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THE PRODUCT OF IMPLICATION AND
COUNTER-IMPLICATION SYSTEMS

RANGASWAMY V. SETLUR

1. Introduction.* Rasiowa has obtained in [1] a finite axiomatization of the
product system of ‘‘implication’’ and ‘‘equivalence’’. In this paper, we
show that the logic system based on the single binary connective O with the
logical matrix

O 1 2 3 4
*1 1 1 3 3
2 2 1 4 3
3 1 1 1 1
4 2 1 2 1

that is the product connective of implication (C) and counter-implication ()
is finitely axiomatizable. The axiom and the rules of inference have been
obtained by combining the axioms and the rules of inference of the complete
axiomatizations of the implication system (C-system) and of the counter-
implication system (O-system).

2. Preliminary definitions. In these definitions A and A, are arbitrary
binary connectives.

2.1. A-formulas. A-formulas are defined recursively as follows:

i) a sentential variable, a small Roman letter, is a A-formula;
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ii) if ¢ and b are A-formulas, then Aab is a A-formula;
iii) no formula is a A-formula unless its being so follows by a finite
number of applications of i) and ii).

2.2. A-formula schemata. A-formula schemata are defined recursively as
follows:

i) a small Greek letter is a A-formula schema,;
ii) if o and B are A-formula schemata, then AeB is a A-formula
schema;
iii) no formula schema is a A-formula schema unless its being so
follows by a finite number of applications of i) and ii) above.

2.3. Corrvesponding A,-formula of a A-formula. A A,-formula obtained by
replacing every occurrence of A by the binary connective A, in a A-formula
a is the corresponding A,-formula of the A-formula a and is denoted a A;.

2.4. Corresponding A ~formula schema of a A-formula schema. A A;-
formula schema obtained by replacing every occurrence of A by the binary
connective A, in a A-formula schema &, is the corresponding A,-formula
schema of the A-formula schema &, and is denoted @, .

2.5. A-vule scheme. A rule scheme that has a finite number of A-formula
schemata for premisses and one A-formula schema for conclusion is a
A-rule scheme. A A-rule scheme is also referred to as a A-rule of
inference.

2.6. The corresponding A,-vule scheme of A-vule scheme. The A;-rule
scheme, obtained by replacing every occurrence of A by the binary connec-
tive A, in a A-rule scheme (both in the premisses and in the conclusion) is
called the corresponding A,;-rule scheme of a A-rule scheme.

3. Derivation of a complete axiomatization of O-system. Lukasiewicz’s
axiomatization of the C-system in [2] consists of the single axiom

L : CCCpgrCCrpCsp

and the two rules of inference—the rule of substitution and the rule of
detachment for C, viz., CaB, @ — B. This is used to obtain a complete
axiomatization of the O-system. As C and O are functionally complete with
respect to each other, we translate the axiom % and the rules of inference
and obtain the following complete axiomatization of the O-system consisting
of the single axiom

Tr (L) : 000psIprIrOgp

and the two rules of inference—the rule of substitution and the rule of
detachment for O, viz., JaB, B — a.

4. Expressibility of the product connective 11(p,q) X 2(p,q) by an O -formula.
The connectives |,(p,q) and 1,(p,q) have the truth-tables:
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Il(p,q) ‘2( p5q)

Their product connective 1,(p,q) X l(p,q) has the truth-table:
Il( P’q) X |2(p’q)
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and is expressible by the O-formula OOgOgqOOppp. The C-formula

CCqCqqCCppp

is the corresponding C-formula of this O-formula and the O-formula

00q2qqO0ppp

is the corresponding O-formula of this O-formula. They are respectively
truth-functionally equivalent to the C-formula p and the O-formula q. The
sentential letters p and g are O-formulas as well. As p and g denote
arbitrary O-formulas, we can assert

Theovem 1. Let f be any two-valued truth-function expressible by a C-
formula a. Let g be any two-valued truth-function expressible by a
O-formula b. Theve is an O-formula, d, such that the following two

conditions hold:

i) Its corresponding C-formula, dc, is equivalent to a, i.e., f is
expressible by dc.

il) Its corresponding O-formula, d>, is equivalent to b, i.e., g is
expressible by do.

This theorem is crucial in the development of the axiomatization.

5. A Complete axiomatization of the O-system. We now develop a complete
axiomatization of the O-system by using the complete axiomatizations of
the C - and J-systems.

Lukasiewicz has shown in [2] that the single axiom

L: CCCPp1q1viCCrip1Cs1py

and the two rules of inference—the rule of substitution and the rule of
detachment for C, viz., CaB, @ — B together constitute a complete axioma-
tation of the C-system. From section 2 it follows that the single axiom

K: OOOPzSgOPngO'VzOqg pz
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and the two rules of inference—the rule of substitution and the rule of
detachment for O, viz., DaB, B — a together constitute a complete axiomati-
zation of the O-system. By Theorem 1, we know that it is possible to
obtain an O-formula such that its corresponding C-formula is equivalent to
the given C-formula and its corresponding O-formula is equivalent to the
given O-formula. So the O-formula

R : OOK OKoKoOOE ok oko

where Kpand L,are abbreviations for the O-formulas QOC £, 8,0, 7,070
and OOO p,q,7,007%, pOSs,p, respectively, has for its corresponding C-
formula, a C-formula that is equivalent to ¥, and has for its corresponding
O-formula, a J-formula that is equivalent to K. It is clear that the
O-formula R is an O-tautology. Let us accept R as an axiom. Let us
consider the following four rules of inference:

i) the rule of substitution,

ii) OOaCaaOCana — a,
iii) O0gOra0O00R0aROaB, a — O0cOscOORAR,
iv) OOOy500y50y600000, § — O0yOyyO00a0.

We assert that the axiom R and these four rules of inference constitute a
complete axiomatization of the O-system.

Proof: Given any O-tautology a, to prove that the above axiomatization of
the O-system is complete, we must show that a¢ is provable in the
O-system. Given a, we find its corresponding C-tautology ac, and its
corresponding O-tautology ap. Now we obtain a C-tautology a" from ac by
subscripting each of its variable occurrences by the numeral 1. (This is a
substitution instance of ac, containing variables subscripted with the

numeral 1 instead of the variables in a¢). Similarly, we obtain a

O-tautology a9’ from a, by subscripting each of its variable occurrences

by the numeral 2. This makes the variables in a&’ and a%’ independent and

we get the facility that a% will be left unaltered in any substitution we

perform in a{"’ and vice versa. In order to prove a, we first prove

OOa(Z) Oa(2)a(2)ooa(l)a(l)a(1)’

@ (2)

where a® is the corresponding O-formula of the O-formula ¢%’ and ¢ is
(1)

the corresponding O-formula of the C-formula a;’. Because we have a
complete axiomatization of the C-system, there is a proof of al’ starting
from L by one or more applications of the two rules of inference. If the
proof of ol uses any of the variables in K, then we can modify the proof in
‘such a way that none of the variables in K is used. Now we can be certain
that we do not change any of the variables in K, when we deduce starting
from R. Corresponding to each step in the modified proof of al’ starting
from L, if starting from R we perform the corresponding step indicated

below, it is clear that we obtain a proof of

OOKoOKoKo00aVa™a
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If the rule of substitution is used in the modified proof of a‘cl), we use the
rule of substitution and substitute for the variables corresponding O-
formulas; if the rule of detachment for C is used, we use the following rule
of detachment for O:

000000000 R0aROaB, a — OOcO0cOOLBA

If the axiom % is used in the proof of ac , we use the axiom R. Because we
have a complete axiomatization of the O-system, there is a proof of a*®’
starting from K by one or more applications of the two rules of inference.
If the proof of a® uses any of the variables in a{’, then we can modify the
proof in such a way that none of the variables in a?’ is used. Now we can
be certain that we do not substitute for any of the variables in a?.
Corresponding to each step in the modified proof of %’ starting from K,
if starting from

OOKOOKoKoooa (1) (1) (1)

we perform the corresponding step indicated below, it is clear that we
obtain a proof of

00 a(Z)O a(z) (2)00 a(l) a(l)a(l)

If the rule of substitution is used in the modified proof of a‘” we use the

rule of substitution and substitute for the variables corresponding O-
formulas; if the rule of detachment for O is used, we use the following rule
of detachment for O:

000y 500y 80y60000a, § — OOyOyyOO0o0.

If the axiom K is used in the proof of a‘g’, we use the tautology

OOKOKoKo00a™ a™ a™. We can by the rule of substitution assert
0O0aaOaaOOaaa

where a is a substitution instance of a® as well as a'¥ (we substitute the
original variables in « instead of the subscripted variables in ¢ ® and a'").
Finally, we can assert a by one application of the rule scheme:

O0aOaaO0aaa — a.

We state without proof a theorem that permits us to verify easily the
validity of these rule schemes.

Theorvem 2: An O-vule scheme is wvalid if and only if its corrvesponding
C-rule scheme and its covvesponding D-rule scheme are valid.

i) The O-rule scheme:
0000ga000aR0apCaB, a — OOcOFaOORBA
is valid.
Proof: The corresponding C-rule scheme is:

CCUCCGCocCCCaCBCCaCBCCaCBC, adc — CCO’CcU(;O'cCCBcﬁcﬁc
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The first premiss is equivalent to CacfB¢, and the conclusion is equivalent
to Bc. We know that CacBc, a¢c — B¢ is valid. Therefore, the corresponding
C-rule scheme of the O-rule scheme is valid.

The corresponding O-rule scheme is

0005005050000, B0, 500085, ey — D0050050500858560

The first premiss is equivalent to 0, and so is the conclusion. Hence, the
corresponding J-rule scheme is valid.

ii) The O-rule scheme:
000y §00y0y600000, § — OOyOyy OOco0
is valid.
Proof: The corresponding C-rule scheme is
CCCyc6cCCYcOcCycdcCCOc0c0c, 6c — CCyYcCycycCCocococ -

The first premiss is equivalent to o; and so is the conclusion. Therefore,
the corresponding C-rule scheme is valid.
The corresponding O-rule scheme is

D00y50500¥567 056500050505, 65 — D0yy Dyyyy 00050505

The first premiss is equivalent to Jy,6,, and the conclusion is equivalent to
Y. We know that Oy,6,, 6, — ¥y, is valid; therefore, the corresponding
O-rule scheme is valid.

iii) 00aOeaCOaaa — a
The O-formula schemata OOaOaaOOaaa and « are equivalent.
Hence, the O-rule scheme above is valid.

6. A complete axiomatization of the product system of ‘‘tmplication’® and
‘‘equivalence’’, The method by which the axiomatization of the O-system
has been developed, is based on the following two facts: i) the logic
systems based on the connectives C and O are completely axiomatizable,
ii) the connective O has the property that it is possible to express the
product connective 1,(p,9) X1,(p,g) by an O-formula. This makes us
suspect that a similar method may be applicable for developing complete
axiomatizations of logic systems based on other single product connectives.

We consider the product system of ‘‘implication’’ and ‘‘equivalence’’
and give an axiomatization that is different from the one given by Rasiowa.

Let us denote the product connective of ‘‘implication’’ and ‘‘equiva-
lence’’ by W. The product connective I,(p,q) X 1,(p,q) is expressible by the
W-formula WWpgp. This axiomatization is based on Lukasiewicz’s axi-
omatizations of the C-system in [2] and of the E-system in [3]. The former
is the one used in section 4 and the latter consists of the single axiom

J: EEpzqz EETZ 773 E& 72

and the rules of inference—the rule of substitution and the rule of
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detachment for E, viz., EaB, a — 8. The axiomatization consists of the
single axiom

WW LyJy Ly,
where Ly and Jy are abbreviations for the W-formulas
WWW p1q v A WWr 1 p, Ws1b,
and
WWpagqe WWreqs Whsvs
respectively, and the following four rules of inference:

i) the rule of substitution,

ii) WWWaBoWap, a — WWBaog,
iii) WWoWysa, y — WWobo,
iv) WWaaa — @

We can establish that this axiomatization is complete by a proof
similar to the proof in section 4 that established the complete axiomatiza-
tion of the O-system.

Discussion: One might comment that the single axiom and the rules of
inference that together constitute the axiomatization of the O-system are
very lengthy and cumbersome. But the method of development of the
axiomatization of the O-system makes use of the axiomatization of the
implication system and counter-implication system in a straighforward
manner. The crucial step in the axiomatization is the expressibility of the
connective 1,(9,9) X I5(»,9) by the product connective O.

Rasiowa has raised in [1] a question as to whether every product of two
axiomatizable systems of propositional calculus (with a single connective)
is axiomatizable. The method of development of the axiomatization of the
O-system suggests that it is possible to axiomatize other products of two
axiomatizable systems of propositional calculus (with a single connective)
provided it is possible to express the product connective 1,(p,q) X I(p,9) by
a formula in the product connective under consideration. This is a partial
answer to the question raised by Rasiowa. In two-valued propositional
calculus, if we consider two mutually dual connectives, it is clear that it is
not possible to express the product connective I,(p,q) X 1o(p,q) by a formula
in the product connective of the two mutually dual connectives. But this
product system is empty in the sense that there are no formulas in this
product connective which are tautologies. So the problem as to whether it
is possible to express the connective I,(p,q9) X 1,(p,q9) by every product of
two distinct connectives that are not mutually dual is interesting. As far as
the product connectives of two distinct connectives other than the connec-
tive Vr(p,q) with the matrix
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vr(p,q) q.
1 2
p: 1 1 1
2 1 1

the author has shown in [4] that the connective I,(p,q) X 15(p,9) may be

expressed by all the product connectives that have non-empty sets of
tautologies.
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