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GENERALIZED REALS

F. G. ASENJO

Real numbers fill the line, thanks to a postulational dictum—the axiom
Df completeness of the line. But since dimension depends on structure and
not on cardinality, such an axiom is justified only by the simplicity it
yields. In principle, there is no limit to the number of points that can be
Fitted on the line.

We shall assume that standard reals have already been introduced and
shall refer to them as reals of the first kind, or simply reals; their set will
be designated R. To the field # we now apply the operation of ultraproduct
with R itself as an index set and with ultrafilter U containing all the co-
sountable subsets of R as well as all the upper halves of R (all sets of reals
greater than, or greater than or equal to, a given r inR). The ultraproduct
R2 thus obtained is the quotient field of the set of all functions of R into R —
ienoted by A —modulo U. Members of R2 will be called reals of the second
kind, or r-reals. R2 is a totally ordered non-Archimedean field containing
infinites and infinitesimals. The monad μ(r) of a r-real r is the set of ele-
ments of R2 infinitely close t o r . For definitions see [3, p. 57].

Theorem 1. R2 is of cardinality 2C = c2, which is also the cardinality of
any monad.

Proof \ Because the cardinality of R2 is the cardinality of any of its monads
[2, p. 200 ], it suffices to show that R2 has cardinality c 2. To do this, con-
sider any one-to-one function/on R intoi?. The set Pfoίfs permutations
is of cardinality c2 [4, p. 193], We wish to show that there is a subset of
P/, also of cardinality c2, composed exclusively of functions which are pair-
wise different modulo U. This will prove the theorem, since the cardinality
of Pf/jJ is less than or equal to the cardinality of A/U~ R2. Let us con-
sider, then, all chains (ordered by inclusion) of members of U in the
Boolean algebra of all subsets of R. There must be c2 of these chains be-
cause each is of cardinality c and the cardinality of Uisc2. There is no
minimal element in any of these chains (otherwise the empty set would be
ίn U). If for any permutations fx and/2 of /, /i =/2 (mod U), then there is a
set u in U such that for all ξ in u, /x(ξ) =/2(ξ). Also, for every η in every
subset v of u in U,fx(η) =f2(η). Therefore, as we move along a chain of
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members of C/in the direction of the empty set φ we obtain smaller subsets
v of R for all of whose elements η,fι(η) -fz (η)9 all of these subsets having c
elements and hence c2 permutations. Further, no matter how far we move
along these chains in the direction of φ we can always count c2 of them, for
given an arbitrary antichain of cardinality c2 the finite intersection proper-
ty of the ultrafilter can only yield antichains of the same cardinality. Re-
gardless of how far we go in the direction of </>, then, there are always c2

members of U which are pairwise incomparable with respect to inclusion,,
Let us now take an arbitrary antichain of cardinality c2 and form the family
F of subsets of / that we obtain by successively restricting/ to each of the
members of the antichain. The members of F are all different in a set-
theoretic sense (not modulo U)9 and each has a set of c2 permutations, pro-
viding altogether c2*c2 =c2 set-theoretically different permutations. For
each of these permutations p(ξ) let us define p(v) =f{v) for all v outside the
corresponding member of U. If the new family of permutations of /thus
obtained does not contain c2 of them which are different modulo U, then
further along the c2 chains in the direction of φ one must be able to find
antichains of cardinality less than c2. Since this is impossible, a set of c2

different permutations of / modulo U exists and the theorem is proved,,

Theorem 2. The subset of multiples of an infinitesimal is not cofinal with
the monad of all infinitesimalsμp).

Proof: It suffices to recall that the convergent sequences

v. l ^ J L > JL >>

' " n(logn)2 n2 2n ^ " *

for every pair of finite natural numbers n and m satisfy
1 ^ HL —^ HL

nbogn)* n2 ' n2 2n ' e t C *

This implies that there are infinitesimals x and y such that y > mx for
every finite natural number m (define, for example, x = l/2w and y = l/n2

for all ξ in the interval n <ξ < n+1). Further, it is well known that given a
sequence that converges to zero there are always sequences that converge
less rapidly, which implies that there are no "maximal" elements z in μ(0)
in the sense that mz would be greater than any other w in μ(θ) for finite
natural numbers m greater than some m^ Therefore, the theorem holds.

To #2 we again apply the operation of ultraproduct withi^ itself as an
index set. The ultrafilter U2 contains all the co-countable subsets of R2 as
well as the complements of every subset of R2 of cardinality c (let us call
them co-c subsets); in U2 we also include all the upper halves of R2. The
ultraproduct R3 thus obtained is a set of cardinality 2 2 = c39 and its mem-
bers will be called reals of the third kind, rr-reals. Rr-reals can be
represented by families of r-reals x = {xξ}ξeR9 and in R3 we find infinitesi-
mals and infinites of a second kind in addition to those of the first kind that
are carried over from R2. Given a rr-real number x, we must distinguish
between its monad of the first kind μU)—empty for infinites of the second
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kind—and its monad of the second kind \i%{x). The first one is the image of
μfco) in Rz under the natural injection φ that maps any r-real r into the
equivalence class modulo U2 that contains the constant function y = {y$\y^ = r
for all ξlξeR, and where x0 is that unique element of R2 (if it exists) whose
image under φ is infinitely close to x in_R3. On the other hand, μ2(x) is the
set of all z inR3 such that z-x is an infinitesimal of the second kind.

Iterating the operation of ultraproduct, we obtain reals of kind k +1 by
forming the ultraproduct of Rk9 with Rk as an index set and with ultrafilter
Uk containing all the co-countable, co-c, .co-Ci,..., CO-Q-J. subsets of Rk
(where 2cn = cw+1) as well as the upper halves of Rk The cardinality of Rk+i
is 2ck = ck+ί; Rk+1 contains infinitesimals and infinites of k kinds, and cen-
tered on each real x of the first kind there is a sequence of monads of k
different kinds nested in the sense that every element of μ«+iW is closer to
x than every element of μ«M. Of course, infinites of kind k come after all
the other infinites, and they only have monads of kind k . Rk+i is a totally
ordered non-Archimedean field in which the set of reals of kind k is not
dense. If x is a real of kindn <k +1 and y is a real of kind k+1, then* +3;
is of kind k + 1 (otherwise, x + (y-x) = y with y-x of a kind less than k + 1).
The measure of an interval determined by two reals of kind k + 1 that belong
to the same monad of kind k is an infinitesimal of kind k.

The presence of sequences of monads of various kinds centered around
members of Rk+1 is a necessary topological feature of sets of generalized
reals and is a consequence of the fact that the Archimedean property im-
poses well-known restrictions on the cardinality of totally ordered fields.
However, a pseudo-Archimedean property holds in Rk+i, that is, the
property that if x < y in Rk+i (x and y positive) there are infinite natural
numbers of kind k such that we > y (as can be easily seen by extending some
well-known properties of infinite sequences). Following the process de-
scribed here, one can fill the line with points of real abscissae of various
kinds, thus indefinitely increasing the cardinality of the line as a set of
points, except if an axiom of completeness of the line is introduced at some
stage.

Since a complete totally ordered field is Archimedean and therefore
isomorphic to a subset of the reals of the first kind, the Dedekind comple-
tion of Rk (denoted Rfj is not a field. R% is a double semigroup with identi-
ties and therefore is not algebraically interesting. However, both Rk and
-Rf have interesting, although intricate, set-theoretic structures, as the
following considerations will make obvious.

The order type of R2 is λ2 = λ2(0* + l + θ) [2, p. 200] where θ is a dense
order type without first and last element—the order type of the positive part
of the quotient setR2/R% where R% is the set of finite r-reals-0* is the in-
verse of θ and λ£ is the order type of R%. It should be pointed out that the
equation that gives the order type of R\ involves a regressus ad ϊnfinitum
Since

μ = λ2°0 + l + λ°2θ* (1)

is the order type of any monad of R2 and

λ°2 = μλ (2)
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λ being the order type of R, one finds inside any monad of R% c times the
order type of this same monad. By iterating the substitutions of (2) in (1)
and (1) in (2) successively (No times, since substitution is a denumerably
recursive process), it becomes clear that the order type for a monad of R2

is unusually complex and the order type for the various monads of Rk even
more so.

Finally, one word on a possible use for generalized reals. Den joy de-
scribed the problem of a complete arithmetization of the class Z2 of count-
able infinite ordinals as equivalent to the problem of "analytically
formulating rules by which a determined, unique real number xa would
correspond to each ordinal of Z j " [1, p* 210]. This statement can be ex-
tended so that the arithmetization of the classes Z3, ZΛi etc., becomes
equivalent to the one-to-one mapping of their elements into sets of r -reals,
rr -reals, etc., respectively, a mapping whose characterization depends on
solving the arithmetization of Z2.
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