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TWO NOTES ON VECTOR SPACES WITH RECURSIVE OPERATIONS

J. C. E. DEKKER

In [1] the author studied an tf0-dimensional vector space UF over a
countable field F; it consists of an infinite recursive set εF of numbers (i.e.,
non-negative integers), an operation + from εF x εF into εF and an operation
• from F x εF into εF. If the field F is identified with a recursive set, both
+ and are partial recursive functions. Let β be a subset of εF . We call β
a, repere, if it is linearly independent; β is an a^repere, if it is included in
a r .e. repere. A subspace V of UF is an a-space, if it has at least one a-
basis, i.e., at least one basis which is also an α-repere. We write c for the
cardinality of the continuum. It can be shown [l,pp. 367, 385, 386 and 2, §2]
that among the c subspaces of ΊΪF there are c which are α-spaces and c
which are not. The present paper* contains improvements of two results
obtained in [1]. Henceforth the notations and terminology of [1] will be used.

1. HAMILTON'S THEOREM. Every two α-bases of an isolic α-space
are recursively equivalent. This result [1, p. 375, Corollary 2] was
strengthened by A. G. Hamilton [2] to:

every two a-bases of any a-space are recursively equivalent.

This means that dimαy can be defined for any α-space V. The following
proof is shorter than Hamilton's; it is a modification of the proof of Tl in

Proof. Let β and y be α-bases of the α-space V, say β c β, γ c y,
where β and y are r.e. reperes. If V is finite-dimensional we are done,
hence we suppose that dim V = No; thus β,β,γ and y are infinite sets. We
have V = L(β) = L(γ), V < L(β), V ^ L(γ). Note that L(β)_need not equal L(γ).
There is no loss of generality in assuming that β c L(γ). For suppose this
were not the case; take β0 = β Π L(γ); then β c β0, where β0 is a r .e. repere
included in L(γ). Assume therefore that β c L(γ). Put y* =~γ Π L(β), then

β C j8 C L(γ), γ c γ * c γ, y* c L(β),
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where β, y* and y are infinite r.e. reperes. Let c»be a one-to-one recur-
sive function ranging over y*. Define the sequences {βn}9 {βj and the func-
tion bn* as in [1]; statements (i'), (iif), (iiiO again hold for all n, and can be
proved in the same way1. Let p(x) be the function with domain y* which
mapscw onto bn*, for net; put β* =pbn*. Again, p(x) is a partial recursive
one-to-ojne function; it maps the r.e. set y* onto the r.e. subset β* of the
r.e. set β in such a way that

cntγ<->p(cn)eβ, for net.

The last relation implies that p(γ) = j3* Π β, hence p(γ) c β. Keeping in mind
that y* c L(β) < L(γ), one realizes that the set/>(y*), i.e., β* need not equal
β. We claim, however, that p(γ) - β. For suppose p(γ) ^ β, say beβ -p(γ).
Clearly,

/3-/>(y) =/3-(/3* n/3) = /3-/3*c/3-/3*,

hence 6eβ - β*; thus beβ - (60*,. . . , bn*),for net. If 6 were equal to c0, then
" l fr" would be the expression of c0 as a linear_combinationj)f elements in
β, hence b0* = b = c0. Similarly we see (using βn instead of β) that b = cn+ί

implies b*+1 = b = cn+1. Our hypothesis bψβ* therefore implies b ^ c«,for
net, h e n c e bff(c0,..., c n ) , f o r net. O n t h e o t h e r h a n d , beβaV- L ( γ ) ^
L(y*); let ^ be the largest number n such that b, when expressed as a linear
combination of elements in y*, has a non-zero coordinate w.r.t. cn. We now
have b eL(c0>... ,c^), δe/3 - fc0* , . . •, h*) and b^{c0,..., c^). This implies
the false statement that the set

Ak = []3-(&o*,...,δik*)]u(co,...,c ik)

is not a repere. Hence/>(y) + β must be false. Thus/>(y) = β and y ^ β.

2. R. E. SPACES. A space, i.e., a subspace of UFy is calledr.e., if it
is r.e. when considered as a set, i.e., (every space being non-empty), if it
is the range of a recursive function. According to [1, P3] a space is r.e. if
and only if it has a r.e. basis. This suggests that among r.e. spaces those
with a recursive basis might be of special interest. The following result
shows that this is not the case: every r.e. space has a recursive basis.
Before proving this proposition we shall introduce some notations and
terminology and discuss three lemmas.

If / is a function from ε into ε, its value at n will be denoted by "f(n)"
or <(fn" If α is a non-empty finite set, we write max a for its maximum.
Let σ c t F , qeσ, petp. Then σ.q stands for σ-(#), and G-q,ρ for σ.q \j(p).

DEFINITION. The reperes βλ and β2 are equivalent [written: ft. eq β2\

if I(|3i) = lXβ2).

DEFINITION. Let o cεp, qeσ, petp, where σ is a repere. Then the
element q of σ may be replaced by p, if σ.q>p is a basis of L(σ).

*We note the following misprints. In line 14 from the foot of p. 373, replace
"V" by "V" and in line 8 from the foot of p. 374, replace "β " by "/?".
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Assume σ c ε F , qeσ, petp, where σis a repere. If p = q, we have Q-q,p -
σ, hence q may be replaced by itself. Now assume that q may be replaced
by p, while p ί q\ then we have p fo, for otherwise σ.q>p would equal the
proper subset σ.q of σ and not be a basis of L(σ).

LEMMA LI. Letσ<zεF, qeσ,peεF, where σis a repere. Then the ele-
ment q of σ may be replaced by p if and only if (1) p eL(σ), and (2) when ex-
pressed as a linear combination of elements in σ, p has a non-zero
coordinate with respect to q.

LEMMA L2. For every number n there exists an effective procedure
which when applied to any given finite repere β of cardinality ^n yields a
unique finite repere β such that β eq β and all elements of β are ^ n.

LEMMA L3. Let V be a finite-dimensional space over a finite field F.
Then dim V >n implies max V>n.

Proofs of the Lemmas. LI holds by elementary linear algebra. To
establish L3 we assume card F = q, n^ 1, dim V^ ru Then card V- qn^
2n ^ w+1, hence V cannot be a subset of (0,.. .,n-l) and max V ^ n. Note
that L3 also follows from L2. For, since by hypothesis, V has a finite basis
of cardinality ^n, it also has a finite basis all of whose elements are ^-n\
again, max V ^ n. It remains to prove L2. Let a finite repere β of cardi-
nality ^n be given. If all elements of β are ^n (in particular, if βis
empty or n = 0), we take β = β. From now on we assume that n ^ 1 and that
β contains at least one number <w. Let β - (b0,... ,bt) with card β =t+l ^
n ^1; assume b0 < b±<... < bt thus bo< n. First consider the case that.F
is infinite. Let φ be the function from F into ε mentioned in [l, p. 363]. Put
rn = φ'^n), theni^ =(r0, rlf...), where r0 =0F, n = 1F. Define for 0 ^ k^t,

h = (μx)[rxbk > n\ bk = π(k)' h .

Since bk is a non-zero scalar multiple of b^, the set β = ( δ 0 , . . . , bt) satisfies
the requirements. Now assume that F is finite. Consider the set r =
(bo,bo+ bu . . . , bo+ bt). Since 0, bl9..., bt are distinct, so are bOf bo + bx,...,
bo+ bt, hence card r = t+1 > n. Also, b0 φ 0, for b0 belongs to a repere. Let
\<i<t\ then (bo,bi) is a repere, hence b0 + b{ φ 0. Since r consists of at
least n distinct non-zero numbers, τ contains at least one number ^ n. Put

J= {μx)[l < x^ t8z^bo+bx^ n\
b0 =bo + bi9 βf = (So, bλ, . . . , bt).

The element b0 of β may be replaced by the element b0 ^ n, and βf eq β. Re-
arrange the sequence bo,b19..., bt so that it becomes strictly increasing:
V < V < . . . < V E V -w we are done and put j§ = |8'. If bo

f <n we de-
fine So' in terms of bo

r as we defined b0 in terms of b0. Continuing this pro-
cedure we obtain (after at most t + 1 replacements) a repere β which
satisfies the requirements. Note that β is uniquely determined by j3.

PROPOSITION A. Every r.e. space has a recursive basis.

Proof. Let V be a r.e. space. Then Fhas a r.e. basis, say j3. If Fis
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finite-dimensional, J3 is a finite, hence recursive set. We therefore assume
that dim 7=N0; then β is an infinite r.e. set. Let bn be a one-to-one re-
cursive function ranging over β. If F is infinite, the function cn defined as
in the proof of [1, P8] ranges over a recursive basis of V. From now on
we suppose that F is finite. Define L& = L(b0 , . . . , bk) and

Mo = Lo, Mo = max Mo,
Mι = Lm(o)+2, ™i = max Ml9

M2 = Lm(0)+m(l)+4> m2 = m a x M2,

Using L3 we see that dim Lk = k +1 implies

mk+1 = max Lm(0)+,,.+m(k)+2(k+i) > ™k ,

while mo> 0, since (0) +• Lo. Thus mk is a strictly increasing recursive
function all of whose values are positive. Clearly, MQ ^ Mλ ̂  . . . and the
function mk being strictly increasing, Mo < Mx < . . . . It follows from
0 < mk< mk+1 that (mk9 mk+1) is a 2-element repere in Ml9 where Mi has
dimension mo+ 3 ̂  4; this repere can therefore be extended to an (mo+3)-
element basis of M± of the form

& = (m0, —-—--—- , mx).
rriQ + 1 n o s < m\

Using L2 we see that the (m0 + 1)-element repere βi-imo^mj) in Mx is
equivalent to a repere in Mx all of whose elements are ^ mo + l, but still
^ rriγ (since mλ = max Mj. Thus Mx has a basis of the type

mo + 1 nos between w0 and mi

The basis of M1 which is not only of type (*), but also has the lowest Godel
number under

k

G(ao,...,ak) = Tlpiai, a0 <a,< . . . < akf
1 = 0

is called the minimal basis of Mx; it can be effectively computed from the
basis (b0,..., bm(0)+2) of Λίx; let its enumeration according to size be

mo =co,c1,...,cO T(o)+2 =m1.

The {m0 + 3)-element repere (c0 , . . . , cm(0)+2) in Mx is also a repere in M2.
Since M2 has dimension ^z0 + mi + 5, it can be effectively extended to a
basis of M2 of the form

(**) ( c 0 , . . ,cm(0)+2, • ^ ^ ,m2),
mi + 1 nos between raj and m 2

in fact, to the minimal such basis of M2. Let its enumeration according to
size be

C 0 > > Cm(o)+29 C m(o)+3> > Cm(o)+m(l) +4 = ^ 2
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Continuing this procedure, we construct a strictly increasing recursive
function cn such that the set consisting of

<?o> > cm(o)+...+m(k)+2k - nik 9

is a basis of M&. Thus cn ranges over a recursive basis of the space
OO _ _

U Mk = L(bo,bl9...) = L(β) = V.
k=o

This completes the proof.
If a is a subset of εF we denote the Turing degree of a by Δ(α). Let

V = [a, +, •] be a space, i.e., a subspace of UF = [εF, +, ]. Then the Turing
degree of V [written: Δ v ] is defined as Δ(α). In particular, V is called
decidable, if Δ v = 0, i.e., if both V and UF - V (considered as sets, i.e., as
a and εF-a) are r.e. With every set β we can associate a space V such that
Av = Δ(β), namely the α-space_F = L[e(β)]; this is discussed in [1, p. 368].
Consider the case that V= L[e(σ)], where σ is a r.e., but not recursive set.
Then V is a r.e., but not decidable space; nevertheless, V has a recursive
basis according to Proposition A. It is therefore of some interest that we
can associate with every space V a unique basis TΓ such that Δv = Δ(π), the
so-called perfect basis of V. Consequently, a space is decidable if and only
if its perfect basis is recursive. We shall now discuss these matters in
more detail.

If σ is a set and n a number we shall write o[n\ for the set {yeσ\y^n}.

DEFINITION. A repere β is perfect, if

xe Uβ)<^-»xeL(β[x]}f for xeεF.

DEFINITION. A perfect basis of a space V is a basis of V which is
also a perfect repere.

As an example we mention the fact that the canonical basis η of UF [see
1, p. 365] is also the perfect basis of C/F;this is true for every choice of the
countable field F.

REMARK. Let p0,... ,pr and po,p19... be strictly increasing se-
quences and let P denote the class of all perfect reperes. Then

(po, - > Pr) € P<-»(Vn ^ r) [(A),... ,ρn) e P],
(p0, pl9. ..) € P<e->(Vn) [(p0, . . . fpn) e P].

PROPOSITION B. Every space V has exactly one perfect basis ir.
Moreover, Δv = Δ(τr).

Proof Let F be any space. If V = (0), it only has the empty set as
basis and this basis is perfect. Now assume V φ (0). Define

p0 =(μx)[0<xbxeV\
pn+ι = (μx)[pn<x&xeV& xj L(p09 ...,/>«)],

v = (Po>~-,Pk-i), if dim F = ^ ^ 1,
(Po,Pi,-- ), if dim 7=«o.
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It is readily proved that π is a perfect basis of Vand the only such basis. It
follows from the definition of p0,... ,pk-i or p07pu . . . in terms of Fthat π
is Turing reducible to V. It remains to be proved that Fis Turing reduc-
ible to π. Suppose that r is a finite repere. Then we have for xeεP,

ί xeτ
or

T u (x) is not a repere.

Given a finite set σ we can effectively test whether σis a repere [1, P2].
Thus it follows from (*) that given a number x and a finite repere r, we can
effectively test xeL(τ). We now conclude from

x e V<-j>xeL(τi[x]), for xeεF,

that V is Turing reducible to π.

REMARK. Let a c εF. In discussing the decision problem of a we have
only considered elements of εF. This is justified, since εF is a recursive
set.
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