Notre Dame Journal of Formal Logic Volume XII, Number 3, July 1971 NDJFAM

COMBINATORIAL OPERATORS AND THEIR QUASI - INVERSES

VLADETA VUČKOVIĆ

1. Introduction. Combinatorial operators were introduced by J. Myhill ([1], [2]) as a fundamental tool in the study of isols. A systematic exposition of those operators is given in the monograph [3] of J. Dekker, to which we refer for the notations. In [3], Dekker proved the following

Theorem 1.1. Let ϕ be a combinatorial operator and ϕ^{-1} its quasi-inverse. If ϕ is recursive, then $\phi(\varepsilon)$ is a recursively enumerable set, and there is a partial recursive function χ , whose domain is $\phi(\varepsilon)$, such that

(1.1.)
$$\phi^{-1}(x) = \rho_{\chi(x)} \text{ for all } x \in \phi(\varepsilon).$$

In this paper we investigate the measure in which the existence of a p.r. (partial recursive) function χ , such that $\phi^{-1}(x) = \rho_{\chi(x)}$ for all $x \epsilon \phi(\epsilon)$, determines the recursive character of the operator ϕ .

Besides the notations from [3], we shall use the following ones: $\langle \omega_i \rangle$, $i = 0, 1, \ldots$, is the Post-enumeration of all r.e. (recursively enumerable) sets; F_R denotes the set of all r. (recursive) functions of one variable, and \widetilde{F}_R denotes the set of all p.r. functions of one variable.

2. The Fundamental Theorem. Let ϕ be a combinatorial operator and ϕ_0 its dispersive operator. We shall say that ϕ (resp. ϕ_0) is *sub-effective* iff (if and only if) there is a disjoint r.e. sequence $\langle \omega_{\phi_0(i)} \rangle_{i \in \mathbb{E}}$, $\phi_0 \in F_R$, of r.e. sets such that

$$(2.1.) \qquad \qquad \phi_0(\rho_n) \subset \omega_{\varphi_0(n)} \text{ for all } n \in \varepsilon.$$

All theorems of this paper are, essentially, strengthenings of the following fundamental

Theorem 2.1. A combinatorial operator ϕ is sub-effective iff there is a $\chi \in \widetilde{F}_R$ such that

(2.2.)
$$\phi^{-1}(x) = \rho_{X(x)} \text{ for all } x \in \phi(\varepsilon).$$

Proof. Let ϕ be sub-effective and φ_0 as in (2.1). Then, $E = \bigcup_{i=0}^{\infty} \omega_{\varphi_0(i)}$ is a r.e. set and $\phi(\varepsilon) = \bigcup_{n=0}^{\infty} \phi_0(\rho_n) \subset E$ (where ϕ_0 is the dispersive operator of ϕ).

Received February 11, 1970

Define $\chi \in \widetilde{F}_R$ as follows: the domain of χ is E and, for every $x \in E$, $\chi(x)$ is the unique n such that $x \in \omega_{\varphi_0(n)}$. We have the obvious implication

(2.3)
$$x \epsilon \phi(\varepsilon) \rightarrow x \epsilon \omega_{\varphi_0(\chi(x))}$$

By P.7 of [3], we have

(2.4)
$$x \in \phi(\varepsilon) \rightarrow (x \in \phi_0(\rho_n) \longleftrightarrow \phi^{-1}(x) = \rho_n).$$

Thus, by (2.3) and (2.4)

$$x \in \phi(\varepsilon) \rightarrow (x \in \omega_{\varphi_0(\chi(x))} \longleftrightarrow \phi^{-1}(x) = \rho_{\chi(x)})$$

which gives

$$\phi^{-1}(x) = \rho_{\chi(x)}$$
 for all $x \in \phi(\varepsilon)$.

Conversely, suppose that ϕ is combinatorial and that there is a $\chi \epsilon \widetilde{F}_R$ such that $\phi^{-1}(x) = \rho_{\chi(x)}$ for all $x \epsilon \phi(\epsilon)$. Let *E* be the domain of χ . Define the sets E_i by

$$E_i = \{x \in E \mid \phi^{-1}(x) = \rho_i\} \\ = \{x \in E \mid \rho_{\chi(x)} = \rho_i\} \\ = \{x \in E \mid \chi(x) = i\}.$$

The sequence $\langle E_i \rangle_{i \in \varepsilon}$ is a disjoint r.e. sequence of r.e. sets. Let $\phi_0 \in F_R$ be such that, for all $i \in \varepsilon$, $E_i = \omega_{\varphi_0(i)}$. Then, by (2.4)

$$\phi_0(
ho_n) \subset \omega_{\varphi_0(n)} ext{ for all } n \epsilon \phi(\epsilon),$$

i.e. ϕ (resp. ϕ_0) is a sub-effective combinatorial operator.

In [4] the author has introduced the notions of an almost r. set and of an almost r.e. set. We show now the relation between almost r.e. sets and sub-effective combinatorial operators.

Theorem 2.2. a) Let ϕ be a sub-effective combinatorial operator and ϕ_0 its dispersive operator. If, for every $n \in \varepsilon$, $\phi_0(\rho_n)$ is not empty, then $\phi(\varepsilon)$ contains an infinite almost r.e. set.

b) For every infinite almost r.e. set A, there is a sub-effective combinatorial operator ϕ , such that, for every $n \in \varepsilon$, $\phi_0(\rho_n)$ is not empty, and such that $A \subset \phi(\varepsilon)$.

Proof. Define the function α as follows: $\alpha(i)$ is a chosen element of $\phi_0(\rho_i)$. Let χ be as in the first part of the proof of Theorem 2.1. Then $\chi(\alpha(i)) = i$ for all $i \in \varepsilon$. Thus, A = the range of α is an almost r.e. set and $\alpha^{-1} = \chi | A$ (" $\chi | A$ " means the restriction of χ to A). To prove b), let A be an almost r.e. set, and let α be a 1-1 function such that $A = \{\alpha(i) | i \in \varepsilon\}$. Let $\chi \in \widetilde{F}_R$ be such that $\alpha^{-1} = \chi | A$, and denote by E the domain of χ . Define the dispersive operator ϕ_0 : $Q \to Q$ by $\phi_0(\rho_n) = \{\alpha(n)\}$, where $\{\alpha(n)\}$ is the singletone whose unique member is $\alpha(n)$. ϕ_0 defines a combinatorial operator $\phi: \lor \to \lor$ by

$$\phi(\chi) = \bigcup_{\rho_n \subseteq \chi} \phi_0(\rho_n) = \bigcup_{\rho_n \subset \chi} \{\alpha(n)\}.$$

If $E_i = \{x \in E | \chi(x) = i\}$, then $\tilde{\alpha}(i) \in E_i$ for all $i \in \varepsilon$. Thus, if $\phi_0 \in F_R$ is such that $E_i = \omega_{\varphi_0(i)}$ for all $i \in \varepsilon$, then $\phi_0(\rho_n) \subset \omega_{\varphi_0(n)}$ for all $n \in \varepsilon$, and, as easily checked, $\phi^{-1}(x) = \rho_{\chi(x)}$ for all $x \in \phi(\varepsilon)$.

3. Strengthening of the Fundamental Theorem. We impose now more stringent conditions on a combinatorial operator, in order to obtain necessary and sufficient conditions for Theorem 1.1. Let us call a combinatorial operator ϕ effective iff there is a disjoint r.e. sequence $\langle \omega_{\varphi_0(i)} \rangle_{i \in N}$ of finite r.e. sets such that

(3.1) $\phi_0(\rho_n) = \omega_{\varphi_0(n)}$ for all $n \in \varepsilon$,

where ϕ_0 is the dispersive operator of ϕ . ($\phi_0 \epsilon F_R$).

Theorem 3.1. A combinatorial operator ϕ is effective iff there is a $\chi \epsilon \widetilde{F}_R$ such that $\phi(\epsilon)$ is the domain of χ and

(3.2)
$$\phi^{-1}(x) = \rho_{X(x)}$$
 for all $x \in \phi(\varepsilon)$.

Proof. Let ϕ be effective and φ_0 as in (3.1). Then, $E = \phi(\varepsilon) = \bigcup_{n=0}^{\infty} \omega_{\varphi_0(n)}$ is a

r.e. set. Define $\chi \epsilon \widetilde{F}_R$ by $\chi(x) =$ the only *n* such that $x \epsilon \omega_{\varphi_0(n)}$, for all $x \epsilon E$. Then, as in the proof of Theorem 2.1, we obtain (3.2). Conversely, if (3.2) holds, define φ_0 by $\omega_{\varphi_0(i)} = \{x \epsilon \text{ domain of } \chi | \chi(x) = i\}$. Then, by (2.4), for all $x \epsilon E = \bigcup_{i=0}^{i} \omega_{\varphi_0(i)}$,

$$x \in \phi_0(\rho_n) \longleftrightarrow \phi^{-1}(x) = \rho_n \longleftrightarrow \chi(x) = n.$$

Thus, each $\omega_{\varphi_0(i)}$ is finite and $\phi_0(\rho_n) = \omega_{\varphi_0(n)}$ for all $n \in \varepsilon$.

Corollary 3.1.1. a) Let ϕ be an effective combinatorial operator and ϕ_0 its dispersive operator. If, for every $n \in \varepsilon$, $\phi_0(\rho_n) \neq \emptyset$, then $\phi(\varepsilon)$ contains an infinite r.e. set.

b). For every infinite r.e. set A there is an effective combinatorial operator ϕ , such that, for every $n \in \varepsilon$, $\phi_0(\rho_n) = \emptyset$, where ϕ_0 is the dispersive operator of ϕ , and $A \subset \phi(\varepsilon)$.

Proof. Similar to the proof of Theorem 2.2.

A combinatorial operator ϕ is recursive iff its dispersive operator ϕ_0 is recursive. Thus, ϕ is recursive iff there is a $\varphi_0 \epsilon F_R$ such that $\langle \rho_{\varphi_0(i)} \rangle_{i\epsilon \epsilon}$ is a disjoint sequence of finite sets satisfying

(3.3)
$$\phi_0(\rho_n) = \rho_{\phi_0(n)} \text{ for all } n \in \varepsilon.$$

The difference between (3.1) and (3.3) is well-known: for every $n \in \varepsilon$, we can find effectively the maximal member and the cardinality of $\rho_{\varphi_0(n)}$, but not of $\omega_{\varphi_0^-(n)}$ (although each $\omega_{\varphi_0(n)}$ is finite).

Theorem 3.2. A combinatorial operator ϕ is recursive iff there is a $\chi \in \widetilde{F}_R$ such that $\phi(\varepsilon) =$ the domain of χ ,

(3.4)
$$\phi^{-1}(x) = \rho_{\chi(n)} \text{ for all } x \in \phi(\varepsilon)$$

and there is a $\varphi_0 \in F_R$ such that $\langle \rho_{\varphi_0(i)} \rangle_{i \in \varepsilon}$ is a disjoint sequence of finite sets, satisfying $\phi(\varepsilon) = \bigcup_{i=0}^{\infty} \rho_{\varphi_0(i)}$ and

$$\rho_{\omega_{0}(i)} = \{ x \in \phi(\varepsilon) \mid \chi(x) = i \}.$$

Proof. If the conditions of the theorem are satisfied, then, as easily

checked, $\phi_0(\rho_n) = \rho_{\varphi_0(n)}$. Conversely, if $\phi_0(\rho_n) = \rho_{\varphi(n)}$ for some $\varphi \in F_R$, defining χ by

 $\chi(x)$ = the only *n* such that $x \in \rho_{\varphi(n)}$, for all $x \in \bigcup_{n=0}^{\infty} \rho_{\varphi(n)}$, we obtain easily (3.4) with $\varphi_0 = \varphi$.

Let ϕ be a combinatorial operator. If there is a $\varphi_0 \epsilon F_R$ such that $\langle \omega_{\varphi_0(i)} \rangle_{i \epsilon \epsilon}$ is a disjoint r.e. sequence of finite sets and

(3.5) $\phi_0(\rho_n) \subset \omega_{\varphi_0(n)}$ for all $n \in \varepsilon$,

we shall say that ϕ is finitely sub-effective.

If there is a $\varphi_0 \in F_R$ such that $\langle \rho_{\varphi_0(i)} \rangle_{i \in \varepsilon}$ is a disjoint r.e. sequence of finite sets, satisfying

(3.6) $\phi_0(\rho_n) \subset \rho_{\varphi_0(n)}$ for all $n \in \varepsilon$,

we shall say that ϕ is *sub-recursive*.

Similarly to previous theorems we can prove

Theorem 3.3. A combinatorial operator ϕ is finitely sub-effective iff there is a $\chi \in \widetilde{F}_R$ such that each set $E_i = \{x \in \text{ domain of } \chi | \chi(x) = i\}$ is finite, $\phi(\varepsilon) \subset \bigcup_{i=0}^{\infty} E_i$ and

$$\phi^{-1}(x) = \rho_{\chi(x)}$$
 for all $x \in \phi(\varepsilon)$.

Theorem 3.4. A combinatorial operator ϕ is sub-recursive iff there is a $\chi \epsilon F_R$ and $a \phi_0 \epsilon F_R$ such that $\rho_{\phi_0(n)} = \{x \epsilon \text{ domain } \chi | \chi(x) = n\}, \phi(\epsilon) \subset \text{ domain of } \chi \text{ and}$

$$\phi^{-1}(x) = \rho_{\chi(x)}$$
 for all $x \in \phi(\varepsilon)$.

REFERENCES

- [1] Myhill, J., "Recursive equivalence types and combinatorial functions," Bulletin of American Mathematical Society, vol. 64 (1958), pp. 373-376.
- [2] Myhill, J., "Recursive equivalence types and combinatorial functions," The Logic, Methodology and Philosophy of Science, Standford (1962), pp. 46-55.
- [3] Dekker, J. C. E., Les Fonctions Combinatoires et les Isols, Paris, Gauthier-Villars (1966).
- [4] Vučković, V., "Almost recursive sets," Proceedings of American Mathematical Society, vol. 23 (1969), pp. 114-119.

University of Notre Dame Notre Dame, Indiana