ORDINAL THEORY IN A CONSERVATIVE EXTENSION OF PREDICATE CALCULUS

JOHN H. HARRIS

Let P^{\prime} denote the class-set theory which consists of just axioms A1, A2, A3 and theorem M3 (restricted to case $n=1$) of [2]. Simplifying a little, P^{\prime} is thus basically a first order theory with equality having two sorts of variables, class variables and set variables, and satisfying an axiom of extensionality and an axiom schema which says the following: for any wff which contains no bound class variables there is a class X of all sets v satisfying φ; in symbols

$$
\exists X \forall v[v \in X \leftrightarrow \varphi(v)] .
$$

(As usual for class and set variables we use capital and small letters respectively.) By [3] theory P^{\prime} is a conservative extension of P, the firstorder predicate calculus with equality where the only non-logical symbol is " ϵ " and the individual variables are the set variables.

The purpose of this paper is to show that a surprisingly large portion of the theory of Von-Neumann ordinals and natural numbers can be developed in P^{\prime}. Such information could be useful in the investigation of any formulation of set theory not using the unrestricted subset axiom

$$
\forall Y \forall x[Y \subseteq x \rightarrow Y \in \vee]
$$

which involves unrestricted quantification over class variables in an essential way. An example of such a restricted set theory would be a formalization of the set theoretical reasoning used in predicative analysis; cf. [1]. By [3] our results are equally valid for a corresponding conservative class extension K^{\prime} of any first-order theory K. In such a case one would have in general three types of individual variables: K, set, and class variables.

We say R is a (strict) linear-ordering of X (abbrev.: $\left\llcorner^{R} \circ_{R}(X)\right.$) if and only if R is irreflexive, connected and transitive over X; in symbols

$$
\begin{aligned}
& \left.\operatorname{lrr}_{R}(X) \text {, i.e., }(\forall u)_{X}\right\urcorner(u R u) \\
& \operatorname{Con}_{R}(X) \text {, i.e., }(\forall u, v)_{X}[u R v \vee u=v \vee v R u] \\
& \operatorname{Tr}_{R}(X) \text {, i.e., }(\forall u, v, w)_{X}[u R v \cdot v R w \rightarrow u R w]
\end{aligned}
$$

We now define two notions of well-ordering: (i) R is a (strict) uell,rrdering of class X and (ii) R is a (strict) strong well-ordering of X. In symbols we have respectively
(i) $\mathrm{Wo}_{R}(X) \leftrightarrow \mathrm{Lo}_{R}(X) . \forall y[\phi \neq y \subseteq X \rightarrow y$ has an R-first element $]$
(ii) $\mathrm{Wo}_{R}^{*}(X) \leftrightarrow \mathrm{Lo}_{R}(X) . \forall Y[\phi \neq Y \subseteq X \rightarrow Y$ has an R-first element $]$

C'omment: Usually " $u R v$ "' is an abbreviation for " $\langle u, v\rangle \in R$ ". Now for any two sets x, y the classes

$$
\{x, y\}={ }_{D_{l}}\{u \mid u=x \vee u=y\}
$$

and

$$
\langle x, y\rangle=D_{f f}\{\{x\},\{x, y\}\}
$$

are well-defined. However, without axiom A4 (the pairs axiom) we can't show $\{x, y\} \in \vee$, hence we can't even prove that $\left\langle x, y^{\prime}\right\rangle$ has the ordered pair property. Thus we use " $u R v$ " only suggestively. Actually we will be interested in specific relations R, viz.,

$$
\mathrm{E}=\{\langle x, y\rangle \mid x \in y\}
$$

and

$$
S=\{\langle x, y\rangle \mid x \subset y\}
$$

Thus ' $u \mathrm{E} v$ '" and ' $u S v$ '" can be considered as an abbreviation of ' $u \in v$ '' and " $u \subset v$ " if we don't have axiom A 4 or " $\langle u, v\rangle \in \mathrm{E}$ " and " $\langle u, v\rangle \in \mathrm{S}$ " if we do.

When working in a definitional extension P^{*} of P^{\prime} we say that a defined predicate H is P^{\prime}-normal if and only if there is a wff φ of P^{\prime} containing no bound class variables such that in P^{*}

$$
\vdash[H(\mathbf{v}, \mathbf{X}) \leftrightarrow \varphi(\mathbf{v}, \mathbf{X})]
$$

where vectors v and X represent all the free set and class variables respectively appearing in H. Likewise one can define the notions of a P^{\prime} normal function letter, constant, or restricted variable; cf. [2; p. 12]. Unless stated otherwise, all new defined symbols are P^{\prime}-normal and all proofs are carried out in (a definitional extension of) P^{\prime}. We must emphasize here that Wor is a P^{\prime}-normal predicate whereas Wo_{R}^{*} isn't. (Of course $\mathrm{Wo}_{\mathrm{R}}^{*}$ is T-normal in any extension T of P^{\prime} satisfying the unrestricted subset property.)

We say that set x satisfies the simple subset property (abbrev.: Sub (x)) if and only if

$$
\forall y\left[x \cap y \in \vee . x-y^{\prime} \in \vee\right]
$$

We then define $O n$, the class of ordinals as follows:

$$
x \in \operatorname{On}_{n} \leftrightarrow \operatorname{Trans}(x) . \mathrm{Wo}_{\mathrm{E}}(x) \cdot \operatorname{Sub}(x) \cdot(\forall y)_{x} \operatorname{Sub}(y)
$$

where as usual

$$
\operatorname{Trans}(X) \leftrightarrow \forall u[u \subseteq X \rightarrow u \in X] .
$$

Variables restricted to the class On will be denoted by small Greek letters. The definition one usually sees, viz.
$x \in \mathrm{On} \longleftrightarrow \operatorname{Trans}(x)$. Wo $_{\mathrm{E}}^{*}(x)$,
isn't P^{\prime}-normal. However, in any extension T of P^{\prime} satisfying the unrestricted subset property or even a weaker version

$$
\forall Y \forall \alpha[Y \subseteq \alpha \rightarrow Y \epsilon \vee]
$$

the two definitions are equivalent and T-normal.
Theorem 1. $\operatorname{lrr}_{\mathrm{E}}(\mathrm{On})$, i.e., $\forall \alpha\left[\alpha \not{ }^{\prime} \alpha\right]$.
Theorem 2. Trans(On), i.e., $\forall x\left[x \in \alpha \rightarrow x \in O_{n}\right]$; in words, every element of an ordinal is an ordinal.

Proof: Clearly $x \in \alpha \Rightarrow x \subseteq \alpha \Rightarrow$ Wo $_{E}(x)$. Now we use the fourth condition in definition of ' $x \in$ On'" to show $x \in \alpha \Rightarrow \operatorname{Sub}(x)$ and $u \in x \in \alpha \Rightarrow u \in \alpha \Longrightarrow \operatorname{Sub}(u)$. To show $\operatorname{Trans}(x)$ consider any $u \in v \in x \in \alpha$. Then $u, v, x \in \alpha$ by Trans (α). Also $u \mathrm{E} v$ and $v E x$ implies $u \mathrm{E} x$ by $\operatorname{Tr}_{\mathrm{E}}(\alpha)$, i.e., $u \in x$, as desired.
Corollary 3. $\alpha=\{\beta \mid \beta \in \alpha\}$; in words, each ordinal equals the set of ϵ-smaller ordinals.

Theorem 4. Trans (y) $\cdot y \subset \alpha \rightarrow y \in \alpha$.
Proof: Assume $y \subset \alpha$. Now we use the condition $\operatorname{Sub}(\alpha)$ to show that $\alpha-y$ is a set, in fact a non-empty subset of α. Hence by $W_{O_{E}}(\alpha), \alpha-y$ has an E-first element (which must be an ordinal by 2), call it β. We claim that $y=\beta$.

To show $y \subseteq \beta$, consider any $u \in y$. Then $u \in y \subset \alpha$, hence $u \in \alpha$. Likewise $\beta \in \alpha$. Hence:

$$
\beta \in u \vee \beta=u \vee u \in \beta
$$

by $\operatorname{Con}_{\mathrm{E}}(\alpha)$. If $\beta \in u$, then $\beta \in u \in y$, hence $\beta \in y$ by $\operatorname{Trans}(y)$; if $\beta=u$, then $\beta=u \epsilon y$, hence $\beta \epsilon y$; in either case $\beta \epsilon y$, contradicting choice of $\beta \in \alpha-y$. Thus the only possibility left is $u \in \beta$, as desired.

To show $\beta \subseteq y$, consider any $u \in \beta$. Then $u \in \beta \in \alpha$, hence $u \in \alpha$. If $u \notin y$, then $u \in \alpha-y$ and $u \in \beta$, contradicting the choice of β as the E-first element of $\alpha-y$. Thus $u \in y$, as desired.

Corollary 5. $\alpha \subset \beta \leftrightarrow \alpha \in \beta$.
Theorem 6. $\alpha \subset \beta \not \equiv \alpha=\beta \not \equiv \beta \subset \alpha$ where " \neq " denotes "exclusive or."
Proof: Clearly at most one of these holds. Assume none hold, i.e., $\alpha \not \ddagger \beta$ and $\beta \nsubseteq \alpha$, hence $\alpha \cap \beta \subset \alpha$ and $\alpha \cap \beta \subset \beta$. Now $\alpha \cap \beta$ is a set since Sub(α), hence $\alpha \cap \beta$ is a transitive proper subset of α, hence $\alpha \cap \beta \in \alpha$ by 4. Likewise we have $\alpha \cap \beta \in \beta$. Thus $\alpha \cap \beta \in \alpha \cap \beta$ where $\alpha \cap \beta \in \alpha$, contradicting $\operatorname{lrf}_{\mathrm{E}}(\alpha)$.
Corollary 7. $\alpha \in \beta \neq \alpha=\beta \neq \beta \in \alpha$.
Theorem. 8. $\mathrm{Wo}_{\mathrm{E}}\left(\mathrm{On}_{\mathrm{n}}\right)$
Proof: We have $\operatorname{lrr}_{E}\left(O_{n}\right)$ and $\operatorname{Con}_{E}\left(O_{n}\right)$ by 1 and 7 respectively. Also we have $\mathrm{Tr}_{\mathrm{E}}(\mathrm{On})$ since $\alpha \in \beta$ and $\beta \in \gamma$ implies $\alpha \in \gamma$. Consider any $\phi \neq y \subseteq O n$.

Choose any $\alpha \in y$. (A single choice does not require an axiom of choice.) If α is the E -first element of y, we are through. If not, then $\alpha \cap y \neq \phi$. Now we use the condition $\operatorname{Sub}(\alpha)$ to show that $\alpha \cap y$ is a set. Thus $\alpha \cap y$ has an $E-f i r s t$ element, say α_{0}, since $W_{o_{E}}(\alpha)$. Then we easily show that α_{0} is the $E-f i r s t$ element of y.
Corollary 9. Wos (On)
When we speak of an ordering among the ordinals we of course mean the natural ordering, denoted by $<_{0}$: in symbols,

$$
\alpha<_{0} \beta \leftrightarrow \alpha \in \beta \leftrightarrow \alpha \subset \beta .
$$

We say that α is a successor ordinal if and only if α immediately follows some β. We say that α is a limit ordinal if and only if $\alpha \neq \phi$ and for any β less than α we can always find another ordinal between β and α. In symbols we have, respectively,

$$
\begin{aligned}
& \operatorname{Suc}(\alpha) \leftrightarrow \exists \beta\left[\beta<_{0} \alpha . \neg \exists \gamma\left[\beta<_{0} \gamma<_{0} \alpha\right]\right] \\
& \operatorname{Lim}(\alpha) \leftrightarrow \phi \neq \alpha \cdot \forall \beta\left[\beta<_{0} \alpha \rightarrow \exists \gamma\left[\beta<_{0} \gamma<_{0} \alpha\right]\right]
\end{aligned}
$$

Theorem 10. Suc $(\alpha) \leftrightarrow \bigcup_{\alpha \subset \alpha}$
Proof: We have Suc (α)

$$
\begin{aligned}
& \Longleftrightarrow \exists \beta[\beta \in \alpha . \neg \exists \gamma[\beta \in \gamma \in \alpha]] \\
& \Longleftrightarrow \exists \beta\left[\beta \in \alpha . \beta \notin \bigcup_{\alpha]}\right. \\
& \Longleftrightarrow \bigcup_{\alpha \subset \alpha \text { (since }} \bigcup_{\alpha \subseteq \alpha} \text { by Trans }(\alpha) \text {). }
\end{aligned}
$$

Theorem 11. $\operatorname{Lim}(\alpha) \leftrightarrow \bigcup_{\alpha=\alpha \neq \phi}$
Proof: We have Lim (α)

$$
\begin{aligned}
& \Longleftrightarrow \alpha \neq \phi \cdot \forall \beta[\beta \in \alpha \rightarrow \exists \gamma[\beta \in \gamma \in \alpha]] \\
& \Longleftrightarrow \alpha \neq \phi \cdot \forall \beta\left[\beta \in \alpha \rightarrow \beta \in \cup_{\alpha}\right] \\
& \Longleftrightarrow \alpha \neq \phi \cdot \alpha \subseteq \bigcup_{\alpha} \\
& \Longleftrightarrow \alpha \neq \phi \cdot \cup_{\alpha}=\alpha \text { (since } \cup_{\alpha \subseteq \alpha \text { by } \operatorname{Trans}(\alpha))}
\end{aligned}
$$

Theorem 12. $\alpha=\phi \neq \operatorname{Suc}(\alpha) \neq \operatorname{Lim}(\alpha)$.
Proof: $\operatorname{Trans}(\alpha) \Longrightarrow \bigcup_{\alpha \subseteq \alpha}$

$$
\begin{aligned}
& \Longrightarrow \bigcup_{\alpha \subset \alpha \neq} \bigcup_{\alpha}=\alpha \\
& \Longrightarrow \bigcup_{\alpha \subset \alpha \neq}\left[\left(\alpha=\phi \cdot \bigcup_{\alpha=\alpha) \neq\left(\alpha \neq \phi . \bigcup_{\alpha=\alpha)}\right]}^{\Longrightarrow \operatorname{Suc}(\alpha) \neq \alpha=\phi \neq \operatorname{Lim}(\alpha) .}\right.\right.
\end{aligned}
$$

Let us take a little closer look at successor ordinals. Let us say that β is a successor of α if and only if

$$
\alpha<\beta . \neg \exists \gamma[\alpha<\gamma<\beta] .
$$

Clearly, if $\operatorname{Suc}(\beta)$, then β is the successor of a unique ordinal α. However given any ordinal α we can't prove in P^{\prime} that there is some β which is the successor of α. But we can say a few things. Let $X^{+}=X \cup\{X\}$.

Theorem 13. β is the successor of $\alpha \leftrightarrow \beta=\alpha^{+}$.
Proof: If $\alpha<\beta$ we have $\alpha \in \beta$, hence $\alpha \subseteq \beta$, hence $\alpha \cup\{\alpha\} \subseteq \beta$. Conversely if $\gamma \in \beta$, then $\gamma \leq \alpha$ since $\neg(\alpha<\gamma<\beta)$, hence $\gamma \in \alpha$ or $\gamma=\alpha$, hence $\gamma \in \alpha \cup\{\alpha\}$; thus $\beta \subseteq \alpha \cup\{\alpha\}$.

If $\beta=\alpha \cup\{\alpha\}$, then $\alpha \in \beta$, hence $\alpha<\beta$. Also if $\gamma<\beta$, then $\gamma \in \beta$, hence $\gamma \in \alpha$ or $\gamma=\alpha$, hence $\gamma \leq \alpha$, hence $\neg(\alpha<\gamma<\beta)$.
Corollary 14. Suc $(\beta) \rightarrow \beta=\alpha^{+}$uhere $\alpha=\bigcup_{\beta}$
Proof: Clearly $\beta=\alpha^{+}$for some unique α, by 13. It is straightforward to show that $\alpha=\bigcup_{\beta}$.

 α where $\alpha^{+}=\beta$, hence $\bigcup_{\beta \in \text { On }}$.

Let us now define the class ω of natural numbers in the usual fashion:

$$
\begin{gathered}
x \in \mathrm{~K}_{1} \leftrightarrow(x=\phi \vee \operatorname{Suc}(x)) . x \in \mathrm{On} \\
x \in \omega \leftrightarrow x \in \mathrm{~K}_{1} .(\forall u)_{x} u \in \mathrm{~K}_{1} .
\end{gathered}
$$

Let i, j, k, l, m, n denote integers. For most of the propositions $1-15$ there are corresponding propositions which one obtains by replacing ordinals and the class On by integers and the class ω. Denote these corresponding propositions by $1_{\omega}-15_{\omega}$. Now 1_{ω} and $4_{\omega}-10_{\omega}$ follow immediately from 1 and 4-10 respectively since $\omega \subseteq$ On. To prove 2_{ω}, i.e., Trans (ω), consider any $x \in n$. We need to show $x \in \omega$. But clearly $x \in \mathrm{~K}_{1}$ and

$$
u \in x \in n \Rightarrow u \in n(\text { by } 2) \Longrightarrow u \in \mathrm{~K}_{1} .
$$

Of course 3_{ω} follows from 2ω. By definition of K_{1} and ω we have that none of natural numbers are limit ordinals hence 11_{ω} is vacuously true and pointless. Corresponding to 12 we have the following:

Theorem $12_{\omega} . \forall n[n=\phi \neq \operatorname{Suc}(n)]$.
Finally $13_{\omega}-15_{\omega}$ follow easily from 13-15.
There are many forms of induction theorems we can prove.
Theorem 16. Assume X is a transitive class of ordinals. Then $\forall x\left[(\forall \beta)_{x}[\beta\right.$ $\subseteq x \rightarrow \beta \in x] \rightarrow X \subseteq x]$
Proof: Assume we have $(\forall \beta)_{x}[\beta \subseteq x \rightarrow \beta \in x]$, yet $X \nsubseteq x$. Choose any $\beta \in X-x$. If β is the least ordinal in $X-x$, let $\beta_{0}=\beta$. Otherwise there are ordinals less than β in $X-x$, i.e., $(\beta \cap X)-x \neq \phi$. But $\beta \cap X=\beta$ by Trans (X). Hence $\beta-x \neq \phi$. But $\beta-x$ is a set by Sub (β), hence $\beta-x$ has a first element, say β_{0} which clearly is also the least ordinal in $X-x$. In any case we can say that $X-x$ has an E-first element β_{0}, hence $\beta_{0} \subseteq x$. But then $\beta_{0} \in x$ by hypothesis; contradiction.

Corollary $17_{\omega} . \forall x[\forall n[n \subseteq x \rightarrow n \epsilon x] \rightarrow \omega \subseteq x]$
Theorem $18 \omega . \forall x\left[0 \epsilon x . \forall n\left[n \epsilon x \rightarrow n^{+} \epsilon x\right] \rightarrow \omega \subseteq x\right]$.
Proof: Assume $\omega \nsubseteq x$. As in 16, we can show that $\omega-x$ has a unique first element, say n_{0}. Now $n_{0} \neq 0$ since $0 \epsilon x$. Hence Suc $\left(n_{0}\right)$ by 12_{ω}, hence $n_{0}=m_{0}^{+}$ for some unique $m_{0} \in \omega$ by 14_{ω}. By definition of n_{0}, we must have $m_{0} \in x$, hence $m_{0}=n_{0} \in X$ by hypothesis, a contradiction.

Of course to show the actual existence of an ordinal, natural number of any set requires more axioms of set theory. In P^{\prime} we can show the existence of at least one proper class, viz. Russell's class

$$
\mathrm{R}=\{x \mid x d x\} .
$$

To show class O_{n} is proper seems to require the additional weak axiom

$$
\forall x, y[x \cap y \in V] .
$$

REFERENCES

[1] Feferman, S., "Systems of predicative analysis, II: Representation of ordinals," The Journal of Symbolic Logic, vol. 33 (1968), pp. 193-220.
[2] Gödel, K., The consistency of the continuum hypothesis, Princeton (1940).
[3] Shoenfield, J., "A relative consistency proof," The Journal of Symbolic Logic, vol. 19 (1954), pp. 21-28.

Stevens Institute of Technology
Hoboken, New Jersey

