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INCOMPLETENESS VIA SIMPLE SETS

ERIK ELLENTUCK

Let P be Peano arithmetic and let I, be the set of formulas in the
language of P which only contain bounded quantifiers. It is well known that
if @ is an w-consistent extension of P, and Q(%) is a Z,-formula, then

(1) Q+(3Ix) ¢ (x) implies @ ¢ (n) for some n<w.

What we show here is that by only slightly more complicating the form of
¢, (1) will fail in every consistent axiomatizable extension of P.* In detail

Theorem: Theve is a Ly-formula ¢(x,y,z) such that for any consistent
axiomatizable extension @ of P theve is a q<w such that Q@+ (3x) (Vy)
0@, v,q), but for no n<w does Q'+ (vy) ¢ (M, y,q).

(Note that under these hypotheses (1) above implies our result is the best
possible.)

Proof: Let S be the simple set of Post (cf. [1] p. 106). We define S in
terms of the Kleene predicate T (which enumerates the n-th recursively
enumerable set as {m:(3u) T (n, m,u)}), the pairing function j, and its first,
second inverse &, I.

(2) F(m,n) =Qu) [(T(n,m,u) »m>2n) A (V0) ((v<j(m,u) r T(n,k(v), (v)—
k(v) =2n)]
(3) S(m)=@3n) F(m,n)
Let ¢(v,%),0(y) be the intuitive translations of F, S into the language of P
and let @ be any consistent axiomatizable extension of P. F is a partial

recursive function (in the n to m direction) which is represented in P
(4 fortiori @) by

(4) F(m,n) implies @+¢(m,n),
and

(5) @+(¢(y,2)rp(2,%)— v = 2.

*Prepared while the author was partially supported by NSF contract GP-11509.
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Let S'={m: @+~~o(m)}. Now SC{m:@+o(m)} by (4), S' Cw-S by the con=-
sistency of @, S' is recursively enumerable by the axiomatizability of @,
and S’ is finite by the simplicity of S. Let ¢<w be greater than any
element of S' and define 6(y, %) to be ~¢(v,x)Ay =¢. Thus by our previous
remarks we have shown that Q+~(Vx) 6(m,x) for no m<w. Since the
universal quantifier occurring in 6 may be absorbed by (Vx) our theorem
will follow by showing that Q~(@y) (vx) 6(v,x). In order to do this first note
that from (2)

(6) QH(op(y, M) ry=22)—x<z

and that by induction in P we can prove the following form of the pigeon
hole principle (this follows easily by formalizing the usual set theoretic
proof that the integers are finite in the sense of Dedekind)

(M Q-(Y) [z =y =2z2—00x) x<z1¢(3,%)]—(3%,,9) (& =<y <y'=2z
Ax<zad(y,2)A0(y",x).

Now in @, (Vy) (2= y=2z— 0o(y)) implies by (6) that (Vy) (z =y =2z— (Ax) (x<
z A ¢(y,x))) which implies by (7) that (3x,y,y") (2=y <y'=22Ax<z2r0(y, %) A
¢(¥',x)) which contradicts (5). Thus Q+(33) (2=ya~ o(3)). Take z = q and
get Q-(31) (V) 6(y, ).
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