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COMBINATORIAL OPERATORS AND THEIR
QUASI - INVERSES

VLADETA VUCKOVIC

1. Introduction. Combinatorial operators were introduced by J. Myhill
([l]> [2]) as a fundamental tool in the study of isols. A systematic exposi-
tion of those operators is given in the monograph [3] of J. Dekker, to which
we refer for the notations. In [3], Dekker proved the following

Theorem 1.1. Let φ be a combinatorial operator and φ"1 its quasi-inverse.
If φ is recursive, then φ(ε) is a recursively enumerable set, and there is a
partial recursive function χ, whose domain is φ(ε), such that

(1.1.) φ'1 (x) = pxω for all x e φ(ε).

In this paper we investigate the measure in which the existence of a
p.r. (partial recursive) function χ, such that φ~ι(x) = pχ(x) for all xeφ(ε),
determines the recursive character of the operator φ.

Besides the notations from [3], we shall use the following ones: <ω* ),
i = 0,1; , is the Post-enumeration of all r.e. (recursively enumerable)
sets; FR denotes the set of all r. (recursive) functions of one variable, and
FR denotes the set of all p.r. functions of one variable.

2. The Fundamental Theorem. Let φ be a combinatorial operator and φ0 its
dispersive operator. We shall say that φ (resp. φ0) is sub-effective iff (if
and only if) there is a disjoint r.e. sequence (ωφo(z ))2£ε, φoeFR, of r.e. sets
such that

(2.1.) φo(ρn) c ωφo(w)for all neε.

All theorems of this paper are, essentially, strengthenings of the fol-
lowing fundamental

Theorem 2.1. A combinatorial operator φ is sub-effective iff there is a
XeFR such that

(2.2.) φ'1 (x) = pχ(x),for allxeφ(ε).

Proof. Let φ be sub-effective and φ0 as in (2.1). Then, E =\j ωφo(/) is a

r.e. set and φ(ε) =jLJ φo(pn) cE (where φ0 is the dispersive operator of φ).
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Define XeFR as follows: the domain of X is E and, for every xe E, X(x) is the
unique n such that x e ωφo(w). We have the obvious implication

(2.3) xeφ(ε) -> xeωΨo(χ(x)).

By P. 7 of [3], we have

(2.4) xe φ(ε) -* (x e 0o(p«)<-> φ'Hx) = pw).

Thus, by (2.3) and (2.4)

xeφ(ε) -> (xeω^ixi^^φ^M = px{x))

which gives

φ~\x) = Pχu)for all xeφ(ε).

Conversely, suppose that φ is combinatorial and that there is a XeFR

such that φ"λ{x) = pX ( x )for all xeφ{ε). Let E be the domain of X. Define the
sets Ei by

Ei = {xeE\φ'x{x) = p j
= {xeE\pχω= p{}
= {xeE\x(x) = i} .

The sequence (Ei)i€ε is a disjoint r.e. sequence of r.e. sets. Let φocFR be
such that, for all ieε, Ei = ωφ^ ). Then, by (2.4)

φo(ρn) c ωφo(w)for all neφ(ε),

i.e. φ (resp. φ0) is a sub-effective combinatorial operator.

In [4] the author has introduced the notions of an almost r. set and of
an almost r.e. set. We show now the relation between almost r.e. sets and
sub-effective combinatorial operators.

Theorem 2.2. a) Let φ be a sub-effective combinatorial operator and φoits
dispersive operator. If, for every neε, φo(pn) is not empty, then φ(ε) con-
tains an infinite almost r.e. set.

b) For every infinite almost r.e. set A, there is a sub-effective com-
binatorial operator φ9such that,, for every neε, φo(pn) is not empty, and such
that A c φ(ε).

Proof. Define the function a as follows: a(i) is a chosen element of </>0(Pt)
Let X be as in the first part of the proof of Theorem 2.1. Then X(a(i)) = i
for all ieε. Thus, A = the range of a is an almost r.e. set and α""1 = xU
("X\A" means the restriction of X to A). To prove b), let A be an almost
r.e. set, and let a be a 1-1 function such that A = {a(i)\ieε}. Let XeFR be
such that a"1 = xU, and denote by E the domain of X. Define the dispersive
operator φ0: Q -> Q by φo(pn) = taWl, where {a(n)\ is the singletone whose
unique member is a(n). φ0 defines a combinatorial operator φ: V -> V by

Φ(X) = U ΦoiPn) = U Mn)}.

Pngx Pncx
If E{ = {xeE\χ(x) =i}, then ά(i)eEi for all ieε. Thus, if φoeFR is suchthat
Ei = ωφo(/)for all ieε,then φo(pn) c ωφo(n)for all neε, and, as easily checked,
0"1 (x) = pχ(χ) for all xe φ(ε).
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3. Strengthening of the Fundamental Theorem. We impose now more
stringent conditions on a combinatorial operator, in order to obtain neces-
sary and sufficient conditions for Theorem 1.1. Let us call a combinatorial
operator 0 effective iff there is a disjoint r.e. sequence {ωyoa))ieN of finite
r.e. sets such that

(3.1) 0o(pn) = ωφo(w) for all neε,

where φ0 is the dispersive operator of φ. (φoeFR).

Theorem 3.1. A combinatorial operator φ is effective iff there is a XeFR

such that φ(ε) is the domain of X and

(3.2) φ"1 be) = px(x) for all x e φ(ε).

Proof. Let φ be effective and φ0 as in (3.1). Then, E = φ(ε) =}Jo^ψo(n)is a

r.e. set. Define XeFR by X(*τ) = the only n such that Λτeωφo(w), for all xeE.
Then, as in the proof of Theorem 2.1, we obtain (3.2). Conversely, if (3.2)
holds, define φ0 by ωφo(i) = ί#e domain of x\x(x) = i}. Then, by (2.4), for all
xeE= Qω φ o ( ί ),

xeφoip^^^φ^ix) =pw^xW =n.

Thus, each ωφo(;) is finite and φo(pn)
 = ωφo(w)for a ^ ̂ eε.

Corollary 3.1.1. a) Let φ be an effective combinatorial operator and φΌ its
dispersive operator. If, for every net, φo(pn) ^0? then φ(ε) contains an
infinite r.e. set.
b). For every infinite r.e. set A there is an effective combinatorial oper-
ator φ, such that, for every neε, φo(ρn) =0, where φ0 is the dispersive oper-
ator of φ, and A c φ(ε).

Proof. Similar to the proof of Theorem 2.2.
A combinatorial operator 0 is recursive iff its dispersive operator φ0

is recursive. Thus, φ is recursive iff there is a φoeFR such that (Pφo(/))* 6 ε

is a disjoint sequence of finite sets satisfying

(3.3) φo(ρn) = pφo(w) for all neε.

The difference between (3.1) and (3.3) is well-known: for every neε,
we can find effectively the maximal member and the cardinality of pφo(w),
but not of ωφo(w)(although each ωφo(w) is finite).

Theorem 3.2. A combinatorial operator φ is recursive iff there is a
XeFR such that φ(ε) = the domain ofχ,

(3.4) φ"1 (x) = px{n) for all x e φ(ε)

and there is a φoeFR such that (pφo(/))/eε is a disjoint sequence of finite sets,
satisfying φ(ε) = JJ pφo(, ) and

i=0

Apo(ί) = {# €0(ε)lλ(#) = i).

Proof. If the conditions of the theorem are satisfied, then, as easily
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checked, 0o(pw) = Apo(») Conversely, if φo(pn) = pφ(w) for some φeFR, defining

X(x) = the only n such that xepφ(n), for all xe U Pφ(«),

«=o

we obtain easily (3.4) with φ0 = φ.

Let φ be a combinatorial operator. If there is a φotFR such that

(ωφo(f )>f ί ε is a disjoint r.e. sequence of finite sets and

(3.5) φo(pn) c cθcpo(w)for all net,

we shall say that φ is finitely sub-effective.

If there is a φoeFR such that <Pφo(z))/fε is a disjoint r.e. sequence of
finite sets, satisfying

(3.6) φo(pn) c pφ o ( w ) for all weε,

we shall say that 0 is sub -recursive.

Similarly to previous theorems we can prove

Theorem 3.3. A combinatorial operator φ is finitely sub-effective iff there
is a XCFR such that each set Ei = {xe domain of χ\χ(x) = i] is finite,
φ(ε) c M Ei and

z'=0

Φ^M = pχ(x) for all xe0(ε).

Theorem 3.4. A combinatorial operator φ is sub-recursive iff there is a
XeFR and aφoeFR such that pφo(w) = {xe domain x\x(x) =n], φ(ε) a domain of
Xand

φ~ι{x) = p x ( χ ) f o r all Λre0(ε).
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