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THE PRODUCT OF IMPLICATION AND
COUNTER-IMPLICATION SYSTEMS

RANGASWAMY V. SETLUR

1. Introduction.* Rasiowa has obtained in [1] a finite axiomatization of the
product system of "implication" and ''equivalence". In this paper, we
show that the logic system based on the single binary connective O with the
logical matrix

Q I 1 2 3 4

*1 1 1 3 3
2 2 1 4 3
3 1 1 1 1
4 2 1 2 1

that is the product connective of implication (C) and counter-implication (D)
is finitely axiomatizable. The axiom and the rules of inference have been
obtained by combining the axioms and the rules of inference of the complete
axiomatizations of the implication system (C-system) and of the counter-
implication system (O-system).

2. Preliminary definitions. In these definitions Δ and Δx are arbitrary
binary connectives.

2.1. ^-formulas. Δ-formulas are defined recursively as follows:

i) a sentential variable, a small Roman letter, is a Δ-formula;
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ii) if a and b are Δ-formulas, then Δab is a Δ-formula;
iii) no formula is a Δ-formula unless its being so follows by a finite

number of applications of i) and ii).

2.2. Δ-formula schemata. Δ-formula schemata are defined recursively as
follows:

i) a small Greek letter is a Δ-formula schema;
ii) if a and β are Δ-formula schemata, then Aaβ is a Δ-formula

schema;
iii) no formula schema is a Δ-formula schema unless its being so

follows by a finite number of applications of i) and ii) above.

2.3. Corresponding Δx-formula of a Δ-formula. A Δx-formula obtained by
replacing every occurrence of Δ by the binary connective Δx in a Δ-formula
a is the corresponding Δx-formula of the Δ-formula a and is denoted a Δ1#

2.4. Corresponding Δ^formula schema of a Δ-formula schema. A Δx-
formula schema obtained by replacing every occurrence of Δ by the binary
connective Δλ in a Δ-formula schema Φ^ is the corresponding Δ^formula
schema of the Δ-formula schema ΦΔ and is denoted ΦΔ l .

2.5. Δ-rule scheme. A rule scheme that has a finite number of Δ-formula
schemata for premisses and one Δ-formula schema for conclusion is a
Δ-rule scheme. A Δ-rule scheme is also referred to as a Δ-rule of
inference.

2.6. The corresponding Δλ-rule scheme of Δ-rule scheme. The Δi-rule
scheme, obtained by replacing every occurrence of Δ by the binary connec-
tive Δx in a Δ-rule scheme (both in the premisses and in the conclusion) is
called the corresponding Δx-rule scheme of a Δ-rule scheme.

3. Derivation of a complete axiomatization of D-system. Lukasiewicz's
axiomatization of the C-system in [2] consists of the single axiom

L : CCCpqrCCrpCsp

and the two rules of inference—the rule of substitution and the rule of
detachment for C, viz., Caβ} a -» β. This is used to obtain a complete
axiomatization of the O-system. As C and 0 are functionally complete with
respect to each other, we translate the axiom L and the rules of inference
and obtain the following complete axiomatization of the O-system consisting
of the single axiom

Tr (L) : ODOpsDprDrDqp

and the two rules of inference—the rule of substitution and the rule of
detachment for 0, viz., Daβ, β —> a.

4. Expressibility of the product connective \i(p,q) x h(p,q) by an O -formula.
The connectives \\{p,q) and \2(P,q) have the truth-tables:
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^ y ^ 1 2 ^ x ^ 1 2

1 1 1 1 1 2

p : P:
2 2 2 2 1 2

Their product connective \i(p,q) x l2(£,#) has the truth-table:

li(M)xl2(/>,<7)

^ ^ 1 2 3 4

1 1 2 1 2
2 1 2 1 2
3 3 4 3 4

4 3 4 3 4

and is expressible by the O-formula OOqOqqOOppp. The C-formula

CCqCqqCCppp

is the corresponding C-formula of this O-formula and the O-formula

OOqOqqOOppp

is the corresponding O-formula of this O-formula. They are respectively
truth-functionally equivalent to the C-formula p and the O-formula q. The
sentential letters p and q are O-formulas as well. As p and q denote
arbitrary O-formulas, we can assert

Theorem 1. Let f be any two-valued truth-function expressible by a C-
formula a. Let g be any two-valued truth-function expressible by a
3-formula b. There is an O-formula, d, such that the following two
conditions hold:

i) Its corresponding C-formula, dc, is equivalent to a, i.e., f is
expressible by dc

ii) Its corresponding D-formula, dj, is equivalent to b, i.e., g is
expressible by do.

This theorem is crucial in the development of the axiomatization.

5. A Complete axiomatization of the O-system. We now develop a complete
axiomatization of the O-system by using the complete axiomatizations of
theC- and O-systems.

Lukasiewicz has shown in [2] that the single axiom

L : CCCptfίrxCCrxpίCSipx

and the two rules of inference—the rule of substitution and the rule of
detachment for C, viz., Caβ, a —• β together constitute a complete axioma-
tation of the C-system. From section 2 it follows that the single axiom

K : DDDp2s2Dp2r2Dr2Dq2p2
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and the two rules of inference—the rule of substitution and the rule of
detachment for 0, viz., Daβ, β -> a together constitute a complete axiomati-
zation of the O-system. By Theorem 1, we know that it is possible to
obtain an O-formula such that its corresponding C-formula is equivalent to
the given C-formula and its corresponding O-formula is equivalent to the
given O-formula. So the O-formula

R : OOKoOKoKoOOLoLoLo

where Koand Loare abbreviations for the O-formulas OOOp2s2(^)p2r2(^)r2^)(l2p2
and OOOp1q1r1θθr1p1θs1p1 respectively, has for its corresponding C-
formula, a C-formula that is equivalent to L, and has for its corresponding
O-formula, a O-formula that is equivalent to K. It is clear that the
O-formula R is an O-tautology. Let us accept R as an axiom. Let us
consider the following four rules of inference:

i) the rule of substitution,
ii) OOaOaaOQaaa -• a,

iii) OOσOσσOOOaβOaβOaβ, a — OOσOσσOOβ/3/3,
iv) OOOyδOOyδOyδOOσσσ, δ -• OOyOγγOOσσσ.

We assert that the axiom R and these four rules of inference constitute a
complete axiomatization of the O-system.

Proof: Given any O-tautology a, to prove that the above axiomatization of
the O-system is complete, we must show that a is provable in the
O-system. Given a, we find its corresponding C-tautology ac, and its
corresponding O-tautology a^. Now we obtain a C-tautology ac

ι) from ac by
subscripting each of its variable occurrences by the numeral 1. (This is a
substitution instance of ac, containing variables subscripted with the
numeral 1 instead of the variables in ac) Similarly, we obtain a
O-tautology ai2) from aD by subscripting each of its variable occurrences
by the numeral 2. This makes the variables in ac

x) and a™ independent and
we get the facility that aψ will be left unaltered in any substitution we
perform in ac

v and vice versa. In order to prove a, we first prove

OOα ( 2 ) Oa(2)a(2)OOaa)aa)aa\

where α ( 2 ) is the corresponding O-formula of the O-formula aj\ and α ( 1 ) is
the corresponding O-formula of the C-formula a^. Because we have a
complete axiomatization of the C-system, there is a proof of ac

Ώ starting
from L by one or more applications of the two rules of inference. If the
proof of a^ uses any of the variables in K, then we can modify the proof in
such a way that none of the variables in K is used. Now we can be certain
that we do not change any of the variables in Ko when we deduce starting
from R. Corresponding to each step in the modified proof of ac

λ) starting
from L, if starting from R we perform the corresponding step indicated
below, it is clear that we obtain a proof of

OOKoOKoKoOOα(1>β(1)α(1)
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If the rule of substitution is used in the modified proof of ac\ we use the
rule of substitution and substitute for the variables corresponding O-
formulas; if the rule of detachment for C is used, we use the following rule
of detachment for O:

OOσOσσOOOaβDaβDaβ, a -* OOσOσσOO/3/3/3

If the axiom L is used in the proof of a(c\ we use the axiom R. Because we
have a complete axiomatization of the O-system, there is a proof of ai2)

starting from K by one or more applications of the two rules of inference.
If the proof of α ( 2 ) uses any of the variables in a{c\ then we can modify the
proof in such a way that none of the variables in a^ is used. Now we can
be certain that we do not substitute for any of the variables in aa).
Corresponding to each step in the modified proof of a^ starting from K,
if starting from

OOKoOKoKoOOα ωa a)a(1).

we perform the corresponding step indicated below, it is clear that we
obtain a proof of

OO a{2)θa(2)a{2)θθaωaωaω.

If the rule of substitution is used in the modified proof of a{2\ we use the
rule of substitution and substitute for the variables corresponding O-
formulas; if the rule of detachment for D is used, we use the following rule
of detachment for O:

OOOyδOOyδOyδOOσσσ, δ —» OOγOyyOOσσσ.

If the axiom K is used in the proof of a(j\ we use the tautology
OOKoOKoKoOOα(1)α(1)α(1). We can by the rule of substitution assert

OOaaOaaOOaaa

where a is a substitution instance of a{2) as well as a(1) (we substitute the
original variables in a instead of the subscripted variables in ai2) and α(1)).
Finally, we can assert a by one application of the rule scheme:

OOaOaaOOaaσ -> a.

We state without proof a theorem that permits us to verify easily the
validity of these rule schemes.

Theorem 2: An O-rule scheme is valid if and only if its corresponding
C-rule scheme and its corresponding O-rule scheme are valid.

i) The O-rule scheme:

OOσOσvOOOaβOaβOaβ, a -> OOσOσσOOβββ

is valid.

Proof: The corresponding C-rule scheme is:

CCσcCσcσcCCCo>cβcCacβcCacβc, otc ~* CCσcCσcσcCCβcβcβc
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The first premiss is equivalent to Cacβc, and the conclusion is equivalent
to βc. We know that Cacβc, &c ""* βc is valid. Therefore, the corresponding
C-rule scheme of the O-rule scheme is valid.

The corresponding O-rule scheme is

DDσDDσDσDDDDaDβDDaDβDDaDβD, aD -• DDσDDσDσDDOβDβDβD

The first premiss is equivalent to σD and so is the conclusion. Hence, the
corresponding O-rule scheme is valid.

ii) The O-rule scheme:

OOOyδOOyδOyδOOσσσ, δ -» OOyOyyOOσσσ

is valid.

Proof: The corresponding C-rule scheme is

CCCγcδcCCγcδcCγcδcCCσcσcσc, δc — CCγcCγcγcCCσcσcσc.

The first premiss is equivalent to σc and so is the conclusion. Therefore,
the corresponding C-rule scheme is valid.

The corresponding O-rule scheme is

OOOyjO^DDγryδjOγjδ^OOojO^σj, δD —* ODγDDγDγDDDσjσjσ^

The first premiss is equivalent to Oγ^δj, and the conclusion is equivalent to
γD. We know that OγDδD> δD -> γD is valid; therefore, the corresponding
O-rule scheme is valid.

iii) OOaOaaOOaaa —• a

The O-formula schemata OOaOaaOOaaa and a are equivalent.

Hence, the O-rule scheme above is valid.

6. A complete axίomatization of the product system of "implication" and
"equivalence". The method by which the axiomatization of the O-system
has been developed, is based on the following two facts: i) the logic
systems based on the connectives C and O are completely axiomatizable,
ii) the connective O has the property that it is possible to express the
product connective \^{p,q) x \2(P,Q) by an O-formula. This makes us
suspect that a similar method may be applicable for developing complete
axiomatizations of logic systems based on other single product connectives.

We consider the product system of "implication" and "equivalence"
and give an axiomatization that is different from the one given by Rasiowa.

Let us denote the product connective of "implication" and "equiva-
lence" by W. The product connective li(£,tf) x \2(P,q) is expressible by the
^-formula WWpqp. This axiomatization is based on Lukasiewicz's axi-
omatizations of the C-system in [2] and of the jE-system in [3]. The former
is the one used in section 4 and the latter consists of the single axiom

J : EEp2q2EEr2q2Ep2r2

and the rules of inference—the rule of substitution and the rule of
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detachment for E, viz., Eaβ, a -+ β. The axiomatization consists of the
single axiom

WWLWJWLW,

where Lw and J^ are abbreviations for the W-formulas

WWWp1q1r1WWr1p1Wsφ1

and

WWp2q2WWr2q2Wp2r2

respectively, and the following four rules of inference:

i) the rule of substitution,

ii) WWWaβσWaβ, a -> WWβσβ,
iii) WWσWγδσ, γ -• WWσδσ,

iv) WWaaa — a

We can establish that this axiomatization is complete by a proof
similar to the proof in section 4 that established the complete axiomatiza-
tion of the O-system.

Discussion: One might comment that the single axiom and the rules of
inference that together constitute the axiomatization of the O-system are
very lengthy and cumbersome. But the method of development of the
axiomatization of the O-system makes use of the axiomatization of the
implication system and counter-implication system in a straighforward
manner. The crucial step in the axiomatization is the expressibility of the
connective \ι{p,q) x \2(P,Q) by the product connective O.

Rasiowa has raised in [l] a question as to whether every product of two
axiomatizable systems of propositional calculus (with a single connective)
is axiomatizable. The method of development of the axiomatization of the
O-system suggests that it is possible to axiomatize other products of two
axiomatizable systems of propositional calculus (with a single connective)
provided it is possible to express the product connective \χ(p,q) x \2(p,q) by
a formula in the product connective under consideration. This is a partial
answer to the question raised by Rasiowa. In two-valued propositional
calculus, if we consider two mutually dual connectives, it is clear that it is
not possible to express the product connective li{p,q) x \2(P,Q) by a formula
in the product connective of the two mutually dual connectives. But this
product system is empty in the sense that there are no formulas in this
product connective which are tautologies. So the problem as to whether it
is possible to express the connective li(/>,#) x l2(/>,#) by every product of
two distinct connectives that are not mutually dual is interesting. As far as
the product connectives of two distinct connectives other than the connec-
tive Vr(p,q) with the matrix
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Vr(M) V
^ - ^ 1 2

/>: 1 ] ϊ ϊ
2 1 1

the author has shown in [4] that the connective \ι{p,q) x \2(P,Q) niay be

expressed by all the product connectives that have non-empty sets of

tautologies.
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