Notre Dame Journal of Formal Logic
Volume XII, Number 3, July 1971 NDJFAM

TWO NOTES ON VECTOR SPACES WITH RECURSIVE OPERATIONS

J. C. E. DEKKER

In [1] the author studied an \aleph_{0}-dimensional vector space \bar{U}_{F} over a countable field F; it consists of an infinite recursive set ε_{F} of numbers (i.e., non-negative integers), an operation + from $\varepsilon_{F} \times \varepsilon_{F}$ into ε_{F} and an operation - from $F \times \varepsilon_{F}$ into ε_{F}. If the field F is identified with a recursive set, both + and are partial recursive functions. Let β be a subset of ε_{F}. We call β a repère, if it is linearly independent; β is an α-repère, if it is included in a r.e. repère. A subspace V of \bar{U}_{F} is an α-space, if it has at least one α basis, i.e., at least one basis which is also an α-repère. We write c for the cardinality of the continuum. It can be shown [1, pp. 367, 385, 386 and $2, \S 2$] that among the c subspaces of \bar{U}_{F} there are c which are α-spaces and c which are not. The present paper* contains improvements of two results obtained in [1]. Henceforth the notations and terminology of [1] will be used.

1. HAMILTON'S THEOREM. Every two α-bases of an isolic α-space are recursively equivalent. This result [1, p. 375, Corollary 2] was strengthened by A. G. Hamilton [2] to:
every two α-bases of any $\alpha-s p a c e$ are recursively equivalent.
This means that $\operatorname{dim}_{\alpha} V$ can be defined for any α-space V. The following proof is shorter than Hamilton's; it is a modification of the proof of T1 in [1].

Proof. Let β and γ be α-bases of the α-space V, say $\beta \subset \bar{\beta}, \gamma \subset \bar{\gamma}$, where $\bar{\beta}$ and $\bar{\gamma}$ are r.e. repères. If V is finite-dimensional we are done, hence we suppose that $\operatorname{dim} \quad V=\aleph_{0}$; thus $\beta, \bar{\beta}, \gamma$ and $\bar{\gamma}$ are infinite sets. We have $V=L(\beta)=L(\gamma), V \leq L(\bar{\beta}), V \leq L(\bar{\gamma})$. Note that $L(\bar{\beta})$ need not equal $L(\bar{\gamma})$. There is no loss of generality in assuming that $\bar{\beta} \subset L(\bar{\gamma})$. For suppose this were not the case; take $\beta_{0}=\bar{\beta} \cap L(\bar{\gamma})$; then $\beta \subset \beta_{0}$, where β_{0} is a r.e. repère included in $L(\bar{\gamma})$. Assume therefore that $\bar{\beta} \subset L(\bar{\gamma})$. Put $\gamma^{*}=\bar{\gamma} \cap L(\bar{\beta})$, then

$$
\beta \subset \bar{\beta} \subset L(\bar{\gamma}), \gamma \subset \gamma^{*} \subset \bar{\gamma}, \gamma^{*} \subset L(\bar{\beta})
$$

[^0]where $\bar{\beta}, \gamma^{*}$ and $\bar{\gamma}$ are infinite r.e. repères. Let c_{n} be a one-to-one recursive function ranging over γ^{*}. Define the sequences $\left\{\bar{\beta}_{n}\right\},\left\{\beta_{n}\right\}$ and the function $b_{n}{ }^{*}$ as in [1]; statements (i^{\prime}), (ii^{\prime}), (iii') again hold for all n, and can be proved in the same way ${ }^{1}$. Let $p(x)$ be the function with domain γ^{*} which maps c_{n} onto $b_{n}{ }^{*}$, for $n \in \varepsilon$; put $\beta^{*}=\rho b_{n}{ }^{*}$. Again, $p(x)$ is a partial recursive one-to-one function; it maps the r.e. set γ^{*} onto the r.e. subset β^{*} of the r.e. set $\bar{\beta}$ in such a way that
$$
c_{n} \in \gamma \leftrightarrow p\left(c_{n}\right) \in \beta \text {, for } n \in \varepsilon .
$$

The last relation implies that $p(\gamma)=\beta^{*} \cap \beta$, hence $p(\gamma) \subset \beta$. Keeping in mind that $\gamma^{*} \subset L(\bar{\beta}) \leq L(\bar{\gamma})$, one realizes that the set $p\left(\gamma^{*}\right)$, i.e., β^{*} need not equal $\bar{\beta}$. We claim, however, that $p(\gamma)=\beta$. For suppose $p(\gamma) \underset{+}{\subsetneq}$, say $b \in \beta-p(\gamma)$. Clearly,

$$
\beta-p(\gamma)=\beta-\left(\beta^{*} \cap \beta\right)=\beta-\beta^{*} \subset \bar{\beta}-\beta^{*}
$$

hence $b \epsilon \bar{\beta}-\beta^{*}$; thus $b \epsilon \bar{\beta}-\left(b_{0}^{*}, \ldots, b_{n}^{*}\right)$, for $n \epsilon \varepsilon$. If b were equal to c_{0}, then ' $1 \cdot b$ '" would be the expression of c_{0} as a linear combination of elements in $\bar{\beta}$, hence $b_{0}{ }^{*}=b=c_{0}$. Similarly we see (using $\bar{\beta}_{n}$ instead of $\bar{\beta}$) that $b=c_{n+1}$ implies $b_{n+1}^{*}=b=c_{n+1}$. Our hypothesis $b \notin \beta^{*}$ therefore implies $b \neq c_{n}$, for $n \in \varepsilon$, hence $b \notin\left(c_{0}, \ldots, c_{n}\right)$, for $n \epsilon \varepsilon$. On the other hand, $b \in \beta \subset V=L(\gamma) \leq$ $L\left(\gamma^{*}\right)$; let k be the largest number n such that b, when expressed as a linear combination of elements $\underline{i n} \gamma^{*}$, has a non-zero coordinate w.r.t. c_{n}. We now have $b \in L\left(c_{0}, \ldots, c_{k}\right), b \epsilon \bar{\beta}-\left(b_{0}{ }^{*}, \ldots, b_{k}{ }^{*}\right)$ and $b \notin\left(c_{0}, \ldots, c_{k}\right)$. This implies the false statement that the set

$$
\bar{\beta}_{k}=\left[\bar{\beta}-\left(b_{0}{ }^{*}, \ldots, b_{k}{ }^{*}\right)\right] \cup\left(c_{0}, \ldots, c_{k}\right)
$$

is not a repère. Hence $p(\gamma) \subsetneq \beta$ must be false. Thus $p(\gamma)=\beta$ and $\gamma \simeq \beta$.
2. R. E. SPACES. A space, i.e., a subspace of \bar{U}_{F}, is called r.e., if it is r.e. when considered as a set, i.e., (every space being non-empty), if it is the range of a recursive function. According to [1, P3] a space is r.e. if and only if it has a r.e. basis. This suggests that among r.e. spaces those with a recursive basis might be of special interest. The following result shows that this is not the case: every r.e. space has a recursive basis. Before proving this proposition we shall introduce some notations and terminology and discuss three lemmas.

If f is a function from ε into ε, its value at n will be denoted by " $f(n)$ " or "' f_{n} ". If α is a non-empty finite set, we write $\max \alpha$ for its maximum. Let $\sigma \subset \varepsilon_{F}, q \epsilon \sigma, p \in \varepsilon_{F}$. Then σ_{-q} stands for $\sigma-(q)$, and $\sigma_{-q, p}$ for $\sigma_{-q} \cup(p)$.

DEFINITION. The repères β_{1} and β_{2} are equivalent [written: β_{1} eq β_{2}], if $L\left(\beta_{1}\right)=L\left(\beta_{2}\right)$.

DEFINITION. Let $\sigma \subset \varepsilon_{F}, q \in \sigma, p \in \varepsilon_{F}$, where σ is a repère. Then the element q of σ may be replaced by p, if $\sigma_{-q, p}$ is a basis of $L(\sigma)$.

[^1]Assume $\sigma \subset \varepsilon_{F}, q \in \sigma, p \in \varepsilon_{F}$, where σ is a repère. If $p=q$, we have $\sigma_{-q, p}=$ σ, hence q may be replaced by itself. Now assume that q may be replaced by p, while $p \neq q$; then we have $p \notin \sigma$, for otherwise $\sigma_{-q, p}$ would equal the proper subset σ_{-q} of σ and not be a basis of $L(\sigma)$.

LEMMA L1. Let $\sigma \subset \varepsilon_{F}, q \in \sigma, p \in \varepsilon_{F}$, where σ is a repère. Then the element q of σ may be replaced by p if and only if (1) $p \in L(\sigma)$, and (2) whenexpressed as a linear combination of elements in σ, p has a non-zero coordinate with respect to q.

LEMMA L2. For every number n there exists an effective procedure which when applied to any given finite repère β of cardinality $\geq n$ yields a unique finite repère $\hat{\beta}$ such that $\hat{\beta}$ eq β and all elements of $\hat{\beta}$ are $\geq n$.

LEMMA L3. Let V be a finite-dimensional space over a finite field F. Then $\operatorname{dim} V \geq n$ implies $\max V \geq n$.

Proofs of the Lemmas. L1 holds by elementary linear algebra. To establish L3 we assume card $F=q, n \geq 1$, $\operatorname{dim} V \geq n$. Then card $V=q^{n} \geq$ $2^{n} \geq n+1$, hence V cannot be a subset of ($0, \ldots, n-1$) and max $V \geq n$. Note that L3 also follows from L2. For, since by hypothesis, V has a finite basis of cardinality $\geq n$, it also has a finite basis all of whose elements are $\geq n$; again, max $V \geq n$. It remains to prove L2. Let a finite repère β of cardinality $\geq n$ be given. If all elements of β are $\geq n$ (in particular, if β is empty or $n=0$), we take $\hat{\beta}=\beta$. From now on we assume that $n \geq 1$ and that β contains at least one number $<n$. Let $\beta=\left(b_{0}, \ldots, b_{t}\right)$ with card $\beta=t+1 \geq$ $n \geq 1$; assume $b_{0}<b_{1}<\ldots<b_{t}$; thus $b_{0}<n$. First consider the case that F is infinite. Let ϕ be the function from F into ε mentioned in [1, p. 363]. Put $r_{n}=\phi^{-1}(n)$, then $F=\left(r_{0}, r_{1}, \ldots\right)$, where $r_{0}=0_{F}, r_{1}=1_{F}$. Define for $0 \leq k \leq t$,

$$
i_{k}=(\mu x)\left[r_{x} b_{k} \geq n\right], \quad \hat{b}_{k}=r_{i(k)} \cdot b_{k} .
$$

Since \hat{b}_{k} is a non-zero scalar multiple of b_{k}, the set $\hat{\beta}=\left(\hat{b}_{0}, \ldots, \hat{b}_{t}\right)$ satisfies the requirements. Now assume that F is finite. Consider the set $\tau=$ $\left(b_{0}, b_{0}+b_{1}, \ldots, b_{0}+b_{t}\right)$. Since $0, b_{1}, \ldots, b_{t}$ are distinct, so are $b_{0}, b_{0}+b_{1}, \ldots$, $b_{0}+b_{t}$, hence card $\tau=t+1 \geq n$. Also, $b_{0} \neq 0$, for b_{0} belongs to a repère. Let $1 \leq i \leq t$; then (b_{0}, b_{i}) is a repère, hence $b_{0}+b_{i} \neq 0$. Since τ consists of at least n distinct non-zero numbers, τ contains at least one number $\geq n$. Put

$$
\begin{aligned}
i & =(\mu x)\left[1 \leq x \leq t \& b_{0}+b_{x} \geq n\right], \\
\hat{b}_{0} & =b_{0}+b_{i}, \quad \beta^{\prime}=\left(\hat{b}_{0}, b_{1}, \ldots, b_{t}\right) .
\end{aligned}
$$

The element b_{0} of β may be replaced by the element $\hat{b}_{0} \geq n$, and β^{\prime} eq β. Rearrange the sequence $\hat{b}_{0}, b_{1}, \ldots, b_{t}$ so that it becomes strictly increasing: $b_{0}{ }^{\prime}<b_{1}{ }^{\prime}<\ldots<b_{t}{ }^{\prime}$. If $b_{0}{ }^{\prime} \geq n$ we are done and put $\hat{\beta}=\beta^{\prime}$. If $b_{0}{ }^{\prime}<n$ we define $\hat{b}_{0}{ }^{\prime}$ in terms of $b_{0}{ }^{\prime}$ as we defined \hat{b}_{0} in terms of b_{0}. Continuing this procedure we obtain (after at most $t+1$ replacements) a repère $\hat{\beta}$ which satisfies the requirements. Note that $\hat{\beta}$ is uniquely determined by β.

PROPOSITION A. Every r.e. space has a recursive basis.
Proof. Let \bar{V} be a r.e. space. Then \bar{V} has a r.e. basis, say $\bar{\beta}$. If \bar{V} is
finite-dimensional, $\bar{\beta}$ is a finite, hence recursive set. We therefore assume that $\operatorname{dim} \bar{V}=\aleph_{0}$; then $\bar{\beta}$ is an infinite r.e. set. Let b_{n} be a one-to-one recursive function ranging over $\bar{\beta}$. If F is infinite, the function \bar{c}_{n} defined as in the proof of [1, P8] ranges over a recursive basis of \bar{V}. From now on we suppose that F is finite. Define $L_{k}=L\left(b_{0}, \ldots, b_{k}\right)$ and

$$
\begin{array}{ll}
M_{0}=L_{0}, & m_{0}=\max M_{0}, \\
M_{1}=L_{m(0)+2}, & m_{1}=\max M_{1}, \\
M_{2}=L_{m(0)+m(1)+4}, & m_{2}=\max M_{2}, \\
\vdots & \vdots
\end{array}
$$

Using L3 we see that dim $L_{k}=k+1$ implies

$$
m_{k+1}=\max L_{m}(0)+\ldots+m(k)+2(k+1)>m_{k}
$$

while $m_{0}>0$, since $(0) \subsetneq L_{0}$. Thus m_{k} is a strictly increasing recursive function all of whose values are positive. Clearly, $M_{0} \leq M_{1} \leq \ldots$ and the function m_{k} being strictly increasing, $M_{0}<M_{1}<\ldots$. It follows from $0<m_{k}<m_{k+1}$ that (m_{k}, m_{k+1}) is a 2 -element repère in M_{1}, where M_{1} has dimension $m_{0}+3 \geq 4$; this repère can therefore be extended to an ($m_{0}+3$)element basis of M_{1} of the form

$$
\beta_{1}=(m_{0}, \overbrace{m_{0}+1 \text { nos }<m_{1}}, m_{1}) .
$$

Using L2 we see that the $\left(m_{0}+1\right)$-element repère $\beta_{1}-\left(m_{0}, m_{1}\right)$ in M_{1} is equivalent to a repère in M_{1} all of whose elements are $\geq m_{0}+1$, but still $\leq m_{1}$ (since $m_{1}=\max M_{1}$). Thus M_{1} has a basis of the type

$$
\begin{equation*}
(m_{0}, \underbrace{}_{m_{0}+1 \text { nos between } m_{0} \text { and } m_{1}}, m_{1}) \tag{*}
\end{equation*}
$$

The basis of M_{1} which is not only of type (*), but also has the lowest Gödel number under

$$
G\left(a_{0}, \ldots, a_{k}\right)=\prod_{i=0}^{k} p_{i}^{a_{i}}, \quad a_{0}<a_{1}<\ldots<a_{k}
$$

is called the minimal basis of M_{1}; it can be effectively computed from the basis ($b_{0}, \ldots, b_{m(0)+2}$) of M_{1}; let its enumeration according to size be

$$
m_{0}=c_{0}, c_{1}, \ldots, c_{m(0)+2}=m_{1}
$$

The $\left(m_{0}+3\right)$-element repère $\left(c_{0}, \ldots, c_{m(0)+2}\right)$ in M_{1} is also a repère in M_{2}. Since M_{2} has dimension $m_{0}+m_{1}+5$, it can be effectively extended to a basis of M_{2} of the form

$$
\begin{equation*}
(c_{0}, \ldots, c_{m(0)+2}, \underbrace{}_{m_{1}+1 \text { nos between } m_{1} \text { and } m_{2}}, m_{2}), \tag{**}
\end{equation*}
$$

in fact, to the minimal such basis of M_{2}. Let its enumeration according to size be

$$
c_{0}, \ldots, c_{m(0)+2}, c_{m(0)+3}, \ldots, c_{m(0)+m(1)+4}=m_{2}
$$

Continuing this procedure, we construct a strictly increasing recursive function c_{n} such that the set consisting of

$$
c_{0}, \ldots, c_{m(0)+\ldots+m(k)+2 k}=m_{k},
$$

is a basis of M_{k}. Thus c_{n} ranges over a recursive basis of the space

$$
\bigcup_{k=0}^{\infty} M_{k}=L\left(b_{0}, b_{1}, \ldots\right)=L(\bar{\beta})=\bar{V} .
$$

This completes the proof.
If α is a subset of ε_{F} we denote the Turing degree of α by $\Delta(\alpha)$. Let $V=[\alpha,+, \cdot]$ be a space, i.e., a subspace of $\bar{U}_{F}=\left[\varepsilon_{F},+, \cdot\right]$. Then the Turing degree of V [written: Δ_{V}] is defined as $\Delta(\alpha)$. In particular, V is called decidable, if $\Delta_{V}=0$, i.e., if both V and $\bar{U}_{F}-V$ (considered as sets, i.e., as α and $\varepsilon_{F}-\alpha$) are r.e. With every set β we can associate a space V such that $\Delta_{V}=\Delta(\beta)$, namely the α-space $V=L[e(\beta)]$; this is discussed in [1, p. 368]. Consider the case that $\bar{V}=L[e(\bar{\sigma})]$, where $\bar{\sigma}$ is a r.e., but not recursive set. Then \bar{V} is a r.e., but not decidable space; nevertheless, \bar{V} has a recursive basis according to Proposition A. It is therefore of some interest that we can associate with every space V a unique basis π such that $\Delta_{V}=\Delta(\pi)$, the so-called perfect basis of V. Consequently, a space is decidable if and only if its perfect basis is recursive. We shall now discuss these matters in more detail.

If σ is a set and n a number we shall write $\sigma[n]$ for the set $\{y \in \sigma \mid y \leq n\}$.
DEFINITION. A repère β is perfect, if

$$
x \in L(\beta) \leftrightarrow x \in L(\beta[x]) \text {, for } x \in \varepsilon_{F} .
$$

DEFINITION. A perfect basis of a space V is a basis of V which is also a perfect repère.

As an example we mention the fact that the canonical basis η of \bar{U}_{F} [see 1, p. 365] is also the perfect basis of \bar{U}_{F}; this is true for every choice of the countable field F.

REMARK. Let p_{0}, \ldots, p_{r} and p_{0}, p_{1}, \ldots be strictly increasing sequences and let P denote the class of all perfect repères. Then

$$
\begin{gathered}
\left(p_{0}, \ldots, p_{r}\right) \in P \leftrightarrow(\forall n \leq r)\left[\left(p_{0}, \ldots, p_{n}\right) \in P\right], \\
\left(p_{0}, p_{1}, \ldots\right) \in P \leftrightarrow(\forall n)\left[\left(p_{0}, \ldots, p_{n}\right) \in P\right] .
\end{gathered}
$$

PROPOSITION B. Every space V has exactly one perfect basis π. Moreover, $\Delta_{V}=\Delta(\pi)$.

Proof. Let V be any space. If $V=(0)$, it only has the empty set as basis and this basis is perfect. Now assume $V \neq(0)$. Define

$$
\begin{aligned}
p_{0} & =(\mu x)[0<x \& x \in V], \\
p_{n+1} & =(\mu x)\left[p_{n}<x \& x \in V \& x \& L\left(p_{0}, \ldots, p_{n}\right)\right], \\
\pi & = \begin{cases}\left(p_{0}, \ldots, p_{k-1}\right), & \text { if } \operatorname{dim} V=k \geq 1, \\
\left(p_{0}, p_{1}, \ldots\right), & \text { if } \operatorname{dim} V=\aleph_{0} .\end{cases}
\end{aligned}
$$

It is readily proved that π is a perfect basis of V and the only such basis. It follows from the definition of p_{0}, \ldots, p_{k-1} or p_{0}, p_{1}, \ldots in terms of V that π is Turing reducible to V. It remains to be proved that V is Turing reducible to π. Suppose that τ is a finite repère. Then we have for $x \in \varepsilon_{F}$,

$$
x \in L(\tau) \leftrightarrow\left\{\begin{array}{l}
x \in \tau \tag{*}\\
\text { or } \\
\tau \cup(x) \text { is not a repère. }
\end{array}\right.
$$

Given a finite set σ we can effectively test whether σ is a repère [1, P2]. Thus it follows from (*) that given a number x and a finite repère τ, we can effectively test $x \in L(\tau)$. We now conclude from

$$
x \in V \leftrightarrow x \in L(\pi[x]), \text { for } x \in \varepsilon_{F},
$$

that V is Turing reducible to π.
REMARK. Let $\alpha \subset \varepsilon_{F}$. In discussing the decision problem of α we have only considered elements of ε_{F}. This is justified, since ε_{F} is a recursive set.

REFERENCES

[1] Dekker, J. C. E., "Countable vector spaces with recursive operations. Part I," The Journal of Symbolic Logic, vol. 34 (1969), pp. 363-387.
[2] Hamilton, A. G., "Bases and α-dimensions of countable vector spaces with recursive operations,' The Journal of Symbolic Logic, vol. 35 (1970), pp. 85-96.

Rutgers, The State University
New Brunswick, New Jersey

[^0]: *Research supported by NSF grant GP-20134.

[^1]: ${ }^{1}$ We note the following misprints. In line 14 from the foot of p .373 , replace ' \bar{V} ', by ' V '" and in line 8 from the foot of $p .374$, replace " β "' by ' $\bar{\beta}$ '. .

