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A LOGICAL CALCULUS OF ANALOGY
INVOLVING FUNCTIONS OF ORDER 2

DOUGLAS C. DORROUGH

1. INTRODUCTION The logic of analogy is hardly an uninvestigated sub-
ject. At another place,1 we consider the syntax and pragmatics of
analogical arguments. Bocheήski,2 under the inspiration of Aquinas and
Cajetan,3 has given some thought to the semantics of analogical state-
ments, and recently Hesse4 has proposed a theory of analogy that both
involves and presupposes some of the results of 1. However, it would seem
that little, if any, effort has been expended on a detailed formal description
of the logic of similarity or likeness. In this respect, the logic that follows
should be thought of as a methodological proposal. Whatever its difficulties,
it at least purports to show that

(1) analogy (in the sense of similarity or likeness) of individuals can be
expressed within the framework of either a standard predicate or a
standard set calculus, but

(2) it cannot be so expressed without resort to semantical considerations.5

Further, it can be demonstrated that, like that of identity,

(3) this logic of similarity is a model for the logic of the Universal
Relation V of Principia Mathematίca.6

Finally,

(4) the definition of analogy for sets is not the usual one, in terms of
isomorphism. However, under suitable restrictions, the two definitions
may be reduced to one another.7

2. NOTATION Our logic will be called A.S.j, i.e., proposal of an analogical
system for individuals. In stating and developing A.S.j, we make the
following assumptions: (1) there exists a standard elementary logic of the
sort developed by Quine8 and Copi9 included in which is a consistent and
deductively complete propositional calculus10; (2) the rules governing the
quantification and substitution of predicate variables are formally identical
to those for individual variables11; and (3) Post's criterion of consistency is
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formally satisfied by A.S.]. We also assume familiarity with the notation
and techniques of Principia Mathematica.

A.S.] contains a denumerably infinite number of primitive symbols of the
following kinds:

1. English capital letters:

Pi, Qi, Ri, from the middle of the alphabet and called propositional
variables

A, B, C, ... from the first part of the alphabet with or without left-hand
superscripts and called predicate constants

P, Q, R, .. . from the middle of the alphabet with or without left-hand
superscripts but without subscripts and called predicate variables

2. English and Greek lower case letters:

a, b, c, .. . from the first part of the English alphabet with or without
left-hand superscripts and called individual constants

a, β, γ, ... from the first part of the Greek alphabet with or without
left-hand superscripts and called set constants

v, w, x, .. . from the latter part of the English alphabet with or without
left-hand superscripts and called individual variables

φ, X, Ψ, ... from the latter part of the Greek alphabet with or without
left-hand superscripts and called set variables

3. Operators: ), (, ~, ., O

The latter two subsets of 1 will be collectively referred to as predicate
symbols. Since both sets and particulars may be treated as individuals,12

all of the symbols included in 2 will be regarded as individual symbols.
At this point we define a formula for A.S i to be any finite sequence of

symbols. A well-formed formula (wff) is defined recursively thus:

RD-I If G is a propositional variable, G is well formed
RD-II If G is an rc-adic predicate symbol, G(xx, x2, . . . ,#„) is well

formed
RD-I 11 If G is an individual symbol, G is well formed
RD-IV If G and # a r e well formed then (G) (H) is also well formed
RD-V If G is well formed in the sense of RD-I or RD-II and if A: is an

individual variable, then (x)G is well formed
RD-V I If G is well formed in the sense of RD-I or RD-V, then OG is also

well formed
RD-V 11 If G is well formed in the sense of RD-I, II, V, VI, then ~(G) is

also well formed

We next define what we mean by the word 'proof in the following way:
A proof is any finite sequence of wffs Sl9 S2, . . . , St such that for any S/,13 it
is either an axiom or a premise14 or the result of applying one of the usual
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rules of inference15 or the result of using an associated propositional
formula (αpf). But the latter result demands a definition, which we
presently give. An αpf is a wff, (?, of the propositional calculus which
results from replacing every well formed part of the formula, G, of the
predicate calculus having the form Pn(xχ, x2, . ., #«) by a propositional
symbol, the differences in replacement being contingent solely upon
different Pn's and not upon the differences among individual symbols that
succeed the i^'s.

Now, it can be demonstrated for a standard elementary logic like that
of Copi that if G is a provable proposition then G is a theorem and if ~G is a
provable proposition then G is a theorem.16 But since all of the wffs of
A.S i are either G's or reducible by definition to G's,17 we shall occa-
sionally use the theoremhood of a G to warrant the theoremhood of a G and
this process will be referred to as ''proof by αpf."

An interpreted metalanguage composed of ordinary English, a few
well-known mathematical symbols, and the special symbols 'O', (\-\ and
ζ=df' are to be used in developing A.S.j. The expression 'O' is to be read
"it is possible t h a t . . . " and denotes its counterpart in A.S.]. The
expression ΉPi' may be read "a provable proposition, ' P i ' " where
'provable' is understood in the sense defined above for the word 'proof.'
The expression '=,//' is directly translatable by the English expressions 'is
defined as' or 'is understood to mean.' Any symbol or formula within
single quotes is always metalinguistic and denotes its counterpart in the
object language. Finally, we introduce the operator '3 ' and define it in the
following way:

3G =,,/-(*) ~G (D-I)

We are guided in setting up our system by the interpretation we intend
to give it. Thus, the individual symbols are to be the symbolic translations
of such English expressions as nouns (both common and proper respec-
tively) and definite descriptions. Our predicate symbols are to be the
symbolic translations of those expressions in English which typically and
legitimately occupy the predicate position in an indicative sentence.

3. THE DEFINITION OF ANALOGY Before proposing a definition of
analogy we shall discuss, in a somewhat cursory fashion, the rationale for
such a definition. This step seems appropriate since the all-pervasive
character of the notion of analogy makes a complete conventionalism with
respect to a definition inadvisable. Moreover, as will be noted below, a
definite formal problem could arise with an unwise choice of definition.
Among some of the informal considerations to which we could first turn our
attention, the most fruitful would seem to be some prima facie examples of
analogy. Thus: (A) 'In this respect, John is similar to Joe'; (B) 'With
respect to these considerations, the two situations are analogous';

(C) 'Chinese bears greater similarity to Japanese than to Korean';
(D) 'The two men are similarly related to their respective governments';
(E) 'Mary is like her mother in that she always retires early'; (F) 'The
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Corvair bears some resemblance to the Volkswagen' (G) 'Mongoloids are
similar to Negroids with respect to the amount and disposition of body
hair.' Some of the above examples might be rejected as those of analogy on
the grounds that subtle distinctions exist between, on the one hand, uses of
such expressions as 'like,' 'resembles,' 'similar (to),' and on the other
hand the use of 'analogous (to).' Thus, the dictionary indicates that the
former group are more* often used with respect to properties whereas the
latter suggest a parallelism with respect to relations. While such a
distinction will not be entirely ignored in A.S.j, the symbol '- ', as yet
undefined, is here introduced and may be read indiscriminately as 'is
analogous to' or 'is similar to' or 'is like,' etc. Although we do want to
pinpoint some of the characteristics of c~' which are propaedeutic to a
definition, no attempt will be made here to carry out an exhaustive analysis
(if there be such a thing) of ordinary language with respect to the notion of
analogy.

First of all, we should like to call attention to a distinction between two
types of logical connectives: One, which we shall call the intrasentential
type, is exemplified by 'is greater than,' 'plus', and 'is equal to' in the
propositions, (1) '2 is greater than Γ; or (2) '5 plus 6 is equal to 11'; the
other, which we call the intersentential type, is exemplified by 'and' in
(3) '2 is greater than 1 and 5 is greater than 4'.18 In (1) and (2) the relational
expressions 'greater than' and 'equal to' serve to join two nonsentential
expressions whereas in (3) the connective 'and' joins two sentential expres-
sions.19 Now, it would seem obvious that the analogy connective ' - ' is of the
intrasentential variety and resembles in this respect such other intra-
sentential connectives as '=', '<', '>', etc. This of course suggests that
any formal treatment of analogy be within the framework of predicate or
set calculus rather than a propositional calculus. Further, if we analyze
what is being asserted by our examples above, it would seem that in each
case two or more things20 are said to be analogous or similar on the basis
of some property or relation which they have in common. Although the
property or relation in question may not be specifically indicated in the
analogy statement itself (e.g., (C) and (F), above), all such statements can
be rendered in such a way as to at least indicate that the analogy asserted
is on the basis of some property or other, some relation or other. Thus,
(F) could be translated, without residue,21 into 'There is at least one
property in terms of which the Corviar resembles the Volkswagen.'
(C) could be translated into 'There are more characteristics (properties or
relations) in terms of which Chinese and Japanese are similar than there
are in terms of which Chinese and Korean are similar. Finally, in view of
the foregoing, it would seem that while the analogy relation holds among
individuals it is clear that the relation is not confined to particulars.22

Thus, as illustrated by (G) above, classes as well as physical objects may
be related analogically. Higher order properties and classes also may be
so related but their logic is not discussed here.

Now, all of our considerations thus far would make it curious indeed to
define analogy in terms of, say, either alternation or simple implication. It
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would seem more appropriate to define such a relation either in terms of
complication or in terms of conjunction. Hence, for the present we shall
entertain the two following definitions:

a « b =df (IP) (Pa = Pb)2 3, (D-II)
a « b =df (3P) (Pa Pb). (D-III)

A highly suggestive modus operandi for choosing from among one of the
above definitions exists in the formalization of Leibniz's definition of
'=', which can be stated for individuals thus:

a = b =df (P) (Pa = Pb) 2 4 (D-IV)

Because of D-ΓV, it would seem sensible to select D-II above as a more
acceptable definition of the analogy relation than D-III. Substantiation of
such a selection can be had by consulting Principia Mathematical where
the twin notions of 'universal class' (V) and 'universal relation' (V) are
discussed.26 Definitions of these are respectively:

V =dfx(x = x), (D-V)

where "x (x = x)'9 is to be read "the class ζx' determined by the proposi-
tional function ζχ = x,9" and

V =df xy (χ = χ)-(y = y), (D-VI)

where "xy (x = y) * (y = y)99 is to be read "the relation between x and y
determined by the propositional function ((x = x) (y = y).999 Now, it is
obvious that D-Π above corresponds formally to the definition D-VI of the
universal relation (V) of Principia Mathematica and should for this reason
be eschewed as a definition of the analogy relation. Moreover, it can be
demonstrated that defining analogy in terms of complication, i.e., in terms
of D-II, allows one to derive both the universal property, universal
relation, and part passu, D-IΠ above.27 Therefore, in terms of the
foregoing considerations, our choice of a definition of analogy for in-
dividuals will be that of D-II. It should be noted, however, that this
definition will undergo a few slight modifications as A.S.j is developed.28

The first of these modifications is presently discussed.

Our proposed definition of analogy has one very obvious drawback.
For, according to it, the following is also acceptable:

a ^ b =ί//(3P) (~Pa^~Pb)

But the defining portion of such a formula reduces to,

(1) (3P)~(~Pa=Pb),

and hence to,

(2) ~ ( P ) ( ~ P a Ξ P b ) ,

which makes a triviality of analogy so defined. Hence, we introduce the
following semantical stipulation:

(3) a « b = (IP) (Pa =Pb) - O(3P) (-Pa = -Pb)
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This precludes the predicate variables of our definition taking negative
values. Such a qualification fits fairly well with "common sense," since
the similarity between two individuals is seldom predicated upon the basis
of properties which neither of them have but rather upon the basis of those
which they both possess.

4. A PREDICATE CALCULUS FOR ANALOGY We state our first theorem
thus:

i-(x) (y) ((x * 3>) Ξ (3JP) (Px = Py)), T-I

the proof of which via Universal Generalization (U.G.) from D-II is obvious.

Lemma I: h (x) (x = x)

Proof: The proof of this lemma, within restrictions of type and order, has
been given by Quine.29

h(x) (y) (3P) (Px = Py) T-Π

Proof: (1) a = a, from Lemma I by Universal Instantiation (U.I.); (2) b = b,
from Lemma I by U.I.; (3) Va, from 1 by D-V and the Principle of
Extensionality (E); (4) Vb, from 2 by D-V; (5) Va = Vb from 3 and 4 by truth
functional inference; (6) (3P) (Pa = Pb) from 5 by Existential Generalization
(E.G.); (7) (x) (y) (IP) (Px Ξ Py), by U.G.

h(x)(x*x) T-ΠI

Proof: (1) a ~ a = (IP) (Pa = Pa) from T-I by U.I.; (2) a ~ a D (3P) (Pa = Pa).
(3P) (Pa = Pa) D a ~ a from 1 by definition; (3) (3P) (Pa = Pa) D a ~ a from
2 by simplification (S); (4) (3P) (Pa = Pa) from T-II by U.I.; (5) a ~ a from 3
and 4 by Modus Ponens ( M.P.); (6) (x) (x ~ x) from 5 by U.G.

h(3*)(3:y)(*«3θ. T-IV

Proof: (1) (3P) (Px = Py) from T-II by U.I. (2) x ~y from 1 by D-Π and E;
(3) (3#) (3y) (x *y) from 2 by E.G.

Where fA' is the constant for the analogy relation and in the notation of
Princίpia Mathematica, the above theorem can be translated into:

H3!A. T-ΓV.I

Presently, we augment our notation so as to introduce a minor revision
in our definition of analogy. Thus, the symbol '~p ' is defined in almost
identically the same way as '- ' :

a * p b =df (3P) (Pa = Pb) D-II.I

The subscript, V , is merely for keeping track of analogy connectives.
Such tagging of connectives has not been important up till the present but is
necessary now for (1) the adequate statement of an important axiom of
analogy and for (2) the adequate statement and proof of a transitivity
theorem for analogy. The former can be stated thus:

(x) (y) (x*Py) = xy (IP) (Pxyx . . . D Pxyy...), A-I
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where 1) x and y are distinct, i.e., take on different values; and 2) the
right-hand side of the equivalency allows y to be substituted for x at any
and all of the latter's occurrences in any and only schemata bearing the
generalized form ' — ~ p . . Λ

The foregoing axiom seems necessary to rigorize a kind of exten-
sionality principle for analogy. Loosely stated, such a principle would be:
'Under certain conditions, similars may be substituted for one another.'
As an example, if we assert the existence of the property denoted by
'green' then it should be possible to substitute for the expression 'the
grass' in the statement 'the grass is green' those expressions which refer
to individuals that exemplify the property in question, e.g., 'the tree,' 'the
Tokay grape,' 'the grasshopper,' etc. Hence, in the analogical statement
'the grass is related to its color as the tree is to its color', the expression,
'the Tokay grape' and 'the grasshopper' could be substituted for 'the grass'
and 'the tree' respectively without changing the relation entailed by the
original analogical statement.

Turning now to the derivation of more theorems, it would seem
propaedeutic to the deduction of a transitivity relation for analogy to assert
the existence of at least one property (or relation) in terms of which
individuals are interchanged:30

h (3P) (Paba.. . D Pabb . . . ) . T-V

Proof: (1) H (X) (y) ((x *Py) = (3P) (Pxyx . . . D Pxyy . . . ) ) from A-I. (2) (3#)
(3j>) (x~Py) from T-IV. (3) a~ P b from 2, by Existential Instantiation
(E.I.). (4) (a ~Pb) = (1P) (Paba.. . D Pabb. . . ) from 1, by U.I. (5) (a~ P b)D
(3P) (Paba.. . D Pabb . . . ) (3P) (Paba.. . D Pabb . . . ) D (a *Pb) by αpf,31

from 4. (6) (a ~Pb) 3 (3P) (Paba . . . D Pabb .. .) from 5, by S. (7) (3P)
(Paba.. . D Pabb . . . ) from 6 and 3 by M.P.

The next two derivations are of the properties of commutativity and
transitivity.

h(x) (y) «x*Py) 3 (y *P*)). T-VI

Proof. (1) \-(x) (y) ((x~Py) = (x~py)) which follows by D-II.I and E. from
T-I. From 1 we derive (2) (x ~Py) = {x ~Py) by U.I. and this in turn yields
(3) (x ~P y) D (x * P y) {x ~P y) D (X « P 3;) by αpf. (4) (x *P y) D (X *Py)
from 3 by S. This in turn yields (5) (x ~Py) D (y *px) by T-V. Finally, (6)
H M (y) ({x*?y) 3 (y «P*)) from 5, by U.G.

ι-(*) (y) (z) (((x *py) - (y «ps)) D (X *PZ)). T-VII

Proof: Derivation is via Conditional Proof (C.P.). Hence, the statement to
be derived is (x) (z) (x ~Pz). The assumed condition is (1) h(x) (y) (z)
(x ~Py) - (y ~Pz), from which is derived (2) (x ~py) ( y ~pz) by U.I.
(3) (z ~px) (x ~pz) from 2 by T-V. (4) z «p# follows from 3 by S. T-VI
converts to (5) (x ~py) D (X ~PZ) by U.I. 5 transforms to (6) (z ~px) D
(x*Pz)byT-V. 4 and 6 yield (7) x*pz by M.P. 7 becomes (8) (x) (z) (x ~Pz)
by U.G.
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At this point "Euclid's Law" for the analogy relation may be asserted
and demonstrated:

H*) (y) (*) (((* *?y) (z *?y)) => (* * z)). T-viπ

Proof: The proof of this is almost obvious. By instantiating T-VΠ and
then exchanging (z ~Py' for 'y ~ P £ J a la T-V and finally universally gen-
eralizing the result, we obtain the theorem to be proved.

We wish now to consider and eventually demonstrate the legitimate use
of the connective '•' between two individual symbols of the same type. The
reason for such considerations will become apparent with respect to some
theorems which we shall subsequently derive. Our considerations arise in
the following example: 'Lyndon B. Johnson is similar to Charles de Gaulle.'
Such a statement can be translated into: 'The thirty-sixth President of the
United States is similar to the first President of the fifth Republic of
France. In other words, using the usual notation for the definite descrip-
tion,32 'a ~P b

? can be translated into ((ιx)Fx ~P (iy)Gy.' Moreover, in
principle at least,33 it is always possible to make such a translation, i.e.,
to translate proper names into definite descriptions. And the converse of
such a translation is also possible. More than this, it is always possible
to derive ί{ιx)Yxί from either '{x)Fx' or c{lx)Fx9 by the 'natural deduc-
tion" techniques.34 By the same techniques, it is also possible to derive
((3x)Fx9 from ((LX)FX.9 With these considerations in mind it becomes
possible to assert our first metatheorem and its corollary:

Metatheorem I: Given any two individual symbols, 'a' and 'b', and any two
propositional symbols, P± and Ql9 then a b = P1 Q^35

Corollary: a v b = P 1 v Q 1

Proof:36 Evidence for this is to be found in the definition of the iota
operator. Where such a definition is (I#)FΛΓ =df ( 3 Λ 0 ( ( F Λ Γ * (3>) (F3> D 3> = χ)),
it becomes evident that all uses of the iota operator are eliminable, by this
definition, in favor of a proposition.

It is now possible to state both the associative and distributive
principles of the analogy relation. However, before proving the theorems
asserting both of these principles, we shall assert and prove the following
theorem:

(χ)(y)(z)((χ y)*?z). τ- ix

Proof: By T-II and E, (1) \-{χ) (y) (x *py). From T-VII, step 8, (2) h(#) (y)
(x ~pz). From 1 and 2 by T-VIII (3) \-(z) (y) (z ~Py). From 2 and 3 re-
spectively (4) x ~pz and (5) z ~Py by U.I. 4 and 5 yield (6) (x ~pz) (z *py)
by Adjunction (A).37 6 yields (7) h(x) (y) (z) ((z ~ p #) (z ~py)) which is
asserting that z is analogous to both x and y. Hence, by metatheorem I,
7 yields (8) \-(x) (y) {z) (z ~P{x-y)) which in turn yields (9) (x) (y) (z)
((* 3θ«p*))by T-VI.

K*) (30 {z) (((x y) *?z) ^ ((*•*) «p3θ). T-X
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Proof. The proof of this theorem follows steps 1-3 of T-IX, above. Step 4
would be to notice that in virtue of 1-3 and by means of E., T-X is a case of
A-I, where two or more distinct variables that are connected by the same
analogy connective are interchangeable.

K*) (y) (z) i((χvy) *p*) Ξ ((*vs) *?y)). τ-xi

Proof: (Same as T-IX and T-X).
The distributive property of analogy can be stated thus:

M*) (y) (z) ((x*p(yz)) - (x*Py) (x*Pz)). T-XII

Proof: We proceed via C.P. where (1) h(χ) (y) (z) ((x ~Py) D ((y ~Pz)
(#«p*))) is derived from T-VII.38 1 yields (2) (x ~Py) D (y ~P£) (x~Pz)
by U.I. (3) # ~Py from T-II. 2 and 3 yield (4) (y ~pz) (x ~Pz) by M.P. But
4 yields (5) # ~pz by S. 3 and 5 together yield (x ~Py) (x ~Pz) by A. At
this point the proof proceeds as in steps 6-9 in T-IX to demonstrate that
the adjunction of ιx ~Py' and (χ ~ P £ ' yield 'x ~P(y -z).'

K * ) (y) (z) ( ( * *p(yv*))^ ({x *Py)v(* * P « ) ) ) . τ-xiπ

Proof: (Same as T-XII).
A principle of addition for the analogy relation can be asserted:

H W CV) (Z) {{X *?y) =) x *?{yvz)). τ-xiv

Proof: This theorem is demonstrated via metatheorem I from the αpf tP1 D
(PIVQI) ' in the following way: T-XIV yields (1) (x) (y) (z) ((x *Py) D
((x ~P3 )̂V(ΛΓ ~PZ))) by T-XIII and E. But 1 bears the form of the αpf cited
above.

We shall next consider the notion of negation with respect to analogy.
In this connection, we employ the symbol (^9 in 'a φ b' to indicate indif-
ferently that 'a is not analogous to b,' or 'it is not the case that a is
analogous to b.' At first it might seem that defining analogy negtaion is a
quite straightforward process, i.e., such negation is defined simply thus:

a φ b =df - (IP) (Pa = Pb). D-II.II

However, this approach to defining analogy negation has two objections:
(1) The definition to which it gives rise leads to a contradiction within the
system and (2) the consequent definition also offers considerable violation
to common sense.39 The former can be demonstrated thus:

1. - (9P) (Pa = Pb) assumption (C.P.)
2. (P) - (Pa = Pb) from 1 by D-I
3. (P) (Pa - Pb) v (Pb - Pa) from 2 by αpf
4. (3AT) (3y) (P) (Px ~ Py) v (Py - PΛ;) from 3 by E.G.
5. (x) (y) (3P) (~Px v Py). (-P3; v P#) from T-II by αpf

It is evident that 4 and 5 are logical duals and are therefore contradic-
tories. On the intended, "common sense," interpretation of A.S i, D-II.II
is incongruous. For, when one says of two individuals, 'a' and 'b' that (1)
"a and b are not analogous," one never means that (2) "it is not the case
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that for any property whatever, a possesses it if and only if b does."
Rather, one usually intends as a translation of 1 the statement that (3)
"with respect to a particular property (or relation), it is not the case that a
has it if and only if b has i t ." Hence, we define analogy negation in the
following way:

a φ?b =df (IP) - (Pa Ξ Pb), D-II.ΠI

which will yield the theorem,

H*) (y) ((x^?y) Ξ (*P) ~ (Px^Py)). τ-xv

Proof: T-XV follows from D-II.IΠ by U.G.
Our next problem is to note and prove the synonymity of use between

'^,' defined above, and *~,' of ordinary propositional negation.

Metatheorem Π: If ha φ b then i-~ (a ~ b).

Proof. (1) a / b = (3P) - (Pa =Pb) from T-XV, by U.I. (2) a / b ^ - (P)
(Pa = Pb) from 1 by D-I. But 2 involves, by D-II.IΠ, the possibility of sub-
stituting '~(a ~ b)' for 'a £ b,' since the expression on the right-hand side
of the equivalency in 1 is always translatable into a clear example of
propositional negation.

We can now assert some relations between identity40 and analogy.
Thus:

\-{χ)(y)((χ = y)^>{χ*y)). τ-xvi

Proof: Using Lemma I, we assert (1) (x) (y) (x =y) with (x) (y) (x ~ y) to be
proved. By D-IV and E., 1 yields (2) (x) (y) (P) (Px = Py). 2 yields (3)
Aa = Ab by U.I. This in turn yields (4) (IP) (Pa =Pb) by E.G. By definition
and E., 4 yields (5) a ~ b, which in turn yields (6) (x) (y) (x « y) by U.G.

^ (x) (y) (χφy)^(χ* y). T-XVII

Proof: First T-XVII translates, by definition and E., into (1) (x) (y) ((3P) ~
(Px = Py)=~ (P)(Px = Py)).41 1 yields (2) (3P) - (Pa = P a ) = ~ ( ^ ( ^ a =Pb)
by U.I. and this is patently valid.42

Because we wish to accurately express comparisons among different
analogy connectives and in view of our definition of analogy, it now becomes
important to be able to indicate precisely, but economically, the range of
values permissible to a predicate variable such that the domain of the
function in which the variable occurs is thereby clearly specified.43 In
order to accomplish the foregoing, we shall adopt the following convention:

(3P), (32P), (33P), . . . , ( 3 H

where the right-hand superscript to any f 3 ' may be any integer and where
'(32P)Pa' may be read "there are exactly two values of (P' which take 'a'
for an argument." At this point we introduce one of our symbols for
comparison among analogical connectives, ' : ' , by the following definition:

a* P b:c «pb =df (VP) (Pa^Pb) (3AP) (Pc =Pb) *> fc,44 D-VΠ
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which will yield by U.G. the theorem:

Hx) (y) U) ((* *?y z *?y) Ξ (3 *P) (PX = Py) (3 A P) (PZ = py) % > h).

T-XVIII

The transitivity of ':' may be stated thus:

K#) (y) (*) (w) (((* *P3>:* «Py) (* ~P3>:w *P3>)) => (# ~P3>:w ~P3^)).

T-XIX

Proof: We proceed via C.P. by assuming (1) (x) (y) (z) (x ~py:z χpy) and
attempting to prove (x) (y) (w) ({x ~py:w ~py) (x ~Py:w ~py)). (2) x ~p

3>;2 ~P;y is derived from 1 by U.I. (3) a) z *py, b) w &py9 and c) x *py can
all be derived from T-II by U.I. But, by T-VΠI and A-1, 3 allows
(4) z*py:w~py and (5) x ~Py:w ~py to be derived from 2. Hence,
(6) (z ~Py:w ~py) (x ~py\w ~py) by A, and this in turn yields 7) (z) (y) (w)
({x ~py:z *Py) (x *Py:w *?y)).

The symbol '.*.' can be similarly introduced by definition:

a «pb.'.c ^Pb =df {rP) (Pa =Pb) (3ΛP) (Pb = Pc) i = k, D-VIII

which also yields, by U.G., the theorem:

hW (y) (z) ((x *py.\z *Py) = (ΪP) (Px = Py) (3AP) (Py = Pε) f = Λ).
T-XX

A transitivity property can also be stated for '.V in the following way:

H#) (y) U) (w) ((U -p^ ' ^ ~π^) * (z «Py.'. ^ - P ^ ) ) ) => U «P^.'.w ~ P ^ ) ,

T-XXI

the proof of which is essentially the same as the one for T-XIX.

5. INTRODUCTION TO AN ANALOGICAL SET CALCULUS Up to this
point we have described what seem to be the rudiments of a calculus of
analogy for individuals. We wish now to extrapolate to the rudiments of a
similar calculus for sets. In our list of primitive symbols we indicate that
lower case Greek letters a, β, . . . or φ, Ψ, . . . denote sets. A la Principia
Mathematical each such letter is translatable into X(AJX). But this allows
us to define the connective 'e\ Thus, where bea then

be£(A#)=rf/Ab. D-IX

Hence, any two sets 'a' and 'β' may be said to be analogous according to the
following definition:

a*β=df (3*) (3P) (3Q) ((xea Ξ Px) (xeβ ^ Qx) P = Q). D-IX

This is a somewhat restrictive definition in that (1) by virtue of its
quantifiers, null sets are never analogous and (2) it permits the analogy
relation to hold only among those sets in which the set properties46 are
complex such that P and Q are elements thereof. Provided that these
semantical restrictions obtain, the definition of analogous sets may be
abbreviated to:

a ~ β =df {Ix) (xea = xeβ). D-IX.I
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Such a definition with its restrictions may induce a number of negative
reactions from philosophers of logic. However, since we are attempting
neither to dissolve nor to resolve problems in the philosophy of logic we
shall succumb to giving only a brief rationale for restriction 2. This
restriction can be grasped from the consideration that the set of (1) 'green
things' and the set of (2) 'red things' are not, as they stand, analogous sets.
But the set of (3) 'blue and red things' and the set of (4) 'green and red
things' are, as they stand, analogous because an element, i.e., 'red,' of
each of their set properties is identical. Moreover, two sets (5) and (6)
whose determining properties47 are in both cases 'red,' 'green,' and 'blue'
may be regarded as identical. Now, the expression "as they stand" used
above is to be understood in the sense of "without reference to set
inclusion." In other words, someone might regard 1 and 2 as analogous in
terms of both being subsets of the set of (7) 'colored things,' whereas the
analogy between 3 and 4 requires no such reference. Further, we note that
our logic, which is obviously cast within the framework of type-theory, is
prevented as much as possible from engendering paradoxes by having only
properly stratified formulae48 within it. This can be demonstrated by
translating our definitions and theorems into primitive notation49 and then
submitting them to Quine's test.50 Within the extensions of the foregoing
provisos, we assert the theorem:

(φ) (Φ) (φ * Φ), T-XXII

which is the assertion of the universality of the analogy relation for sets.5 1

We now assert the theorems:

KΦ) W ((Φ «PΦ) = (3*) {xeφ = xeΨ)) T-XXIII

H3φ) (3Φ) ( Φ * P * ) T-XXW

h (φ) (Φ) ((φ * p Φ) D (Φ « p φ)) T-XXV

KΦ) (*) (μ) (((Φ «PΦ) (* * P μ)) D (Φ «Pμ)) T-XXVI

the proofs of which proceed as those of respectively T-I, T-IV, T-VI, and
T-VII. At this point analogy negation for sets is introduced by the following
definition:

a φ β =df (3#) ~ (xea = xeβ). D-X

The rationale for the choice of this definition parallels closely that for
the choice of D-Π.III, where conditions of consistency and conformity to
"common sense" are the dicta.

We now turn our attention to the status of Boolean products relative to
the analogy relation. Thus, where in classical set theory a Π β =df (3x)
{xea -xeβ) then

h(φ) (Φ) ((φ * P Φ ) D (φ ΠΦ)). T-XXVII

Proof: Proceeding via C.P., from T-XXII we derive (1) a ~pβ by U.I.
1 yields (2) (ix) (xea =xeβ) by D-IX.I. Next, we derive (3) aeα = aeβ from
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2 by E.I. We then derive (4) (aeα=3 aeβ) (aeβ^> aeα) from 3 by αpf.
We assume (5) aeα. 4 yields (6) a e α D a e β by S. 6 and 5 yield (7) aeβ by
M.P. 5 and 7 yield (8) aecr aeβ by A. 8 yields (9) (ix) (xea-xeβ) by E.G.
This latter yields (10) aΠβ by definition (above), which in turn yields
(φ) (Φ) (φΠΦ) by U.G.

h(φ) (Φ) (~(ΦΠΦ) D ( Φ ^ Φ ) ) . T-XXVIΠ

Proo/: We first instantiate T-XXVΠI, above, to yield (1) (a ~ p β) D (αfΊ β)
by U.I. This in turn yields (2) ~(aΠβ) D ~(α ~ p β) by αpf. But 2 yields (3)
- ( a n β) D (a ^ p β ) by metatheorem II. 3 yields (φ) (Φ) (~(ΦΠΦ) D (φ ̂  Φ)) by
U.G.

In classical set theory, a distinction is usually made between an
improper and a proper subset of any given set. Where the former is
indicated by the symbol ' c ' and defined in the following way: A) a c β -^
(x) (xea = xeβ) then the theorem:

KΦ) (Φ) ((Φ C Φ ) D ( ^ Φ)). T-XXIX

Proof: Using C.P. we universally instantiate the definiens of A above to
obtain (1) xea = xeβ. Then, by applying E.G. to 1, we obtain (ix) (xea = xeβ),
which is the definiens of a ~ β. But since the definiens may be substituted
by E. for its corresponding definiendum, we have proven our theorem.

At this point, we assert the analogy relation between a set and its
proper subset, which in classical set theory is usually indicated by the
symbol ' c ' and defined in the following way:

a c β =df (x) (*eα D xeβ). B

Kφ) (Φ) ((Φ C Φ) 3 (φ ~ Φ)). T-XXX

Proof: We first assert the definitional translation of T-XXIX, above:
(1) (x) {xeβ =xea) D {lx) (xeβ =xea). This yields (2) (ae/3 = sue a) D (ix)
(xeβ =xeά) by U.I. From 2 we derive (3) (aeβ D aeα) (aeof DΛ e/3) D (3Λ:)
(jveβ Ξ^eα) by αpf. 3 yields (4) (aeα=> aeβ) => (3A;) (aeβ -^eα) by S. 4 yields
(5) (x) (xea^> xeβ) => (3Λ;) (xeβ^> xea) which in turn yields, by definition B
and E., (6) (a c β) D (ff « β). From 6 we derive (7) (φ) (Φ) ((φ c ψ) D (Φ « Φ)).

It now becomes possible to assert

h(φ) (X) (*) (((Φ c X) (X c Φ)) D (φ - Φ)). T-XXXI

Proof: A la T-XXX, we translate each of the expressions in T-XXXI
containing a £ C symbol into one containing an f~' symbol. Thus, univer-
sally instantiating and translating gives us the following result ((a ~ β)
(β ~ Ύ)) ̂  (a ~ y)? which reveals T-XXXI to be only a case of theorem
T-XXVI. It should be noted here, however, that the statement ((a c β)
(γ c β)) D (a ~ γ) does not hold, simply because there is no guarantee that
the set properties by virtue of which a and β are subsets of γ overlap. With
the assertion and proof of T-XXX and where auβ =df (3#) (tfeo'vΛ eβ), it
becomes possible to assert and prove:

h (φ) (Φ) ((φ n Φ) ~ (φ U Φ)). T-XXXII
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Proof-. Since, in classical set theory, for any intersect, 'adβ,' and its

corresponding join, 'α u β,' the statement (1) (a Πβ) c {a Uβ) holds then, by

T-XXX, the statement (2) (adβ) ~ (aUβ) must also hold. This in turn

yields (3) (φ) (Φ) ((ψn*) « (φU*)) by U.G.
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