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ORDINAL THEORY IN A CONSERVATIVE EXTENSION
OF PREDICATE CALCULUS

JOHN H. HARRIS

Let Pf denote the class-set theory which consists of just axioms Al,
A2, A3 and theorem M3 (restricted to case n = 1) of [2]. Simplifying a
little, P' is thus basically a first order theory with equality having two
sorts of variables, class variables and set variables, and satisfying an
axiom of extensionality and an axiom schema which says the following: for
any wff which contains no bound class variables there is a class X of all
sets v satisfying φ; in symbols

IX \fv [υ eX+-*φ(υ)].

(As usual for class and set variables we use capital and small letters re-
spectively.) By [3] theory Pf is a conservative extension of P9 the first-
order predicate calculus with equality where the only non-logical symbol is
" e " and the individual variables are the set variables.

The purpose of this paper is to show that a surprisingly large portion
of the theory of Von-Neumann ordinals and natural numbers can be de-
veloped in P\ Such information could be useful in the investigation of any
formulation of set theory not using the unrestricted subset axiom

VYVx [YQx — FeV]

which involves unrestricted quantification over class variables in an essen-
tial way. An example of such a restricted set theory would be a formaliza-
tion of the set theoretical reasoning used in predicative analysis; cf. [1].
By [3] our results are equally valid for a corresponding conservative class
extension Kr of any first-order theory K. In such a case one would have in
general three types of individual variables: K, set, and class variables.

We say R is a (strict) linear-ordering of X (abbrev.: LoR(X)) if and
only if R is irreflexive, connected and transitive over X; in symbols

lrrR(X), i.e., (Vu)x π (uRu)
ConR(X), i.e., (Vu,υ)x [uRυ v u = υ v vRu]

TrR(X), i.e., (Vu,v, w)χ [uRv . vRw -+uRw]
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We now define two notions of well-ordering: (i) R is a (strict) well-
ordeving of class X and (ii) R is a (strict) strong well-order ing oi X. In
symbols we have respectively

(i) WoRW ^H> LOR(X). VV [ φ / Q X - j has an R -first element]
(ii) Wo* 0 0 ++U>RQC). VY[φ? YQX-+ Y has an/?-first element]

Comment: Usually "iiRv" is an abbreviation for "(u,v)tR". Now for any
two sets x,y the classes

and

are well-defined. However, without axiom A4 (the pairs axiom) we can't
show U,}'}eV, hence we can't even prove that (x,y) has the ordered pair
property. Thus we use "uRv" only suggestively. Actually we will be in-
terested in specific relations R, viz.,

E = [bc,y) \ x e y ]

a n d

S = {(x,y) \x cy]

Thus "uίv " and "uSυ" can be considered as an abbreviation of (<ueυ" and
"ucυ11 if we don't have axiom A4 or ζt(u,v)e E" and "(u,v)e S" if we do.

When working in a definitional extension P* of Pf we say that a defined
predicate H is P'-normal if and only if there is a wff φoi Pf containing no
bound class variables such that in P*

h-[ff(v,X)«-»<p(v,X)]

where vectors v and X represent all the free set and class variables re-
spectively appearing in H. Likewise one can define the notions of a P'-
normal function letter, constant, or restricted variable; cf. [2; p. 12].
Unless stated otherwise, all new defined symbols are P'-normal and all
proofs are carried out in (a definitional extension of) P'. We must empha-
size here that Wo/? is a P'-normal predicate whereas Wo£ isn't. (Of course
Wo£ is T-normal in any extension Tof P' satisfying the unrestricted subset
property.)

We say that set x satisfies the simple subset property (abbrev.: Sub(x))
if and only if

Vy[xΓ)yeV .x - y e V ]

We then define On, the class of ordinals as follows:

#€ On «-» Trans(x). WoE(x). Sub(x). (Vy)x Sub( y)

where as usual

Trans (X)«-» VW[M C X-^ueX],
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Variables restricted to the class On will be denoted by small Greek letters.
The definition one usually sees, viz.

xe On «-> Trans(#). Wo*(#),

isn't P'-normal. However, in any extension T of P' satisfying the unre-
stricted subset property or even a weaker version

vy V α [ F C α - FeV],

the two definitions are equivalent and T-normal.

Theorem 1. lrrE(On), i.e., Va[a^a].

Theorem 2. Trαns(θn), i.e., VΛ1 [X ea—*x €θn]; in words> every element of
an ordinal is an ordinal.

Proof: Clearly xea=ΦxQa=Φ WoE(#). Now we use the fourth condition in
definition of "xeOn" to show* ea=φSub(x) and uexea =$>uea =#> Sub(w). To
show Trans (x) consider any uevexea. Then u,v,xea by Trans (a). Also uίr
andt>E# implies uίx by TrE(α), i.e., uex, as desired.

Corollary 3. a = {β I βea}; in words, each ordinal equals the set of
e-smaller ordinals.

Theorem 4. Transit) y <za —> yea.

Proof: Assume yea. Now we use the condition Sub(a) to show that a-y is
a set, in fact a non-empty subset of a. Hence by WoE(α), a-y has an E -first
element (which must be an ordinal by 2), call it β. We claim that y = β.

To show yQβy consider any uey. Then uey c a, hence #£α. Likewise
βea. Hence:

βeuv β = uvueβ

by ConE(α). If /3ez*, then /3e ?/€>>, hence j3e>' by Trans(y); if )3=M, then
/3 = we^, hence /3e^; in either case βey, contradicting choice of βea-y.
Thus the only possibility left is ueβ, as desired.

To show βQy, consider any ueβ. Then ueβea, hence uea. If uίy, then
weα-3^ and ueβ, contradicting the choice of β as the E-first element of a-y.
Thus uey, as desired.

Corollary 5. αcβ<->αeβ.

Theorem 6. a<zβ^a = β¥βca where "#' denotes "exclusive or.7'

Proof: Clearly at most one of these holds. Assume none hold, i.e., a^β
and βtjLa, hence αΓΊβcα and aΠβoβ. Now af)β is a set since Sub(α), hence
αΠ/3 is a transitive proper subset of α, hence aC\βea by 4. Likewise we
have aOβeβ. Thus αΠi3eαΠβ where aΠβea, contradicting lrrE(α).

Corollary 7. aeβ4 a = βlβta.

Theorem. 8. WoE(θn)

Proof: We have lrrE(On) and ConE(θn) by 1 and 7 respectively. Also we
have TrE(θn) since aeβ and βey implies aeγ. Consider any φ ^ yQOn.
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Choose any aey. (A single choice does not require an axiom of choice.) If
a is the E -first element of y, we are through. If not, then aC\y ̂  φ. Now we
use the condition Sub(α) to show that aΠy is a set. Thus aOy has an E -first
element, say α0, since WoE(α). Then we easily show that a0 is the E -first
element of y.

Corollary 9. Wos(θn)

When we speak of an ordering among the ordinals we of course mean
the natural ordering, denoted by < 0: in symbols,

a < 0 β<r-*aeβ<r->a(zβ .

We say that α is a successor ordinal if and only if a immediately
follows some β. We say that a is a limit ordinal if and only if a ^ φ and for
any β less than a we can always find another ordinal between β and a. In
symbols we have, respectively,

Suc(a)*^lβ[β<oa. i3y[/3<or<oα]]
Um{a)<r^φϊ a. Vβ[β <oa - 3y [β<oy<o<x]]

Theorem 10. Suc(α)<-» \ja <za

Proof: We have Suc(α)

Φ=^>3β[βea. Ί 3y [βe γea]]

<==>1β[βea.βtί\Ja]

<—> [Ja<za (since \JaQa by Trans (a)).

Theorem 11. Lim(a)<-»Ua = a ^ φ

Proof: We have Lim (a)

φ φ α / φ . Vβ[βea -* lγ[βeγea]]

<#=->α^φ. Vβ[βea -* βe\Ja]

<—>α 7̂  φ . flC \ja

<—>α / φ .vJo' = « (since UoQcr by Trans (a)).

Theorem 12. a = φ^ Sue (a) ^ Lim (a).

Proof: Trans (a) = φ l j o Q a

=^Uaca^ [(a = φ\Ja = a) ̂  (a^0.U« = a)]
=^> Sue (a) ̂  a = φf^ Lim (a) .

Let us take a little closer look at successor ordinals. Let us say that
β is a successor of a if and only if

a< β. Ίlγ[a< γ< β].
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Clearly, if Suc(/3), then β is the successor of a unique ordinal α. However
given any ordinal a we can't prove i n P ' that there is some β which is the
successor of a. But we can say a few things. L e t Z + = Xu{X}.

Theorem 13. β is the successor of α«-»/3 = α+.

Proof: If a < β we have aeβ, hence oC]3, hence αulα! Q β. Conversely if

y e /3, then y < α since π(α < y < /3), hence y e α o r y = α, hence > eaU{α}; thus

β c αuίαh

If /3 = αulαl, then αe/3, hence a < β. Also if y < /3, then ye/3, hence yea

or y = a, hence y < a, hence -ι(a < y < /3).

Corollary 14. Suc(/3) -• /3 = α+ ;W?ere α = U/3

Proof: Clearly β - α+ for some unique α, by 13. It is straightforward to

show that a = \jβ.

Corollary 15. U/3 e On for any ordinal β.

Proof: If β = φ or Lim(/3), then U/3 = )8, hence U/3eOn. If Suc(/3), then U/3 =

α where a+ = β, hence U/3eOn.
Let us now define the class ω of natural numbers in the usual fashion:

x e K i ^ f e = Φ v Sue Or)) . ^ e θ n
x e co <-> x e K i . (Vz*)x ueK\.

Let /, '̂, k, I, m, n denote integers. For most of the propositions 1 - 1 5
there are corresponding propositions which one obtains by replacing
ordinals and the class On by integers and the class ω. Denote these cor-
responding propositions by 1̂  - 15ω. Now l ω and 4ω - 10ω follow immedi-
ately from 1 and 4 - 1 0 respectively since cυCOn. To prove 2ω, i.e.,
Trans(ω), consider any xen. We need to show*eω. But clearly xeK\ and

uexen=$>ΐien (by 2) =^z<eK, .

Of course 3ω follows from 2ω. By definition of K, and ω we have that none
of natural numbers are limit ordinals hence l l ω is vacuously true and
pointless. Corresponding to 12 we have the following:

Theorem 12ω. Vn[n = φ 4 Suc(w)].

Finally 13ω - 15ω follow easily from 13 - 15.
There are many forms of induction theorems we can prove.

Theorem 16. Assume X is a transitive class of ordinals. Then Vx[(Vβ)χ[β
Qx - βex] -* X Qx)

Proof: Assume we have (V/3)x[/3 c x —> βex], yet X^x. Choose any
βe X - x. If β is the least ordinal inX-x, let β0 = β. Otherwise there are
ordinals less than β in X-x, i.e., (βC\X) -x ί φ. But β OX= β by Trans (X).
Hence β - x φφ. But β - x is a set by Sub(/3), hence β - x has a first ele-
ment, say )30 which clearly is also the least ordinal in X - x. In any case
we can say that X - x has an E-first element βθ9 hence βo^x. But then
βoex by hypothesis; contradiction.
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Corollary 17ω. Vx [Vn [n Q x — n ex ] —• ω Q x ]

Theorem 18ω. Vx[0f*. Vn[nex — n^ ex] — α><Ξ#].

Proof-. Assume co$x. As in 16, we can show that ω -x has a unique first
element, say n0. Now n0 Φ 0 since 0e#. Hence Suc(w0) by 12ω, hence n0 = wίί
for some unique nιoeω by 14ω. By definition of w0, we must have moex,
hence mo =wo€^ by hypothesis, a contradiction.

Of course to show the actual existence of an ordinal, natural number of
any set requires more axioms of set theory. In P' we can show the exis-
tence of at least one proper class, viz. Russell's class

R = {xlxfa}.

To show class On is proper seems to require the additional weak axiom

Vx,y [xΠyeV],
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