TWO NOTES ON VECTOR SPACES WITH RECURSIVE OPERATIONS

J. C. E. DEKKER

In [1] the author studied an \aleph_0 -dimensional vector space \overline{U}_F over a countable field F; it consists of an infinite recursive set ε_F of numbers (i.e., non-negative integers), an operation + from $\varepsilon_F \times \varepsilon_F$ into ε_F and an operation \cdot from $F \times \varepsilon_F$ into ε_F . If the field F is identified with a recursive set, both + and \cdot are partial recursive functions. Let β be a subset of ε_F . We call β a *repère*, if it is linearly independent; β is an *a*-repère, if it is included in a r.e. repère. A subspace V of \overline{U}_F is an *a*-space, if it has at least one *a*-basis, i.e., at least one basis which is also an *a*-repère. We write c for the cardinality of the continuum. It can be shown [1, pp. 367, 385, 386 and 2, §2] that among the c subspaces of \overline{U}_F there are c which are *a*-spaces and c which are not. The present paper* contains improvements of two results obtained in [1]. Henceforth the notations and terminology of [1] will be used.

1. HAMILTON'S THEOREM. Every two α -bases of an *isolic* α -space are recursively equivalent. This result [1, p. 375, Corollary 2] was strengthened by A. G. Hamilton [2] to:

every two α -bases of any α -space are recursively equivalent.

This means that $\dim_{\alpha} V$ can be defined for any α -space V. The following proof is shorter than Hamilton's; it is a modification of the proof of T1 in [1].

Proof. Let β and γ be α -bases of the α -space V, say $\beta \subset \overline{\beta}, \gamma \subset \overline{\gamma}$, where $\overline{\beta}$ and $\overline{\gamma}$ are r.e. repères. If V is finite-dimensional we are done, hence we suppose that dim $V = \aleph_0$; thus $\beta, \overline{\beta}, \gamma$ and $\overline{\gamma}$ are infinite sets. We have $V = L(\beta) = L(\gamma), V \leq L(\overline{\beta}), V \leq L(\overline{\gamma})$. Note that $L(\overline{\beta})$ need not equal $L(\overline{\gamma})$. There is no loss of generality in assuming that $\overline{\beta} \subset L(\overline{\gamma})$. For suppose this were not the case; take $\beta_0 = \overline{\beta} \cap L(\overline{\gamma})$; then $\beta \subset \beta_0$, where β_0 is a r.e. repère included in $L(\overline{\gamma})$. Assume therefore that $\overline{\beta} \subset L(\overline{\gamma})$. Put $\gamma^* = \overline{\gamma} \cap L(\overline{\beta})$, then

$$\beta \subset \overline{\beta} \subset L(\overline{\gamma}), \ \gamma \subset \gamma \ \ast \subset \ \overline{\gamma}, \ \gamma^{\ast} \subset \ L(\overline{\beta}),$$

^{*}Research supported by NSF grant GP-20134.

where $\overline{\beta}$, γ^* and $\overline{\gamma}$ are infinite r.e. repères. Let c_n be a one-to-one recursive function ranging over γ^* . Define the sequences $\{\overline{\beta}_n\}$, $\{\beta_n\}$ and the function b_n^* as in [1]; statements (i'), (ii'), (iii') again hold for all n, and can be proved in the same way¹. Let p(x) be the function with domain γ^* which maps c_n onto b_n^* , for $n \in \varepsilon$; put $\beta^* = \rho b_n^*$. Again, p(x) is a partial recursive one-to-one function; it maps the r.e. set γ^* onto the r.e. subset β^* of the r.e. set $\overline{\beta}$ in such a way that

$$c_n \in \gamma \iff p(c_n) \in \beta$$
, for $n \in \varepsilon$.

The last relation implies that $p(\gamma) = \beta^* \cap \beta$, hence $p(\gamma) \subset \beta$. Keeping in mind that $\gamma^* \subset L(\overline{\beta}) \leq L(\overline{\gamma})$, one realizes that the set $p(\gamma^*)$, i.e., β^* need not equal $\overline{\beta}$. We claim, however, that $p(\gamma) = \beta$. For suppose $p(\gamma) \subset \beta$, say $b \in \beta - p(\gamma)$. Clearly,

$$\beta - p(\gamma) = \beta - (\beta^* \cap \beta) = \beta - \beta^* \subset \overline{\beta} - \beta^*,$$

hence $b \epsilon \overline{\beta} - \beta^*$; thus $b \epsilon \overline{\beta} - (b_0^*, \ldots, b_n^*)$, for $n \epsilon \epsilon$. If b were equal to c_0 , then "1.b" would be the expression of c_0 as a linear combination of elements in $\overline{\beta}$, hence $b_0^* = b = c_0$. Similarly we see (using $\overline{\beta}_n$ instead of $\overline{\beta}$) that $b = c_{n+1}$ implies $b_{n+1}^* = b = c_{n+1}$. Our hypothesis $b \notin \beta^*$ therefore implies $b \neq c_n$, for $n \epsilon \epsilon$, hence $b \notin (c_0, \ldots, c_n)$, for $n \epsilon \epsilon$. On the other hand, $b \epsilon \beta \subset V = L(\gamma) \leq L(\gamma^*)$; let k be the largest number n such that b, when expressed as a linear combination of elements in γ^* , has a non-zero coordinate w.r.t. c_n . We now have $b \epsilon L(c_0, \ldots, c_k)$, $b \epsilon \overline{\beta} - (b_0^*, \ldots, b_k^*)$ and $b \notin (c_0, \ldots, c_k)$. This implies the false statement that the set

$$\overline{\beta}_k = [\overline{\beta} - (b_0^*, \ldots, b_k^*)] \cup (c_0, \ldots, c_k)$$

is not a repère. Hence $p(\gamma) \stackrel{\frown}{}_{+} \beta$ must be false. Thus $p(\gamma) = \beta$ and $\gamma \simeq \beta$.

2. R. E. SPACES. A space, i.e., a subspace of \overline{U}_F , is called *r.e.*, if it is r.e. when considered as a set, i.e., (every space being non-empty), if it is the range of a recursive function. According to [1, P3] a space is r.e. if and only if it has a r.e. basis. This suggests that among r.e. spaces those with a *recursive* basis might be of special interest. The following result shows that this is not the case: every r.e. space has a recursive basis. Before proving this proposition we shall introduce some notations and terminology and discuss three lemmas.

If f is a function from ε into ε , its value at n will be denoted by "f(n)" or " f_n ". If α is a non-empty finite set, we write max α for its maximum. Let $\sigma \subset \varepsilon_F$, $q \in \sigma$, $p \in \varepsilon_F$. Then σ_{-q} stands for $\sigma_{-(q)}$, and $\sigma_{-q,p}$ for $\sigma_{-q} \cup (p)$.

DEFINITION. The repères β_1 and β_2 are equivalent [written: $\beta_1 \text{ eq } \beta_2$], if $L(\beta_1) = L(\beta_2)$.

DEFINITION. Let $\sigma \subset \varepsilon_F$, $q \in \sigma$, $p \in \varepsilon_F$, where σ is a repère. Then the element q of σ may be replaced by p, if $\sigma_{-q,p}$ is a basis of $L(\sigma)$.

¹We note the following misprints. In line 14 from the foot of p. 373, replace " \overline{V} " by "V" and in line 8 from the foot of p. 374, replace " β " by " $\overline{\beta}$ ".

Assume $\sigma \subset \varepsilon_F$, $q \in \sigma$, $p \in \varepsilon_F$, where σ is a repère. If p = q, we have $\sigma_{-q,p} = \sigma$, hence q may be replaced by itself. Now assume that q may be replaced by p, while $p \neq q$; then we have $p \notin \sigma$, for otherwise $\sigma_{-q,p}$ would equal the proper subset σ_{-q} of σ and not be a basis of $L(\sigma)$.

LEMMA L1. Let $\sigma \subset \varepsilon_F$, $q \in \sigma$, $p \in \varepsilon_F$, where σ is a repère. Then the element q of σ may be replaced by p if and only if (1) $p \in L(\sigma)$, and (2) when expressed as a linear combination of elements in σ , p has a non-zero coordinate with respect to q.

LEMMA L2. For every number *n* there exists an effective procedure which when applied to any given finite repère β of cardinality $\geq n$ yields a unique finite repère $\hat{\beta}$ such that $\hat{\beta} \in \beta$ and all elements of $\hat{\beta}$ are $\geq n$.

LEMMA L3. Let V be a finite-dimensional space over a finite field F. Then dim $V \ge n$ implies max $V \ge n$.

Proofs of the Lemmas. L1 holds by elementary linear algebra. To establish L3 we assume card F = q, $n \ge 1$, dim $V \ge n$. Then card $V = q^n \ge 2^n \ge n+1$, hence V cannot be a subset of $(0, \ldots, n-1)$ and max $V \ge n$. Note that L3 also follows from L2. For, since by hypothesis, V has a finite basis of cardinality $\ge n$, it also has a finite basis all of whose elements are $\ge n$; again, max $V \ge n$. It remains to prove L2. Let a finite repère β of cardinality $\ge n$ be given. If all elements of β are $\ge n$ (in particular, if β is empty or n = 0), we take $\hat{\beta} = \beta$. From now on we assume that $n \ge 1$ and that β contains at least one number < n. Let $\beta = (b_0, \ldots, b_t)$ with card $\beta = t+1 \ge n \ge 1$; assume $b_0 < b_1 < \ldots < b_t$; thus $b_0 < n$. First consider the case that F is infinite. Let ϕ be the function from F into ε mentioned in [1, p. 363]. Put $r_n = \phi^{-1}(n)$, then $F = (r_0, r_1, \ldots)$, where $r_0 = 0_F$, $r_1 = 1_F$. Define for $0 \le k \le t$,

$$i_k = (\mu x) [r_x b_k \ge n], \quad b_k = r_{i(k)} \cdot b_k.$$

Since \hat{b}_k is a non-zero scalar multiple of b_k , the set $\hat{\beta} = (\hat{b}_0, \ldots, \hat{b}_t)$ satisfies the requirements. Now assume that F is finite. Consider the set $\tau = (b_0, b_0 + b_1, \ldots, b_0 + b_t)$. Since $0, b_1, \ldots, b_t$ are distinct, so are $b_0, b_0 + b_1, \ldots, b_0 + b_t$, hence card $\tau = t+1 \ge n$. Also, $b_0 \ne 0$, for b_0 belongs to a repère. Let $1 \le i \le t$; then (b_0, b_i) is a repère, hence $b_0 + b_i \ne 0$. Since τ consists of at least n distinct non-zero numbers, τ contains at least one number $\ge n$. Put

$$i = (\mu x) [1 \le x \le t \& b_0 + b_x \ge n],$$

$$\hat{b}_0 = b_0 + b_i, \qquad \beta' = (\hat{b}_0, b_1, \dots, b_i).$$

The element b_0 of β may be replaced by the element $\hat{b}_0 \ge n$, and $\beta' \neq \beta$. Rearrange the sequence $\hat{b}_0, b_1, \ldots, b_t$ so that it becomes strictly increasing: $b_0' < b_1' < \ldots < b_t'$. If $b_0' \ge n$ we are done and put $\hat{\beta} = \beta'$. If $b_0' < n$ we define \hat{b}_0' in terms of b_0' as we defined \hat{b}_0 in terms of b_0 . Continuing this procedure we obtain (after at most t + 1 replacements) a repère $\hat{\beta}$ which satisfies the requirements. Note that $\hat{\beta}$ is uniquely determined by β .

PROPOSITION A. Every r.e. space has a recursive basis.

Proof. Let \overline{V} be a r.e. space. Then \overline{V} has a r.e. basis, say $\overline{\beta}$. If \overline{V} is

finite-dimensional, $\overline{\beta}$ is a finite, hence recursive set. We therefore assume that dim $\overline{V} = \aleph_0$; then $\overline{\beta}$ is an infinite r.e. set. Let b_n be a one-to-one recursive function ranging over $\overline{\beta}$. If F is infinite, the function \overline{c}_n defined as in the proof of [1, P8] ranges over a recursive basis of \overline{V} . From now on we suppose that F is finite. Define $L_k = L(b_0, \ldots, b_k)$ and

$M_0 = L_0$,	$m_0 = \max M_0$,
$M_1 = L_{m(0)+2}$,	$m_1 = \max M_1$,
$M_2 = L_{m(0)+m(1)+4}$,	$m_2 = \max M_2$,
•	•
•	•
•	•

Using L3 we see that dim $L_k = k + 1$ implies

$$m_{k+1} = \max L_{m(0)+\ldots+m(k)+2(k+1)} > m_k$$
,

while $m_0 > 0$, since $(0) \stackrel{\subset}{+} L_0$. Thus m_k is a strictly increasing recursive function all of whose values are positive. Clearly, $M_0 \leq M_1 \leq \ldots$ and the function m_k being strictly increasing, $M_0 < M_1 < \ldots$. It follows from $0 < m_k < m_{k+1}$ that (m_k, m_{k+1}) is a 2-element repère in M_1 , where M_1 has dimension $m_0 + 3 \geq 4$; this repère can therefore be extended to an (m_0+3) element basis of M_1 of the form

$$\beta_1 = (m_0, \underbrace{\dots}_{m_0 + 1 \text{ nos } < m_1}, m_1).$$

Using L2 we see that the $(m_0 + 1)$ -element repère $\beta_1 - (m_0, m_1)$ in M_1 is equivalent to a repère in M_1 all of whose elements are $\geq m_0 + 1$, but still $\leq m_1$ (since $m_1 = \max M_1$). Thus M_1 has a basis of the type

(*)
$$(m_0, \underbrace{m_0 + 1 \text{ nos between } m_0 \text{ and } m_1}_{m_0 + 1 \text{ nos between } m_0 \text{ and } m_1}, m_1)$$

The basis of M_1 which is not only of type (*), but also has the lowest Gödel number under

$$G(a_0,\ldots,a_k) = \prod_{i=0}^k p_i^{a_i}, \qquad a_0 < a_1 < \ldots < a_k,$$

is called the *minimal* basis of M_1 ; it can be effectively computed from the basis $(b_0, \ldots, b_{m(0)+2})$ of M_1 ; let its enumeration according to size be

$$m_0 = c_0, c_1, \ldots, c_{m(0)+2} = m_1$$

The (m_0+3) -element repère $(c_0, \ldots, c_{m(0)+2})$ in M_1 is also a repère in M_2 . Since M_2 has dimension $m_0 + m_1 + 5$, it can be effectively extended to a basis of M_2 of the form

in fact, to the minimal such basis of M_2 . Let its enumeration according to size be

$$C_0, \ldots, C_{m(0)+2}, C_{m(0)+3}, \ldots, C_{m(0)+m(1)+4} = m_2.$$

Continuing this procedure, we construct a strictly increasing recursive function c_n such that the set consisting of

$$C_0, \ldots, C_{m(0)+\ldots+m(k)+2k} = m_k,$$

is a basis of M_k . Thus c_n ranges over a recursive basis of the space

$$\bigcup_{k=0}^{\infty} M_k = L(b_0, b_1, \ldots) = L(\overline{\beta}) = \overline{V}.$$

This completes the proof.

If α is a subset of ε_F we denote the Turing degree of α by $\Delta(\alpha)$. Let $V = [\alpha, +, \cdot]$ be a space, i.e., a subspace of $\overline{U}_F = [\varepsilon_F, +, \cdot]$. Then the *Turing degree of* V [written: Δ_V] is defined as $\Delta(\alpha)$. In particular, V is called *decidable*, if $\Delta_V = 0$, i.e., if both V and $\overline{U}_F - V$ (considered as sets, i.e., as α and $\varepsilon_F - \alpha$) are r.e. With every set β we can associate a space V such that $\Delta_V = \Delta(\beta)$, namely the α -space $V = L[e(\beta)]$; this is discussed in [1, p. 368]. Consider the case that $\overline{V} = L[e(\sigma)]$, where $\overline{\sigma}$ is a r.e., but not recursive set. Then \overline{V} is a r.e., but not decidable space; nevertheless, \overline{V} has a recursive basis according to Proposition A. It is therefore of some interest that we can associate with every space V a unique basis π such that $\Delta_V = \Delta(\pi)$, the so-called *perfect* basis of V. Consequently, a space is decidable if and only if its perfect basis is recursive. We shall now discuss these matters in more detail.

If σ is a set and *n* a number we shall write $\sigma[n]$ for the set $\{y \in \sigma | y \leq n\}$.

DEFINITION. A repère β is *perfect*, if

 $x \in L(\beta) \iff x \in L(\beta[x]), \text{ for } x \in \varepsilon_F.$

DEFINITION. A *perfect* basis of a space V is a basis of V which is also a perfect repère.

As an example we mention the fact that the canonical basis η of \overline{U}_F [see 1, p. 365] is also the perfect basis of \overline{U}_F ; this is true for every choice of the countable field F.

REMARK. Let p_0, \ldots, p_r and p_0, p_1, \ldots be strictly increasing sequences and let P denote the class of all perfect repères. Then

$$(p_0, \ldots, p_n) \in P \longleftrightarrow (\forall n \leq r) [(p_0, \ldots, p_n) \in P], (p_0, p_1, \ldots) \in P \longleftrightarrow (\forall n) [(p_0, \ldots, p_n) \in P].$$

PROPOSITION B. Every space V has exactly one perfect basis π . Moreover, $\Delta_V = \Delta(\pi)$.

Proof. Let V be any space. If V = (0), it only has the empty set as basis and this basis is perfect. Now assume $V \neq (0)$. Define

$$p_{0} = (\mu x)[0 < x \& x \in V],$$

$$p_{n+1} = (\mu x)[p_{n} < x \& x \in V \& x \notin L(p_{0}, ..., p_{n})],$$

$$\pi = \begin{cases} (p_{0}, ..., p_{k-1}), & \text{if dim } V = k \ge 1, \\ (p_{0}, p_{1}, ...), & \text{if dim } V = \aleph_{0}. \end{cases}$$

It is readily proved that π is a perfect basis of V and the only such basis. It follows from the definition of p_0, \ldots, p_{k-1} or p_0, p_1, \ldots in terms of V that π is Turing reducible to V. It remains to be proved that V is Turing reducible to π . Suppose that τ is a finite repère. Then we have for $x \in \varepsilon_F$,

(*)
$$x \in L(\tau) \longleftrightarrow \begin{cases} x \in \tau \\ \text{or} \\ \tau \cup (x) \text{ is not a repère.} \end{cases}$$

Given a finite set σ we can effectively test whether σ is a repère [1, P2]. Thus it follows from (*) that given a number x and a finite repère τ , we can effectively test $x \in L(\tau)$. We now conclude from

$$x \in V \longleftrightarrow x \in L(\pi[x]), \text{ for } x \in \mathcal{E}_F,$$

that V is Turing reducible to π .

REMARK. Let $\alpha \subset \varepsilon_F$. In discussing the decision problem of α we have only considered elements of ε_F . This is justified, since ε_F is a recursive set.

REFERENCES

- [1] Dekker, J. C. E., "Countable vector spaces with recursive operations. Part I," *The Journal of Symbolic Logic*, vol. 34 (1969), pp. 363-387.
- [2] Hamilton, A. G., "Bases and α -dimensions of countable vector spaces with recursive operations," *The Journal of Symbolic Logic*, vol. 35 (1970), pp. 85-96.

Rutgers, The State University New Brunswick, New Jersey