (X) (X C y — φ(χ)) - φ(y)] — (y)(yeA-+ φ(y)).

Proof: Assume that A is a class and let U An U Bs be the supertransitive

decomposition of A.
Sufficiency. Assume that A is supertransitive and
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(1) φ(x) is a formula not containing the variable y

(2) for every sequence {^n}n<ωin A such that e^+1 c an for every n Ξ 0, there

is at least one m such that φ(αw) holds.

We now proceed by an indirect method. Suppose the induction formula fails

for this A and φ. Thus

(3) (y){y*A*(x)(χCy->φ(x))-+φ{y))

(4) (ly)(yeAΛ~φ(y)).

Let a0 be such that aoeA and ~φ(a0). If α0 = 0 then there is no & such that

δ c α0. Thus (#) (# C <Z0 -» <ρ(#)). From (3) we deduce φ(a0), a contradiction.

So a0 Φ 0. From (3) and the supertransitivity of A we now deduce respec-

tively (Ix) (x c a0 A ~φ(x)) and

(5) (3ΛΓ) (Λ: C α0Λ~(̂ (Λ:)ΛΛ;e A) .

Let αx be such that αx c a0, ^φia^ and aλeA. Again we may deduce that

αi Φ 0 and

(6) (3ΛΓ) (ΛfC α l Λ ^ W Λ i e A ) .

Continuing in this manner we obtain a sequence {an}n<ω in A such that

α^+1 c an and ~φ(θn) for every w ̂  0. This contradicts (2). The following

statement now follows by contraposition on (3) and (4)

(7) (y)[yeA*(x)(xC. y— φ(x)) — φ(y)]-> (y){yeA — ̂ (3;)).

Thus proving the sufficiency part of the theorem.

Necessity. We assume the induction principle and that As

0 is a finite

class. That is, cαrd(Ao) < tf0

 a n d

(8) [(l)and(2)]=#>(7)

Under these hypotheses we shall construct a formula φ satisfying (1) and

(2) for which (8) fails if As

0 Φ 0 and by Lemma 20 deduce that A is super-

transitive. Define φ as

(9) φ(x) = xeA - A|.

Clearly (1) holds. Let {an}n<ω be a sequence in A such that an+1 c an for

every n = 0. Since cαrd(Ao) is finite there is some m such that am^A%.

Thus ameA - As

0 and φ{am) holds. So (2) holds. Now suppose AQ Φ 0. Then

for some b, beAs

0 and consequently ~φ(b). Thus (4) holds. It remains to

show that (3) holds, for then we will have contradicted (8). Suppose

yeAΛ (X) (X C y —+ φ{x)). Then by the definitions of φ and AS

Q we have

consecutively

yeAΛ(x)(xQy-*xeA)

yeA*(x)(xO y -> φ(χ)) -* p{y) c A

3;eA A(X) (X C 3; -» <p(#)) -• y ^ A g

^ A Λ M ( ^ C ^ ςp(^)) -> yeA - As

0

y e A Λ (#) (A: C y -» <^(^)) -* ^ ( y ) .
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(3) follows by generalization as required. The necessity part of the
theorem is now proved.
Remark: The condition that φ hold on at least one member of any sequence
{θn}n<ωin A such that an+1 c an for every n Ξ 0 is equivalent to the condition
that φ hold for all but a finite number of elements in any such sequence
in A.

Corollary 21.1. (D) Let A be a supertransitίve class and let φ{x) be a
formula not containing the variable y. If φ has the property that for every
sequence of sets {a^n<ω in A such that an+ί c an for every n = 0, there is at
least one integer m such that φ{am) holds then

(y)(yeAA(x)(xc y— φ(x)) -> φ(y)) — (y)(yeA— φ(y)).

Proof: The corollary follows from the sufficiency part of Theorem 21.

In a future paper Belding will present further results for fields of
relations; including decomposition formulas, metrics, extended metrics,
and another sufficient condition for Montague's induction principle.

We wish to thank Professor B. Sobociήski for his suggestions r e -
garding the format of this paper.
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