
341

Notre Dame Journal of Formal Logic
Volume XII, Number 3, July 1971
NDJFAM

A STUDY OF SOME SYSTEMS IN THE NEIGHBORHOOD OF S4.4.

J. JAY ZEMAN

This paper investigates S4.4 and some closely related systems both
semantically and proof-theoretically. In what follows, we:

(1) Set down a characteristic matrix for S4.4.
(2) Extend the methods employed in (1) above to show that "Group Π" of

Lewis and Langford [3] is characteristic for the system K4 of
Sobociήski [9].

(3) Set down and investigate semantically and proof-theoretically a system
S4.9 which is between S4.4 and S5; there is no system properly con-
tained in S5 and properly containing S4.9.

In [10], Sobociήski introduced the system S4.4, which is S4 +
(ίpCMLpLp; S4.4 properly includes Prior's Diodorean system D (S4.3 +
&&(ίpLppCMLpp); this is shown in [10], where D is called S4.3.1 (for a
thorough discussion of D, see [6, p. 20 ff.]). D is a modal system whose
modal operators may be considered defined in a time framework. It is the
logic in which "necessarily α" means "a is true now and will be at every
instant in the future," and "possibly α" means "a either now is true, or
will be at some instant in the future." [6] discusses also time interpreta-
tions for several systems included in D; S4.3, S4.2, and S4; also considered
is a time interpretation for S5. The time sequence for S4.3 is linear and
connected as is that of D, but S4.3 differs from D in having its time se-
quence continuous while that for D is composed of discrete instants. The
sequences for S4.2 and S4 are not connected, but permit "branching" (some
statements which are possible now can turn out never to be true). S4.2
differs from S4 in requiring "convergence" of its branchings—all state-
ments which are "possibly necessary" eventually become necessary. While
these systems define their modal operators in terms of the future alone,
"necessarily α" for S5 is defined as " α is now true, and always will be, and
always was," and "possibly α" is "either a now is true, or at some instant
in the future it will be true, or at some instant in the past it was true."

Since S4.4 is "surrounded" by systems with time interpretations, one
may wonder if it is possible to come up with such an interpretation of it. I
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would like to suggest such an interpretation, and to show that this interpre-
tation provides a characteristic matrix for S4.4. Although the possible
necessity of a statement in S4.4 does not imply its necessity as is the case
in S5, if a statement is true right now as well as possibly necessary, then it
is necessary in S4.4. This suggests a basic difference for this system be-
tween the present instant and all instants following it. If all that is needed
for a possibly necessary statement to be fully necessary (that is, true now
and forever) is that it be true right now, then all statements which are, in-
deed, possibly necessary must become "true forever" in the very instant
following the present instant. Under this interpretation, then, S4.4 emerges
as a "logic of the end of the world." One pictures an angel appearing,
golden horn in hand, and announcing, " I am about to blow this horn, and
when I do, the world will end; time will pass into eternity, and at that in-
stant all eternal truths will be realized; all that ever is to be true 'neces-
sarily' will then become true necessarily." The angel lifts the horn to his
lips, and the instant just before he blows it is the instant for which S4.4 is
expressive of the time sequence.

We will call the suggested time-sequence model the "end of the world
matrix," or "eow matrix." This model has exactly one instant in what
could be called "t ime," and a denumerable infinity of instants in what could
be called "eternity." So far as the tense-defined modal operators are con-
cerned, "eternity" behaves like the S5 time sequence; the tense-oriented
definition of possibility and necessity for the whole model would be:

" α is possible" (i.e., Ma) means

"If the instant for which Λία is being evaluated is the one instant in time,
then a holds either at that instant or at some instant in eternity; if the in-
stant for which Ma is being evaluated is one of the instants in eternity, then
a is true at some instant in eternity."

ζζa is necessary" (i.e., La) means

"If the instant for which La is being evaluated is the one instant in time,
then a is true at that instant and at every instant in eternity as well; if the
instant for which La is being evaluated is one of the instants of eternity,
then a is true at every instant of eternity."

The corresponding time-sequence matrix for S5 would have La true at a
given instant iff a is true at every instant, and Ma false at a given instant
iff a is false at every instant. The proposed S4.4 matrix differs from the
S5 matrix in its evaluation for M and L at one and only one point for each of
these operators. When a is true only at the first instant of the time se-
quence (the instant in time) Ma will also be true only at that point, and when
a is false at the first instant and then true at all of the rest of the instants,
La will be false and true at those same instants. Otherwise, the eow
matrix is the same as that for S5.

Slightly more formally, the proposed S4.4 matrix would be the quad-
ruple (L/R,Π, -,O). The set of elements L/R is a set of ordered pairs
x/y, xeL and yeR, where R is the set of elements for a characteristic
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matrix for S5 and L i s a set of two elements, say 1 and 0. The designated
element of this matrix would be l/s, where s is the designated element of
R - {x/y) would be (L -x/R -y) and (x/y) Π (u/v) = (xΠu)/(yf)v). Π and
- behave as usual in an algebra of this kind. Designating -1 as 0 and - s as
Φ,0(x/y) - l/s unless y = 0, in which case O(x/y) = x/y- We may define an
operator D; u{x/y) = - O -(x/y) = 0/0 unless y = s, in which case π(x/y) =

x/y. Finite versions of this matrix with a time interpretation may be con-
structed using, say, the digits 1 and 0 to represent truth and falsity re-
spectively at a given instant, and using a binary number of n digits to
represent a time sequence of n instants. As is usual, a statement true at
the last of these instants is considered to be true forever after; the same
holds of falsity. Evaluating the "two instant" time sequence as above, we
get:

a = 11 10 01 00
Oa = 11 10 11 00
Ώa = 11 00 01 00

We may translate the above table as is done with similar matrices in, say,
[5] to obtain a table conforming to common usage in the literature:

p = 1* 2 3 4
Mp = 1 2 1 4
Lp = 1 4 3 4

(* indicates designated element). This is, of course, Group Π of Lewis and
Langford [3]; the two-instant (four-valued) version of the end of the world
matrix is then the same as the two-instant version of Prior's Diodorean
matrix. The three-instant versions of the Diodorean and the eow matrices
differ, however; note that here we have the first instant in "t ime" and the
last two instants in ζ'eternity":

a = 111 110 101 100 011 010 001 000
Oa = 111 111 111 100 111 111 111 000
Dα = 111 000 000 000 011 000 000 000

Translating as we did with the four-valued table:

/> = 1* 2 3 4 5 6 7 8

Mp = 1 1 1 4 1 1 1 8
Lp = 1 8 8 8 5 8 8 8

All such finite versions of the eow matrix verify S4.4, as does the infinite
version; all, of course, fail to verify &MLpLp. This matrix is used by
Schumm in [7 ].

We shall now show that the infinite end of the world matrix is charac-
teristic for S4.4 by establishing a system of proof tableaux as in Kripke [1]
and [2]; familiarity with these articles is assumed. As in these papers, we
shall think of a set K of "possible worlds" as being given. In this case,
each of the possible worlds will correspond to an instant of the eow matrix.
Again, one element, G, will be singled out as the "real world," if you will.
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G in this case will correspond to the one moment in "t ime" in the eow
matrix; the other possible worlds will correspond to the eow instants in
"eternity." We may evaluate a wff in this set of possible worlds by con-
structing a system of tableaux for it. So far as PC connectives are con-
cerned, these tableaux will behave just as do the tableaux of [1] and [2]. We
shall take L to be the primitive modal operator in this study, and we shall
introduce rules for the handling of L which will make the present systems
of tableaux behave like the end of the world matrix. We start off the con-
struction of a system of tableaux by writing the wff to be evaluated on the
right of the main tableau, which corresponds to the "real world" G, to the
first instant in the eow matrix. Under certain conditions we will have to
construct auxiliary tableaux; these will correspond to the moments of
eternity in the eow matrix. Let us begin to state the rules governing L in
these evaluations; the first rule tells what happens when a formula beginning
with L occurs on the left of a main tableau:

L-left (main): If L a occurs on the left of a main tableau, then a is to be
written on the left of every tableau of the set for which the given tableau is
main.

What happens when a formula beginning with L occurs on the left of an aux-
iliary tableau is somewhat different:

L-left (αux): If La occurs on the left of an auxiliary tableau t, then a
is to be written on the left of every auxiliary tableau in the alternative set
to which t belongs.

We see here a certain primacy of the main tableau. L's on its left affect
every tableau in its set; it is unaffected by L's on the left of its auxiliary
tableaux; Us on the left of an auxiliary tableau, however, affect all its
"fellow" auxiliary tableaux. This is analogous to the evaluation of L in the
eow matrix.

When a formula beginning with L occurs on the right of an auxiliary
tableau, the rule for handling it is as usual in these systems:

L-right (αux): If L a occurs on the right of an auxiliary tableau, con-
struct a new auxiliary tableau having a on its right.

When a formula beginning with L occurs on the right of a main tableau, we
have a different situation:

L-right (main): If La occurs on the right of a main tableau, split that
tableau into two alternative main tableaux. These are alike except as fol-
lows: one will have a on the right; for this tableau nothing further is done so
far as the L here in question is concerned. The other tableau will have a on
the left; construct a tableau auxiliary to this one and beginning with a on its
right.

If La is to be false in the first instant of the eow matrix, then either a is
false in the first instant of that matrix, or a is true in the first instant and
false in some later instant. In the first case we need look no further; the
alternative main tableau with a right explores this possibility. The alterna-
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tive main tableau with a left explores the other situation by creation of an
auxiliary tableau.

We wish to establish that if one of these systems of tableaux is such
that every one of its alternative sets closes (has a tableau with a wff a both
on its left and its right), then the formula for which the construction of the
system of tableaux was begun is a theorem of S4.4. We shall do this in the
manner of Kripke by defining a "characteristic formula" for each stage in
the construction of the system of tableaux. The first stage is the main
tableau with just the original formula written on its right. The (n + l)-th
stage is the system of tableaux resulting from the application of a rule for
one of the operators to the n-th stage. As with Kripke, each tableau at a
given stage of the construction will have its own characteristic wff, and
here as in [1] and [2] the characteristic wff of a tableau at a given stage
will be

KKax... anKNβx... Nβm

where the α's are the n (> 0) wffs on the left of the tableau and the β's are
the m (^ 1) wffs on the right of the tableau at the given stage of construc-
tion. We will define the characteristic formula of one of the alternative
sets of the system in terms of the characteristic wffs of the tableaux of that
set; let μ be the characteristic wff of the main tableau of that set and let
σl9... ,σs be the characteristic wffs of the s auxiliary tableaux of that set at
a given stage of construction. Then the characteristic formula of the set at
that stage of construction will be:

KμLMKMσ1. . . Mσs .

The rest of the definition of characteristic formula is just as with Kripke;
where δl9... ,δr are the characteristic wffs of the r alternative sets of the
system of tableaux at a given stage of construction, Aδ 1 . . .δ r is the
characteristic wff of the entire system at that stage.

It will be noted that the definition of characteristic formula for the
S4.4 tableaux is, as one might expect, quite similar to that for S5 in [1]; it
differs in fact, only in the insertion of the LM before the conjunction of the
Mσz in the definition of characteristic wff of alternative set. And this is
expressive of the key difference between S4.4 and S5; this LM gives us the
"difference in kind" between "time and eternity" which is typical of the
end of the world matrix. The key step in the completeness results of [1]
and [2] is showing that where a is the characteristic wff of a system of
tableaux at the n -th stage and β is the characteristic wff at the {n + l)-th
stage, then Caβ is a thesis of the system in question. Our formulation
differs from Kripke's only in its rules for L and in its definition of the
characteristic wff of an alternative set of tableaux. Our completeness proof
need consider only these points, then; the rest of the proof will follow as in
[1] for S5.

We will recall that our rules for L, both on left and right, differ for the
main and for the auxiliary tableaux. Let us consider first the cases in
which these rules are applied because of Vs occurring in auxiliary tab-
leaux. Let 0 be the characteristic wff of an alternative set at stage n of
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construction and let ψ be the characteristic wff at stage n + 1, where the
(n + l)-th step is an application of a rule for L in an auxiliary tableau, φ is
then the formula KaLMβ anάψ is KaLMγ. Now if we examine the rules for
the handling of L in auxiliary tableaux, we will see that the auxiliary tab-
leaux of a given alternative set behave toward each other just as do the
tableaux of a set of S5 tableaux. Indeed, with φ and ψ as described above
and given the work of Kripke, the formula Cβγ will be a thesis of S5. But it
is well-known that if a wff X is a theorem of S5, then MLX is provable even
in S4; thus, MLCβγ is a thesis of S4.4. Now, it is a characteristic feature
of the system S4.2 that ML distributes over C; in that system we now exe-
cute the proof of a similar principle; in S30 we have:

(1) SLCpqCLMpLMq
(2) CMLCpqCLLMpMLMq (l), Sl°
(3) CMLCpqCLMpLMq (2), S4.2

With (3) and MLCβγ, we have CLMβLMγ as an S4.4 thesis; given all the
above assumptions, then, we have

(4) CKaLMβKaLMγ

provable in S4.4; (4) is the required implication between the characteristic
wffs of the w-th and the (n + l)-th stages; the desired result obtains, then,
whenever a rule for L in an auxiliary tableau is applied. (Recall that the
rules for L in auxiliary tableaux affect not at all the main tableau here.)

We now turn to these rules as applied for L's in the main tableau. For
an application of L-left (main) the characteristic wff for the set involved is
KKLaβLMKγMδ. The characteristic formula for the (n + l)-th stage is then
KKLaβLMKγMKaδ (except for the trivial case involving the writing of a on
the left of the main tableau itself). By CKLpLMqKLpLMKLpq, which holds
in S4°, and &KLpMqMKpq, which holds even in S2°, the required implication
between characteristic wffs holds. Thus does the required result obtain
when the rule used is L-left (main).

We now turn to the rule L-right (main). It will be recalled that the first
thing done under this rule is to split the main tableau into two alternative
main tableaux. The main tableau has as its characteristic wff here the
formula KaNLβ. The characteristic wff after the split is AKKaβNLβKa-
KNLβNβ; the required implication is justified by PC, specifically by ex-
cluded middle. For one of the cases now involved, the alternate tableau in
which β is placed on the right, no further action is required. The case of
the split in which β is placed on the left, however, requires the creation of
an auxiliary tableau. The characteristic wff involved is that of the alterna-
tive set having as its main tableau the alternate tableau from above with β
on its left. This formula is:

(5) KKKaβNLβLMγ (or KKaβNLβ)

The parenthesized versions of (5) and (6) apply if no auxiliary tableaux had
been constructed to this stage for this set. The characteristic wff of the
alternative set following this construction will be:
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(6) KKKaβNLβLMKγMNβ (or KKKaβNLβLMMNβ)

Now, S4.4 is S4 + (ίpCMLpLp. This last formula transforms in the field of
Sl° with the substitution p/β to

(7) (gβCNLβLMNβ

Clearly, in the presence of (7), the parenthesized version of (5) implies the
parenthesized version of (6).

(8) &NLpCqKqMNp Sl°
(9) CLNLp&qKqMNp (8), Sl°
(10) CLNLpCLMqLMKqMNp (9), S3°
(11) CβCNLβCLMγLMKγMNβ (10), (7), Sl°

In the presence of (11), formula (5) (unparenthesized) implies formula (6).
We see, then, the characteristic features of S4.4 coming into play in this
case of the rule L-right (main). This exhausts the cases in which the pres-
ent systems of tableaux differ from Kripke's systems for S5; the remainder
of the completeness proof will be as in [1] or [2]. We then assert:

MTHM 1: If each alternative set of a system of S4.4 tableaux {the
tableaux described in this paper) closes, the formula for which the con-
struction was begun is a thesis of S4.4.

If we consider the instants of the end of the world matrix to be "possible
worlds" in the sense of [l] or [2], it is easy to see that the same restric-
tions are placed upon the "accessibility relation"— Kripke's " # " — i n the
S4.4 tableaux and in the eow matrix. This means that Kripke's Lemmas 1
and 2 [2, pp. 76-80] apply here; we are interested in the following version
of his Lemma 2:

MTHM 2: If φ is valid in the eow matrix, then each alternative set of
the system of S4.4 tableaux constructed with φ as its initial stage closes.

MTHM 1 and 2, along with the fact that it is easily established that every
theorem of S4.4 is verified by the eow matrix lead to:

MTHM 3: The end of the world ?natrix is characteristic for S4.4.

We shall now see how the methods employed above may be adapted to
achieve some further interesting results. From page 343 it will be recalled
that the matrix of Group Π may be looked upon as the "two instant" version
of the end of the world matrix. Let us return for the time being to our
proof tableaux and construct a system of such tableaux which will be
analogous to Group II rather than to the infinite eow matrix. The rules for
such a system will be like those for S4.4 in having different versions for
main and for auxiliary tableaux; since the time sequence for Group II has
two and only two instants, however, there will be at most one auxiliary
tableau in each alternative set of tableaux in a construction. The main
tableau again corresponds to the one instant in time and the one auxiliary
tableau corresponds to the one instant in eternity. The L -rules for this
system of tableaux are (PC rules remain as before):
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L-left (main): If La appears on the left of the main tableau, a will be
written on the left of both the main and the auxiliary tableau.

L-left (aux): If La appears on the left of the auxiliary tableau, a will
be written on the left of that tableau.

L-right (main): If La appears on the right of a main tableau, split that
tableau, with one of the alternative mains having a on its left and the other a
on its right. For the main tableau having a on its left, construct an auxili-
ary tableau beginning with a on its right, or if an auxiliary tableau has al-
ready been begun for that main one, insert a on its right.

L-right (aux): If La occurs on the right of an auxiliary tableau, write a
on the right of that tableau.

These tableaux clearly parallel Group II in their accessibility relations, and
so Kripke's Lemmas 1 and 2 [2] apply here, and a formula will be valid in
Group II iff its system of tableaux as defined above closes.

Our work with these tableaux will proceed just as it did in the case of
S4.4, with the definition of characteristic formulas for the various stages of
construction of a system of tableaux; in fact, the definition here of charac-
teristic wff may be considered to be exactly the same as it was for S4.4.
The only thing to be noted here is that where the characteristic wff for an
alternative set in the S4.4 tableaux has the form KμLMKMvi . .Mσs, for
Group II tableaux s - 1 , then the M immediately preceding the σ will be
(in S4) redundent, and the characteristic wff for an alternative set having an
auxiliary tableau will always take the form KμLMσ, with μ characteristic
for the main tableau, and σ for the auxiliary tableau. We will set out to in-
vestigate, then, the logical transformations involving the characteristic
wffs and paralleling the above given rules for L.

The question we wish to answer is, "For which system is Group II the
characteristic matrix ?" We will do this by noting what formulas are
necessary to insure that the characteristic wff at the n-th stage of con-
struction of a system of tableaux such as we have proposed implies the
characteristic wff of the (w + l)-th stage. For the L-left rules, this is easy,
both for main and for auxiliary tableaux. The cases to be considered here
are clearly subcases of the L-left cases in our work on the S4.4 tableaux.
For the L-right rules, however, the situation is more complex. The split
in L-right (main) is again justified by PC, and when L-right (main) is ap-
plied for the first time in an alternate set thereby beginning construction of
the auxiliary tableau, the situation is the same as for the same case in the
S4.4 tableaux; the move is from a characteristic formula of form KKaβNLβ
to one of form KKKaβNLβLMNβ, and is justified by S4.4. The system for
which Group II is characteristic will then include S4.4.

When L-right, either (main) or (aux), is applied in any other situation
than that discussed in the last paragraph, there will be a preexisting auxili-
ary tableau. As the rules indicate, no new tableau will be constructed in
this situation, but the L-right rules will insert formulas into the already
existing auxiliary tableau (this corresponds to the requirement in Group II
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considered as a time sequence matrix that if La is false and a is true at the

first instant, then a must become false at the second instant). In an appli-

cation of L-right (main) subsequent to the first application, the character-

istic wff of the appropriate alternate set after splitting the tableau but

before insertion of a formula in the auxiliary tableau will be

(12) KKaKβNLβLMγ

After completion of the application of L-right (main) the characteristic wff

is

(13) KKaKβNLβLMKγNβ

The first step in moving from (12) to (13) is to use the typical S4.4 thesis

(ίpCNLpLMNp to show that (12) implies

(14) KKaKβNLβKLMγLMNβ

It now should be clear what formula is needed; the non-Lewis-modal

(15) CKLMpLMqLMKpq

will make (14) imply (13). This formula is valid in Group Π and is easily

derived in Sobociήski's system K4 [9], which is S4.4 + &LMpMLp; indeed,

S4.4 + formula (15) itself yields K4.

We now turn to L-right (αux); here the characteristic wff of the alter-

native set before application of the rule is

(16) KμLMKγNLβ

After the application, the characteristic wff is

(17) KμLMKγKNLβNβ

Now, even in S2° we have &LMKpqKLMpLMq as a thesis, and so (16) implies

(18) KμKLMγLMNLβ

In S4 we have SLMNLpLMNp provable, and so (18) implies

(19) KμKLMγKLMNLβLMNβ

which in the presence of (15) implies (17), the desired formula. The rest of

the completeness proof will be as for S4.4, and it is clear that the system

for which Group Π is characteristic is K4, which is S4.4 + (15); we assert:

MTHM 4: Lewis and Langford9s Group II is the characteristic matrix

for Sobociήskϊ}s system K4.

We shall now make use of the results we have so far achieved to dis-

cuss the situation of systems properly contained in S5 and properly con-

taining S4.4. Let us say that such systems are "properly between"

S4.4 and S5; the first such system to be found is due to Schumm [7]; this

is S4.4 plus

(20) ACMLppCLMqMLq
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Schumm gives a slightly different but deductively equivalent axiom. Sobo-
ciήski [8] axiomatizes this system by adding

(21) A^MLpLp^MLMqCqLq

to S4; Schumm calls this system S4.7; for reasons to be discussed, we shall
suggest a different designation for it.

Schumm's system was an affirmative response to a question asked by
Sobociήski [10]: Is there any system properly between S4.4 and S5? We
shall study certain related problems. First of all, suppose that a is any wff
that is:

(1) A theorem of S5, and
(2) is not a theorem of S4.4, and
(3) has only one propositional variable.

Since a is not a thesis of S4.4, it will, by our completeness result, fail in
the end of the world matrix. Since it is a thesis of S5, it will take only the
values l/s and 0/s in that matrix; at its points of failure, then, it will take
only the value 0/s. If we note the set of elements in the eow matrix exclud-
ing 0/s and 1/0, we will see that this set is closed under the operations
associated with the PC connectives and L in the eow matrix, provided the
formula being evaluated has only one propositional variable. For: if such
a wff has no connectives, then its value in this matrix for the assignment
x/y is x/y. Assume that if such a formula has k or fewer connectives, then
its value will always be either x/y, -hc/y), l/s, or 0/0 for the assignment
of x/y to its variable. Let Kβγ, Nβ, and Mβ each have k + 1 connectives.
With β and y under the induction hypothesis, each of β and y draws its
values for this assignment from the above mentioned set (the variable of β
is the same as that of y), and so it is clear that each of the k + 1 connective
wffs above will also draw its value from this set; it is then impossible with
a one-variable formula to get a value (for the whole formula) of 0/s unless
the variable of that formula is assigned either 0/s or 1/0. The formula a
we are here considering, then, takes both and only the values l/s and 0/s in
the eow matrix, and it takes 0/s only at the assignment to its variable of
0/s or 1/0 or both. In the end of the world matrix, then, a will (with p as
its variable) always imply one or both of the formulas ^MLpLp (which fails
only at p = 0/s) or £ML/>LMp (which fails only at p = 1/0). If, then, we add
a to S4.4 as an extra axiom, either &MLpLp or &MpLMp becomes provable,
and the system becomes S5. We have then:

MTHM 5: If a is a wff with only one variable, and is a thesis o/S5 but
not of S4.4, then its addition to S4.4 yields S5.

There then is no system with a single-variable proper axiom which is
properly between S4.4 and S5.

Schumm's result shows that the above does not apply in the general
case, for wffs which may have more variables than one. But we may re-
phrase Sobociήski's question as follows: Is there any system (properly be-
tween S4.4 and S5, of course) which is such that there is no system properly
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between it and S5 ? We shall now define such a system, and show that it is
as we claim. The system in question is simply the intersection of systems
S5 and K4, the system whose theses are all and only the theses common to
S5 and K4. We shall call this system S4.9. By our completeness result for
K4, we can see that each theorem of S4.9 is both a thesis of S5 and is valid
on Group Π. Let us suppose that α i s a wff which is a theorem of S5 but not
valid in Group II. The n distinct propositional variables of a are pl9... ,pn.
Now examine the assignment in Group Π for which a fails. For each i, if
for this assignment the variable pi receives:

1, make the substitution pj/Cpp
2, make the substitution/^/iV^
3, make the substitution pi/p
4, make the substitution p{/KpNp

The formula resulting from these substitutions in a is α*. Clearly, α* is a
thesis of S4.9 + α, and fails in Group II; specifically, it will fail at the
assignment of the value 3 to its variable p. α* is then a formula which is a
thesis of S5 but not of S4.4, and which has only one variable (all S4.4 theses
are verified by Group II). Since S4.4 is included in S4.9, the addition of α*
and so of a to S4.9 is sufficient to extend that system to S5, by MTHM 5.
We then have:

MTHM 6: There is no system properly between S4.9 (= S5 ΠK4) and S5.

This answers negatively another question of Sobociiίski [8]: Is there any
proper subsystem of S5 which is also not a subsystem of K4 ?

We now undertake the task of finding an axiom at ization for S4.9. Note
the following:

(22) &LMqCMLCpMLqCpMLq

We wish to show that S4.4 + (22) = S4.9. (The reader may easily verify that
formula (22) is both a thesis of S5 and is verified by Group Π.) When we
check a wff a for theoremhood in S4.9, we may think of ourselves as first
applying some decision procedure for S5 to α, and then checking a in Group
Π. In terms of our tableaux, this means that we take the candidate formula,
and if it proves to be an S5 thesis, we construct a system of tableaux for it,
using the rules for L as given above for the system K4; if the system of
tableaux closes, then the formula in question is a thesis of S4.9; we wish to
show that it is provable in S4.4 + (22). The proof will be quite similar to
that for the completeness of K4; it will differ from that proof only at the
point where the K4 proof makes use of the non-Lewis-modal CKLMpLMq-
LMKpq. Instead of using that formula it will employ (22) plus the fact that
the wff being tested is an S5 thesis. We first establish that

MTHM 7: If a is an S5 thesis,, and if Xn is the characteristic wff of the
n-th stage of construction of a system of tableaux for a, then MLNXn is an
S4 thesis; indeed, where Xn is of form Aδ1...δm9 then each of the m wffs
MLNδi is an S4 thesis.
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As we have noted above, where β is an S5 thesis, MLβ is provable in S4;
thus MTHM 7 holds for n = 1. For the induction step, we need only note that
given the rules for tableaux as we have been considering them, it is easily
seen that even in S2° we have SX̂ +1X̂  as a thesis, and again, even in S2° this
converts to CMLNXkMLNXk+1, and MTHM 7 holds so far 2LsMLNXn's being a
thesis is concerned. Note that MLNA δ 2 . . . δm is equivalent to MLKNbλ...
Nδm; distributing the ML over the m conjuncts gives us each of theMLNδi
as an S4 thesis, and the metatheorem holds so far as its final clause is con-
cerned.

We may now refer back to the completeness proof for K4. The critical
points for our present consideration are the movements from formula (14)
to formula (13), and from (19) to (17). These are the only non-Lewis-modal
steps in the proof, involving formula (15) to show that a formula of form

(23) KaKLMγLMβ

implies one of form

(24) KaLMKγβ

We shall show that (23) implies (24) in S4.9 by showing that the negation of
formula (24) implies the negation of (23); for clarity we will use the notation
of deduction from hypotheses; we will show that

(25) CaMLCγNβ H CaCLMγMLNβ

or equivalently

(26) CaMLCγNβ, α, LMγ μ MLNβ

holds in S4.9. First of all, since the formula for which the construction was
begun is an S5 thesis, by MTHM 7 we have

(27) μ MLCaCLMγMLNβ
(28) μ CLMγMLCaMLNβ (27), S4.2
(29) LMγ Hyp.
(30) MLCaMLNβ (29), (28), PC
(31) CaMLCγNβ Hyp.
(32) a Hyp.
(33) MLCγNβ (31), (32), PC
(34) CLMγLMNβ (33), S4.2
(35) LMNβ (34), (29), PC

We now note that the suggested axiom for S4.9 is formula (22); with the
substitutions q/Nβ and p/a, it is

(36) & LMNβCMLCaMLNβCaMLNβ
(37) CaMLNβ (36), (35), (30), Sl°
(38) MLNβ (37), (32), PC

By the deduction theorem, we now may establish that the negation of (24)
implies that of (23), and so that (23) implies (24) as required. The rest of
the proof follows just as does the proof that Group Π is characteristic of
K4; no non-Lewis-modal transformations are needed; it will then follow that
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MTHM 8: S4.4 + (22) = S4.9, that is, S5 Π K4.

Formula (22) is handy for the proof above, but it is not as simple as it
might be; for the following, we might appeal to the above result for S4.9 or
do the following in S4.9:

(39) t&MLCNpMLqCNpCLMqMLq (22) p/Np, Sl°
(40) t&MLpMLCNpr S2°
(41) <&MLpCNpCLMqMLq (39), (40), Sl°
(42) ACMLppCLMqMLq (41), Sl°

Formula (42) yields (41) in the field of S4.2. It is interesting to note that
(42) reveals S4.9 to be "unreasonable in the sense of Hallden" [4]; it is a
thesis which is a disjunction neither of whose disjuncts are theses and
whose disjuncts have no variables in common.

Since (42)'s left disjunct shares no variables with the right, and since
the left disjunct would, if added to S4, complete it to S5, it will be the case
that if a is an S5 thesis, then AaCLMqMLq will be provable in S4.4 + (42);
indeed, LAaCLMqMLq will be provable therein. Now formula (22) is itself
an S5 thesis, and so

(43) LACLMqCMLCpMLqCpMLqCLMqMLq

is provable in S4.4 + (42). By Sl°, specifically by CLACpCqCrsCps&pCqCrs,
formula (43) leads to formula (22), and so S4.4 + (42) = S4.9; but this system
is Schumm's [7] S4.7, and our S4.9 = his S4.7. Since this system is a limit-
ing system in the sense that there are no systems properly between it and
S5, we propose that its name be standardized as S4.9.

Now note the formula

(44) S MKpqCMKpNqCMLpLp

This formula is a thesis of S4.9, for it is verified by Group II and is an S5
theorem. Furthermore, it is a theorem of the system VI, which is S4 +
ALpA&pq<&pNq [10]; as shown in [10], S4 + &MKpqCMKpNqLp gives VI also.

(45) ^MLpCLMqMKpq S4
(46) (gMLpCLMqCMKpNqCMLpLp (44), (45), Sl°

By Sl° we drop the second MLp in (46) as redundent, and transpose the
MKpNq and the Lp, giving

(47) <£ MLpCLMqCNLp&pq
(48) <ίMLpCLMqCNp(&pq (47), SI
(49) £<gpqCMLpMLq S3°
(50) (ίMLpCLMqCNpCMLpMLq (48), (49), Sl°
(51) ^MLpCNpCLMqMLq (50), Sl°

This last formula transforms in the field of Sl° to (42), which when added to
S4.4 gives S4.9; S4.4 + 44, then, gives S4.9, and S4.9 is contained in VI. We
thus note that not only are all proper subsystems of S5 contained in K4, they
are contained in VI as well. That K4 contains VI was established by
Thomas [11] and follows easily from our completeness result for K4.
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Another formula we might consider is:

(52) (ZLMpCLMqCMKpqLMKpq

This is clearly in S4.9 (SMKpqLMKpq is an obvious S5 thesis and (52) is
verified by Group Π). On the other hand, it fails in all versions of the end
of the world matrix of three instants or more; in the eight-valued version
above: CLMΊCLMZCMKIZLMKIZ = CL1CL1CM4LM4 = C1C1C4L4 = C1C48
= 5. Let us say, then, that S4.4 + (52) = S4.6.

In [10] it is shown that D (S4.3.1) is properly contained in S4.4, and in
[12] it is shown that S4.3.2, which is S4 + A&LpqCMLqp, is also properly
contained in S4.4. The matrices used to show that the inclusions are proper
and that D and S4.3.2 are distinct are both displayed in [12, p. 297]. It will
be noted that each of these matrices verifies the non-Lewis modal formula

(53) SLMpMLp

whose addition to S4.4 gives the system K4 [9]. Both K3.1 (= D + (53)) and
K3.2 (= S4.3.2 + (53)) are then properly contained in K4, and are themselves
distinct. Now K4, K3.1, and K3.2 clearly contain the formula

(54) ^LMpCLMqLMKpq

as a thesis, and so all have (52) as a thesis, and K4 contains S4.6. But if
the addition of (52) to D or to S4.3.2 extend either of those systems to S4.6,
then the addition of (53) to D or to S4.3.2 would extend the respective sys-
tem to K4, which by the above it does not. Call D + (52) S4.3.3 and S4.3.2 +
(52) S4.3.4. These two systems are then properly contained in S4.6.

Now let us add to S4 either the formula

(55) ZCpLMpCCqLMqCMKpqLMKpq

or

(5 6) £ CpLMqCCqLMpCMKpqLMKpq

By Sl°, ultimately by the thesis ZpCqp, each of these is transformable to
formula (52), ZLMpCLMqCMKpqLMKpq. Again by Sl°, here ultimately by
(gNpCpq, each of these formulas transforms to

(57) ZNpCNqCMKpqLMKpq

With the substitution q/p, (57) reduces in the field of Sl° to

(58) ZNpCMpLMp

which when added to S4 gives S4.4. We have thus established that S4 plus
either (55) or (56) contains S4.6.

Let us now assume S4.4 + (52). In what follows we shall make use of a
deduction from hypotheses, as the proof directly from the axioms involves
formulas that are fairly long, making such a proof more difficult to follow.
What we wish to show is that

CpLMp, CqLMq9 MKpq \- LMKpq



SYSTEMS IN THE NEIGHBORHOOD OF S4.4 355

holds in S4.4 plus (52), and that it holds as well when CpLMp ^nά CqLMq
are replaced respectively by CpLMq and CqLMp.

(59) MKpq Hyp.
(60) CMKpqCNKpqLMKpq S4.4
(61) CNKpqLMKpq (59), (60), PC
(62) CNpLMKpq (61), PC
(63) CNqLMKpq (61), PC
(64) CpLMp Hyp.
(65) CqLMq Hyp.
Let us note that what follows holds equally well with (64) as CpLMq and (65)

. as CqLMp.

(66) CLMpCLMqCMKpqLMKpq (52), Sl°
(67) CpCqCMKpqLMKpq (64), (65), (66), PC
(68) CpCqLMKpq (67), (59), PC
(69) CNpCqLMKpq (62), PC
(70) CqLMKpq (68), (69), PC
(71) LMKpq (70), (63), PC

We have thus established that LMKpq follows from the hypotheses CpLMp,
CqLMq, and MKpq or from CpLMq, CqLMp, and MKpq in the system S4.4 +
(52). By the deduction theorem as it holds in S4, then, (55) and (56) are both
provable here, and S4.6 = S4.4 + (52) = S4 + (55) = S4 + (56).

We now summarize the systems we have been discussing and the rela-
tionships between them. Assuming standard axiomatizations of the well-
known S4, S4.2, S4.3, and S5, the other systems are as follows:

D (S4.3.1) = S4.3 + (Z(g&pLppCMLpp

54.3.2 = S4 + A&LpqCMLqp
54.3.3 = D + (52), CLMpCLMqCMKpqLMKpq
54.3.4 = S4.3.2 + (52)

S4.4 = S4 + (ZpCMLpLp
S4.6 = S4. i+ (52), or

= S4 + (55), CCpLMpCCqLMqCMKpqLMKpq, or
= S4 + (56), (£CpLMqCCqLMpCMKpqLMKpq

S4.9 = S4.4 + (42), ACMLppCLMqMLq, or
= S4.4 + (22), (gLMqCMLCpMLqCpMLq, or
= S4.4 + (44), CMKpqCMKpNqCMLpLp, or
= S4 + (21), A&MLpLp&MLMqCqLq

VI = S4 + ALpA&pq&pNq
V2 = S5 + ALpA&pq&pNq [8]
K3 = S4.3 + (53), CLMpMLp

K3.1 = D + (53)
K3.2 = S4.3.2 + (53)

K4 = S4.4 + (53)

The following diagram gives the relationships between these systems as
established in this paper. Note that the question of whether or not S4.9
properly contains S4.6 remains open; otherwise, all containments as
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indicated by arrows are established to be proper. Systems to the left of the
solid line are non-Lewis-modal; those to the left of the broken line are in-
compatible with S5.

\ \

\ / S4.9

K4 N, ^ ^ S 4 . β -S4.4

N ^ X ^ ^ v |̂ S4.3.3 -D I

>v K3.1-^^"s4.3.4 — S4.3.2

K 3 . 2 - - ^ ^ < V /

K3 - ^ - -S4.3

^ v S4.2

^ v ^ ^ S 4

In addition to and related to the question of whether or not the system S4.9
contains S4.6 properly is the question of whether there are any systems
properly between S4.4 and S4.9. Further, we know that there are no sys-
tems properly between S4.9 and S5. But are there any properly between
S4.9 and VI ? or between VI and V2 ? or between VI and K4 ? My immediate
guess is that these are problems which will not yield too easily.
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