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NON-RECURSIVENESS OF THE SET OF FINITE SETS OF
EQUATIONS WHOSE THEORIES ARE ONE BASED

DOUGLAS D. SMITH

Among the decision problems for finite sets of equations listed by
A. Tarski [1] are six related problems, five of which were solved by
Peter Perkins [2], The solution for the one equation case of the remaining
problem S3, given below, follows closely the method (and notation) of
Perkins, reducing the problem to the (unsolvable) word problem of a
semigroup, but making a modification in a set of equations used by Perkins
and introducing a transformation on terms which allows us to show that the
equations do not "mix" (in the sense indicated by our lemma below). This
property of "not mixing'9 was suggested by the work of W. E. Singletary on
partial propositional calculi [3].

We assume the basic notions from [1]. Thus, for a set of equations E,
the equational theory of E, Th(E), is one based iff there exists a single
equation e such that Th(̂ ) = Th(E).

Theorem*. The set of finite sets of equations whose equational theories are
one based is not recursive. Specifically, there is no effective method for
determining whether or not the equational theory of an arbitrary finite set
of equations in two binary operation symbols and two constants is one
based.

Proof: Let β;{a,b; U{ = 7 t , l ^ z ^ w j b e a finite presentation of a semi-
group with unsolvable word problem. Let S+ denote an equational language
having one binary operation +. To each β-word (i.e., word in a and b) we
make correspond a term Ίsl{x,y) in the language £ + , as follows:

if W is α, W(x,y) is (y + x) + x
if W is b, W(x,y) is x + (x + y)
if W is αW1? W(#,;y) is (Wi(#,3θ + x) + x
if W is δWi, W(x,y) is x + (x + Wi(x,:y)).

*In a letter received after our proof was completed, George F. McNulty indi-
cates that he has a result from which ours follows.
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Observe that for each /3-word W, the variables occurring in W(x,y) are
precisely x and y. E(β) is defined to be the set {£/*•(#, y) = Vi(x, y)\i ^ n} of
equations of £+. Perkins showed that for any pair UV of β-words,

{U. = γ. I i < n}\-u = V iff E(j3) hU(x, y) = V(x9 y).

Let £ be a language having two binary operation symbols + and ., and
two constants, cx and c2. For each pair U, Fof β-words we define a set of
equations Pi/Fin the language £. PC/F consists of E(β) together with

U(cl9 c2) x = x
V{cu c2) •* = V(Cl, c2).

It will be shown that for each U, V, Ίh(PUV) is one based iff
E(β)\-U(x,y) = V(x,y). This, with Perkins' result above and the assumption
that β has an unsolvable word problem, establishes the theorem.

Part 1. If £{β)\-U{xy y) = V(x, y) then PUVt-U(cl9 c2) = V(cu c2). Therefore
PUV\-U(cl9 c2) x= V(clf c2) x, so PUV\-x= V(cl9 c2), hence PUVhx = y.
Since PUV is inconsistent, Ίh(PUV) is one based. We conclude that if
E(β) \-U(x9 y) = V(x, y)9 then Ίh(PUV) is one based.

Part 2. Assume now that not E(/3) ̂ -U{x, y) = V(x, y). It must be shown that
Ίh(PUV) is not one based. We first make two observations.

(a) If E is any set of equations, and for some term t not identically
x9 x = te Th(E), then for some term s there is an equation of the form y = s
(or s = y) e E.

(b) Let % be (A, φ) = Fω/E(β), the relatively free algebra on ω genera-
tors determined by E(β). Since U(x, y) = V(x, y) does not hold in $ί, there
exist al9 a2, a3, α4 in A such that a3 = U(alf a2) Φ V{aly a2) = a4. If $ί is
expanded to 51 = (A, ®, Θ, al9 a^ by defining ® as in 21, a3 Θ a = a for all
aeA, a4Θa = α4 for all aeA, and Θ arbitrarily otherwise, then 1 is a
model of Pί/Fand the sentence U(cl9 c2) Φ F(c1? c2), so that PUV is con-
sistent and not PUVhU(cu c2) = V(clf c2).

Definition. With each term t in the language £ we associate a term t(UV)
(depending on the pair U, V of β-words). The transformation sending t to
t(UV) is defined inductively as follows (where t(WV) abbreviates U{UV): if
ί is a variable or a constant, t(UV) is t; if £ is a sum tx + t2, t(UV) is
t(lUV) + t(2UV); if t is a product tx - t2 and

(i) Pί/FKx = U(cl9 c2), then ί(ί/F) is ί(2Z7F)
(ii) PUVhh = 7(d, c2), then ί(j77) is F(c1? c2)

(iii) otherwise, t(UV) is £(1C/F) t{2UV).

By (b) and the assumption that not E(β)\-U(x,y) = V(x,y), conditions (i) and
(ii) are mutually exclusive.

Properties of the transformation. The proof of each of the properties below
is by induction on the number, n, of operation symbols in t. Only the proof
of (4) is given; it appears with the proof of our lemma following the proof
of the theorem.
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(1) PUV\-t = t(UV).
(2) If t has no occurrence of , t(UV) = t.
(3) Let t have no occurrence of , and for terms rl9 r2, . . . , rn and
variables xl9 x2, . . . , xn let t\rι/xl9 . . . , rn/xn] denote the simultaneous
substitution of rl9 . . . , rn for xl9 . . . , xn respectively. Then

t[rjxu . . . , rn/xn] (UV) = t[r(lUV)/x19 . . . , r(nUV)/xn].

(4) If R c PUV9 s, t, p and q are terms, s a subterm of £, # the result of
replacing one occurrence of s by p in t, and R \-s(UV) = p(UV), then
Ry-t(UV) = q(UV).

Lemma. If PUVy-s = ί, then E(j3) \-s{UV) = ί(ί/7) (and conversely).

Suppose now that ΊU(PUV) is one based. Then by (a) and the fact that
U(cι, c2) - x = x ePUV, the base equation has the form y = r, and since
PUV\-y = r, we have by the lemma that E(|3) \-y(UV) = r{UV), i.e., E(j3) γ-y =
r(UV). Now by (a) and the fact that none of Ui(x,y), Vi(x,y) consist of a
single variable, r(UV) =y. It is easily verified from the definition of the
transformation that either y = r, or, for some keω, r is of the form
rx - r2 - . . . r& y (right association) where for i ^ k> P\JV\-Ti = U(cι, c2).

Therefore y = x y \-y = r. But V(cl9 c2) - x = V(cl9 c2) is not derivable
from y =x y. (In fact, the equations in E(β) are also not derivable from
y=χ.y.) Hence the assumptions that not E(/3) \-U(x,y) = V(x,y) and
Th(PL/F) is one based lead to a contradiction, proving our theorem.

Proof of (4). For n = 0, t is a constant or a variable and t is s, hence
t(UV) =s(UV) =t =s and /> is q so that #177) Ξ q(UV); therefore if
R \-s(UV) =p(UV), then R \~t(UV) = q(UV).

For n > 0, assume first t is ^ + £2. Then if s is t, the proof is as in
the case n = 0. Otherwise # is q1 + q2, where, say, the occurrence of s in t
to be replaced by p is a subterm of pi and the result of this replacement is
q{(i = 1 or 2). If R\-s(UV) = p(UV) then by hypothesis of induction
R\-t(ίUV) =q(iUV) and for tj (j = 2 or 1), the subterm of t not affected by
the replacement, #; is tj, hence also R \-t(jUV) = q(jUV); therefore we have
\)0thR\-t(lUV) =q(WV) and R Hi(2177) =^(2177). Hence R \-r(WV) + t{2UV) =
q(lUV) + q(2UV); that is R hi(177) = tf(Z77).

Assume now that ί is tγ £2. Then if s is t, the proof is as in the case
n= 0. Otherwise # is q1 qz, where, say, the occurrence of s in t to be
replaced by p is a subterm of tS = 1 or 2) and q{ is the result. If
R hs(UV) = />(C77) then by hypothesis of induction R h-t(iUV) = q(iUV), and for
iy 0'= 2 or 1), the subterm of t not affected by the replacement, tj is qj9 so
that also fl \-kjUV) = q(jUV); therefore we have both R ht(WV) = q(WV) and
Rγ-t(2UV) = q(2UV). Now by property (1) and our assumption R c PUV, we
have also PUVV-tγ = qx. Therefore either (i) PUV\-tι = V{cl9 c2), hence
PUVMi = U(cl9 c2), so we have not only Rht(2UV) = q(2UV) but both t(UV) =
ί(2ί77) and^(C77)Ξ^(2t77), hence RH(UV) = q(UV); or (ii) PC77hί1= 7(ci, c2),
hence PC77h^1 = V(cl9 c2), so we have t(UV) = 7(c1? c2) = q(UV)9 therefore
R\-t{UV) = q(UV); or, finally, (iii) neither P£77hfi = U(cu c2) nor Pt77hi1 =
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V(ci> cz)> i n which case neither PUV^-qι = U(cx, c2) nor PUV\-qι = V(c1} c2),
so we have both t(UV) = t(lUV) . t(2UV) and q(UV) = q(lUV) q(2UV) and
since R\-t(lUV) = q(WV) and Rht(2UV), = q(2UV), R\-t(UV) = q{UV).

Proof of the lemma. We make use of a characterization of derivability to
be found (for the case of a language with only one binary operation) in
Perkins' paper. We first define four classes of operators which map terms
onto terms:

hw(wf) = w + wr Rw(w') = wr + w
•Cwiw') = w w' <Rw{wf) = wr w.

The class of (left-right) operators is the least class containing the identity
operator and Lw, Rw, Jϋw, #w for all terms w, and closed under composition.
Now PUVhs = t iff there exists a sequence Γ, s* = TiU i = 1, . . . , n such
that (i) each TJ is a (left-right) operator, (ii) each s, = ί, or fe = sf is a
substitution instance of an equation in PUV or else s, is ί, , (iii) ΓjSi is s,
(iv) Γwίw is t, and (v) Γ,̂ - is Ti+1si+1 for z ̂  n - 1.

We assume that PUV\-s = ί, and that Γ S; = Γ̂  ̂  i ^ n is a sequence
described above. It will be enough to show that for each i^ n, E(β) hs(iUV) =
t(WV); indeed, by property (4), with E(β) for R, we will then have, for each
i^n, E(β)v-(TiSi)(UV) = (Titi)(UV), hence E(β)v-s(UV) = t(UV).

If Si is ti then s(WV) = t(iUV) and, trivially, E(β)\-s(iUV) =t(ίUV).
Otherwise, let p = q be an equation in PUV such that s{ = ί, (or ί, = sf ) is a
substitution instance of p = q. If p = q is ί/(c1? c2) ΛΓ = x, then for some
term r, s, = fe (or t{ = sf ) is ί/(c1? c2) r = r, so s(ιW) = ί(zt/7) = r(UV) and
therefore E(β) hs(ίί/V) =t(iUV). Ίί p = q is V(cu c2) - x = V(cl9 c2), then for
some term r, s, = ί, (or ^ = s, ) is y(c1? c2), so (using property (2)) s(iUV) =
t(WV) = ̂ (c!, ca) and therefore E(β) hs(zί/F) = f(*Z7V). Finally, iίp = qe E(β)
then s, = ί, (orί/ = s{) is p\rjx, rjy\ = ̂ [n/jv, r2/j;] for some terms rx, rz.
By substitution in p = q, E(β)\-p[r(lUV)/x, r(2UV)/y] = q[r(lUV)/x, r(2UV)/y]
and since the symbol does not occur in p = q, we have, by property (3) that
E(β)v-p[r1/x9 rJyψV) = q\rjx, rjy\ (UV), i.e., E(β) \-s(iUV) = t{iUV).
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