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A CLASS OF MODELS FOR INTERMEDIATE LOGICS

B. van ROOTSELAAR

Let a be an ordinal, c(a) its cardinality and B a c(a)-field of sets, with
union +, intersection and complementation '. By L^B) we denote the set of
weakly decreasing functions from a into B. A lattice structure is defined
on La{B) by putting

(/ + £)(*)=/(*) +g(κ)
(f -g)M=fM -g(κ)

for all K ̂  a and f,ge La{B). There is a zero 0 in La(B) and a one 1. As is
well-known La(B) is not complemented for a > 1. However a relatively
pseudocomplemented structure can be defined on LQHB).

Definition: For f,ge La(B) let f-^gbe defined by

(/-s)M=Σ/(p)' Π *(*)+*(«)
p<κ σ<p

Remarks:
1. The void product Π ̂ (σ) is put equal to 1 e B.
2. Notice the following recursive relation

(f-+g) (K + 1) =/(* + 1)' (f-g)(κ) +g(κ + 1)

Theorem 1: ΐff,ge L^^), then/-* ge La(B).

Proof. By the assumed nature of B the (f —* g) (K) are in B for all K — a. If

r < /c then

(/-£)(«) = Σ/(P)' Π^(σ) +g(κ)
p<κ σ<p

= Σ /(P)' Π g(σ) + Σ Ap)' Π ^(σ) + (̂/c)
p<r σ<p r<p<κ o<p

^Σf(p)' Ilg(σ)+g(r)
ρ<r σ<p

= (f~>g)(τ)

i.e. /—> ̂  is weakly decreasing.

Theorem 2: (Lα(£),+, , ~~*) is relatively pseudocomplemented.
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Proof. First of all / (/-> g) ^ g for

f (f-g) (Ό = f(κ) Σ /(P)' Π *(σ) + f(κ) g(κ) .

Ίi p^κ then /(p) ^ f(κ), so /(p)' =s f(κ)', consequently /• (/-**)(*) =
/(/c) g (/c) ^ g (/c) for all K ̂  α. Next suppose / h ̂  g, then

% ) ^ Π te(λ) + /(λ)') for all K ̂  a .

Let xeh(κ), then consider

AM ={λ; λ ̂  /c&Λτe/(λ)'}

If A(̂ ) = 0, then xef(λ) for all λ ^ K, so xe f(κ). Since #€£•(/<:) + f(κ)r, it
follows Λ:e^ (/<:), so xe(f-*g) {K). If A(Λ ) ^ 0, then there is a least λ0 in
A(#), so xe /(λo)f, whereas xef(λ) for all λ < λ0. Because xeg(λ) + f(λ)r

for these λ, it follows xeg{λ) for all λ < λ0, hence

σ< λo

and consequently

*e/(λ o) ' Π ^(σ) ,
σ<λo

so x e(/—• g) (K). SO, if / h — g, then h — / —• g, which completes the proof
that La(B) is relatively pseudocomplemented.
Remarks:

3. The pseudocomplement of fe La(B) assumes a very simple form:

(/->0)(κ)=/( l ) ' .

Notice, that ((/-* 0) —> 0) (K) = /(I) ^ f(κ), hence reciprocity of complement
does not occur in general (i.e. for a > 1).

4. If / = 1 and f-*g= 1, then also g" = 1, so every La(B) is a model for
intuitionistic logic, with meet, join, relative pseudocomplement and pseudo-
complement as interpretations of conjunction, disjunction, implication and
negation respectively.

Let D(f,g) stand for ( / - g) + (g - /) .

Theorem 3: D(f,g) = 1 m L^B).

Proof. If D(/,g) * 1 then there is an x and a /c ̂  α such that #e D(/,g ) (/c)'.
Now

D(f,g)(κ)'=Π(f(p)+Σg(σ)') Σg(σ)' U(g(p)+Σf(σ)r) Σ/(σ)'.
p<κ σ<ρ σ<κ p<κ σ< p σ<κ

Let σ(x) be the least σ such that xeg(σ)' and τ(x) the least σ such that
x ef(σ)'. Then since #e Ό(f,g) (K) ' it follows

*€/(σ(*))+ Σ ^ σ ) f ,
σ<σ(x)

hence Λre/(σ(Λr)), and consequently τ(x) > σ(x). On the other hand

xeg(τ(x))+ Σ /(σ)',
σ<r(x)
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so xeg(τ(x)), consequently σ(x) > τ(x). Hence the assumption: for some
Ό(f,g) (K) Φ 1 is contradictory, so D(f,g) (K) = 1 for all K.

This theorem shows that the La(B) are models of intermediate logics.
A particular case arises when B = {0, 1}, because in that case La(B) is an
a + 1 chain, in which implication has the form

(gχf>g

This can be seen as follows: if (/ -» g) Φ 1, then there is an x such that

ΛΓ e (/ —> g ) (K) ' for some K == a.

So

xeg(κ)' U (f(p)+Σg(σ)').
p<κ σ<p

If σ(x) is the least σ such that xeg(σ)\ then it follows xef(σ(x)). However
also xeg(σ(x))', hence if / —g, we have also x €f(σ{x))r, & contradiction, so
there can be no K such that (/ -» g) Φ 1, hence / -* g = 1.

If />£"> then there is a K ̂  en, such that/(/c) > g(κ). Then/(λ) = 1 for
all λ ̂  K and g (μ) = 0 for all μ ̂  K. By definition of /-+ g then follows
(/ — g) (P) = g(p) for all p ̂  α, so / - g = £•.

If of is finite, say n, and 5 = {0, 1} then La(B) = ( ( 0 , . . . , 0), ( 0 , . . . , 0,1),
. . . , ( 1 , . . . , 1)) is a chain of n + 1 elements. The relations of these chains
to Peirce's law is interesting (cf.[l] and also [2] and [3]). Let

P(/i,/2) = ((/2-/i)-/2)-*/2

and let its iterates be defined by

P(Λ,. . . ,Λ+i) = P(P(Λ, .,/»), Λ+i) ,

then P(/i, . . . ,/„) is equal to 1 on L^ ({0, 1}) for m < n and different from 1
for m — n. This result is not typical for Lm ({0, 1}) and it can be shown for
arbitrary Lm(B). In order to do so, we calculate the function P(f,g). A
convenient description of P(f,g)(k + 1) results from the following theorems.

Theorem 4: (g - f)(k) = f(k) + ((g — /) — g) (k)', for all finite k > a.

Proof. Put g —» / = r and r —> g = t, then we have to prove r(k) = f(k) + t(k)f.
First of all r(l) =/(l) +^ (l)'and ί(l) =^(1) +r(l)r=g(l) + g(l) f(l)^g(l\
so

r(l) = / ( l ) + ί ( l ) ' .

Next suppose r(k) =f(k) + t(k)', then first notice r(k + 1) =f(k + 1) +
(̂fe + 1)' r(k) = f(k + 1) + g(fc + 1)' . /(fe) + ̂ (fe + 1)' . t(k)', hence

which we use in the following reduction
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f(k + 1) + t(k + 1) ' = f(k + 1) + ^ + 1) ' . (r(£ + 1) + £(&)')

= /(& + 1) + g(k + 1) ' . (/(A? + 1) +£•(& + 1) ' . (r(k) + f(A?)'))
= /(& + 1) + g (A? + 1) ' . r(k) + g(k + 1) ' . /(&)'
= r ( £ + 1) + g{k + l ) f . f(fe)'
= r(k + 1 ) .

Theorem 5: t(k + 1) = g (& + 1) + r(&)' / o r β/Z /fmϊ^ ^ < a.

Proof.

t(k + 1) =g(k +l) +r(k + 1)' - t(k)

= ^(fe + 1) + / ( * + D f te(* + 1) + r ( f e ) 0 t(k)
= g(k + l) + t(k) .f(k + l)'.r(k)'
= g(k + l) +t(k) - f{k)' -g{k) + r ( f e - 1) '
= ^ + 1) +t(k) r(k)'
= g(k + 1) + r ( A ? ) ' -

Theorem 6: P(f,g) (k + 1) =g(k + 1) + (g-* f) (k) for all finite k < a.

Proof. We use the fact that P(f9g)(k) ^ (g-+f) (k), which is easily estab-
lished. We again use r for g —» / and ί for r -+ g. Then

P(/,#) (Λ + 1) = ̂ (fe + 1) + «fe + 1)' . P(/,^) (fe)
= ̂  + 1) +*(fe + 1)' . r(k) . P{f,g) (k)
= g(k + l)+r(k) P(f,g)(k)
= ^-(^ + 1) + r (^) .

Concerning the iterates of Peirce's law we have the following

Theorem 7: P(Λ,. . . ,/«) (n - 1) = 1 /or αΠ /zm'ίe n ^ a.

Proof. Evidently P(/ 1 ? / 2 ) (1) = 1. Further

P(/i, ? Λ+i) (^) = /»+i (n) + (/β+1 - P ( Λ , . . . ,/„)) (n - 1)

^ P ( / i , . . . , / » ) ( w - 1).

So if P ( / 1 ? . . . , / J (n - 1) = 1, then also P ( / 1 ? . . . ,/ s + 1 ) (n) = 1.
The above theorem expresses the fact that P ( / i , . . . , / w ) = 1 on any

Lm(B) where m < n. We next derive a formula for P ( / i , . . . ,/„) (n) from
which it will be clear that P ( / u . . . ,fn) ΐ 1 on Ln(B), and consequently on all
Lm(B) where m^ n.

Theorem 8: P(f19... ,/„) (n) = Σ fk (k) + Σ Λ (^ " χ ) f / o r α Z Z finite n> sat~
k=l k=2

ίsfyίng 2 — n — a.

Proof. Evidently P(Λ,/2) (2) = f2 (2) + Λ (1) + / 2 (1)'. If the formula holds
for w, then it also holds for n + 1, because

P(/i, ,/«+i) (w + 1) = Λ+i (w + 1) + (/β+1 P ( Λ , . . . ,/„)) (w)
= / Λ + 1 (w + 1) + P ( Λ , . . . ,/n) (n) + / β + 1 (»)'

From this formula it is clear how to choose the fk so as to obtain
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P(/i> ••>/») (n) * 1> a n ^ such a choice is possible for any Lm(B), where
m^ n and B arbitrary.

Remark:

5. The sequence P = {P(f19..., fn)} (n < ω) is weakly increasing and no
member is equal to 1 on Lω(B). One should notice that the behaviour of P
is best discussed in the context of infinitary logics (cf. e.g. [4]). Because
we consider non-classical logics a few modifications are required, because
for example the infinite disjunction

is not introduced by means of negation and infinite conjunction, and we
should add the axiom

and the rule

if F x — G,F2-+ G,...,Fk-+ Gf... t h e n

N X / Λ -> G.

Instead of the usual axioms for classical propositional logic one should
accept an intermediate set, e.g. the intuitionistic system with D(f,g) added.
For such logics the infinite disjunctions are interpreted as unions in the
following way in the case of P:

[U«P(/I, ... ,/„)] (*> = U.[p(/i,...,/.) (*)]•
Then it is clear from Theorem 7 that

UβP(Λ,...,Λ) = l
on all La(B) where a — ω. So on Lω(B) the infinite disjunction of the iterates
of Peirce's law is valid while no finite iterate is.
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