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ON THE NUMBER OF VARIABLES IN THE AXIOMS

M. D. GLADSTONE

§1. Introduction. There are three principal results.
(1) A new proof is given of a theorem already obtained by Wajsberg (see
[7]), and by Diamond and McKinsey (see [l]), to the effect that if a proposi-
tional calculus is complete then at least one of its axioms must contain >3
distinct variables. (For precise definitions of propositίonal calculus,
complete, etc., see §2.)
(2) The incomplete calculus whose axioms consist of all tautologies having
<2 distinct variables, is described and shown to be not finitely axiomatiz-
able.
(3) Finally, it is shown that, for a complete propositional calculus to be
axiomatizable using only n distinct variables, where n > 3, it is necessary
and sufficient that every logical connective of the system has <w argument-
places. The axiomatization in the sufficiency case is an adaption of that of
Henkin in [3].

§2. Terminology. Connective. Short for 'logical connective". We
regard this as a primitive symbol to which is attached a classical truth-
function. Sometimes we use "connective" loosely, meaning just the
truth-function.

Variable. This always means one of the propositional variables,
P, Pi, P2, , Q, Qi, #2, , r, rl9 r2, . . . .

The wff A is of the form φ(p,q). This is typical of a whole class of
assertions. It implies that no variable distinct from p, q appears in the
wff A{wffhas the usual meaning). The expression, "φ(X,Y)"9 where X, Y
are wff, strands for the wff obtained from A by substituting X, Ffor p, q,
respectively.

Propositional calculus; complete; Pn; D; Γ \-pA. Let S be a set of
connectives, adequate to express implication; let Γ be a set of tautologies
involving no connectives other than those of S; and let D be an expression of
implication in terms of the connectives of S. Then P(S, Γ, D) denotes the
propositional calculus with connectives S, axioms Γ, and rules of inference
(i) substitution, and (ii) A, {A z> B)\-B. For the purposes of this paper,
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every propositional calculus is of this form for some 5, Γ, D. A proposi-
tional calculus is complete if and only if all its tautologies are theorems.
For the remainder of the paper, ?n is to stand for a given propositional
calculus whose axioms are precisely those of its tautologies which contain
<n distinct variables; otherwise, we assume nothing about ?n. We denote
the specified expression of implication in ?n by D. Let Γ be a set of wff,
and A a single wff, belonging to a propositional calculus P; then, by

Γ HpA,

we denote the assertion that A is deducible from Γ and the closure under
substitution of the axioms of P, using modus ponens as the sole rule of
inference.

Model; JR; valuation. A model M for a propositional calculus P consists
of

(i) a set U of elements (often called truth-values), some of which are said
to be designated,

(ii) an assignment to every connective of P of a function, with the
appropriate number of argument-places, from and into U.

The classical model, for which U= {t (true, designated), f (false)}, and each
connective is assigned its own turth-function, shall be known as JR. An
M- valuation consists of all that is implied in the model β, together with an
assignment to every variable of a value on U. Our practice will be to
denote the value assigned to a symbol under a valuation by printing that
symbol boldface, e.g. p for the value of the variable />, 0 for the function
assigned to the connective φ.

We define

( P v q) = ((p 3 q) D q) .

(For D, see earlier.) Intuitively, (p v q) stands for "/> or #", also "not-/>
implies q".

We regard Ί as standing for a particular expression of negation in
terms of the connectives of whatever propositional calculus is being
discussed, if negation is expressible; if not, then Ί is undefined.

§3. Programme. In §4 the class of theorems of ?λ is described (Theorem 1).
In §5, P2 is proved to be incomplete (Theorem 2). Its class of

theorems is described (Theorem 3), and it is shown to be not finitely
axiomatizable (Theorem 4).

In §6, it is shown that for ?n to be complete, where n > 3, it is
sufficient (Theorem 5) and necessary (Theorem 6) that Pn contain no
connective with >n argument-places.

§4. The Propositional Calculus Pi. THEOREM 1. The class of theorems
of Pi coincides with the closure of the axioms under substitution.

Proof. Let T be the closure of the axioms of ?λ under substitution.
There is only one thing to prove, namely that T is closed under modus
ponens. Let A, (A D B) both belong to T. Then there exist two tautologies,
one of each of the forms
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Φ(P),

ψ(«=)X(/>),

and wff C, D, such that

φ(C) = A,
ψ(Z>) D X(Z>) = A D 5 .

We make the following assumptions:

(i) p does not appear in C, Z) (obviously, there is no loss of
generality);

(ii) each of C, D contains at least one variable-occurrence;
(iii) pάoes actually appear at least once in each of φ(p), Ψ(p).

The only point of assumptions (ii), (iii) is to enable us to omit the more
trivial cases. From the two facts, A = φ(C) and A = ψ(D), we deduce that

Every variable-occurrence in A falls within
a C-occurrence, (1)

Every variable-occurrence in A falls within
aD-occurrence. (2)

There is at least one variable-occurrence in A (assumptions (ii), (iii));
hence we have occurrences of C, D overlapping, and therefore

One of C, D must contain the other. (3)

Case (a). C contains D (this includes the case C = D). From each wff
X let a wff X* be obtained by replacing every occurrence of D in X by p.
Note that no such replacement can bring about a new occurrence of D (see
assumption (i)), and that it is clearly impossible for two distinct occur-
rences of D to overlap; hence the order of the replacements does not
matter, and X determines X* uniquely. Clearly

A* = ψ(p). (4a)

Now, it follows from result (2) that every variable-occurrence in C falls
within aD-occurrence. Hence

C* is of the iormγ(p). (5a)

By combining result (1) with the fact that every D-occurrence contains at
least one variable-occurrence, we see that every D-occurrence falls within
a C-occurrence. Hence

A* = φ(C*). (6a)

(The only C-occurrences in A are those arising through substitution for p
in φ(p); this is because every C-occurrence contains at least one variable-
occurrence.) Combining results (4a), (5a), (6a), we have

Ψ(P) = Φ(Y(P))

It follows that ψ(p) is a tautology, since it is a substitution instance of the
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tautology φ(ρ). But (ψ(/>) D X(/>)) is a tautology. Hence so is X(p). But 5
is a substitution instance of X(P). Therefore Bε Γ.

Case (b). D properly contains C. From each wff X let a wff X* be
obtained by replacing every occurrence of C in X by />. By arguments
similar to those used in case (a), we can show that

A* = φ(p) , (4b)
D* is of the form δ(p), (5b)
A* = ψ(B*). (6b)

Combining these three results, we have

Φ(P) = Ψ(δ(P)) •

The L.H. side of this equation is a tautology; hence so is the R.H. side.
Now (ψ(δ(P)) D X(δ(/>))) is also a tautology, being a substitution instance of
( ψ(p) D X(/>)) Hence so is X(δ(/>)). But if we substitute C for pin this last
wff, we obtain B (Clearly, δ(C) = D). Hence £ε r.

This completes the proof of the theorem. We shall not bother to show
here that ?x is incomplete, as this will follow anyway from the incomplete-
ness of P2, to be proved in the next section.

§5. The Propositίonal Calculus P2. We shall construct a model β, so
contrived that the class of uniformly designated wff contains all theorems
of P2 but not all classical tautologies.

β has 8 truth-values, namely

{0, 1, a1? a2, a3, b1? b2, b3},

of which the only designated value is 0. An M-function is assigned to each
connective φ as follows. First we construct an expression which is truth-
table equivalent to 0 under ^ and has N (negation) and & (conjunction) as its
only connectives. Then, by re-interpretation of N, &, as below, our expres-
sion gives the M-function assigned to φ.

TABLE FOR N.

P 1 N(p)
0 1
1 0

a, b,
b, a,

TABLE FOR &.

We define (p & q) to be the least upper bound of p, q in those of the
3 lattices shown below which display both p and q. The reader will find that
this definition is unique, despite the fact that the 3 lattices cannot be
combined consistently into a single lattice.
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I give two illustrations: (a2 & b3) = b3 (lattice 1, only); (a2 & b2) = 1 (lattices
1 and 3).

LEMMA 1. If the variables of any classical tautology A are assigned
values from just one of the above 3 lattices, then A = 0 under β.

Proof. It is sufficient to take the case of Lattice 3. First we note that
the set of values {0, 1, a2, a3, b2, b3} is closed under N, &. Hence, if we
delete all mention of other truth-values from β, what is left forms a new,
barer model which we shall call βr.

We have to show that if A ψ 0 under some Mr-valuation then A can take
the value f in some K-valuation, and hence is not a classical tautology.
Suppose A = a2, b3 or 1. Then, under the identification,

ίθ = a3 =b 2 = t,
(1 =a 2 =b 3 =f,

β! becomes p, i.e. every row of an ^H'-table becomes a row of the
corresponding classical truth-table. Hence we see that A can take the
value f, classically. Now suppose that A - a3 or b2. Under the identifica-
tion,

ί 0 = a2 = b3 = t,
\ 1 = a3 = b2 = f,

β! again becomes JR. Hence again A can take the value f, classically.

LEMMA 2. Modus ponens preserves M-designation.

Proof. It is sufficient to show that (0 =>/>)= piov every value of p. We
take just the case p = ax by way of example. First we note that the set of
truth-values

{0, 1, a l5 bj-

is closed under N, &, and hence that part of ffi dealing with only these
values itself forms a model, which we shall call jflfΓ.

Now, under the identification,

ίθ = a1 = t,
\ l = b x =f,

β' translates into Jfc, and we have

(0 => ax) = (t => t) = t.

Hence, under Mr, (0 3 ax) must have been 0 or ax.
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Next we consider the identification,

(0 = bx = t,
(l^a^f,

under which βr again translates into p . This time we have

(0 3 ax) = (t a f) = f.

Hence, under βr, (0 3 ax) must have been 1 or ax. Combining this with the
previous result, we see that, under βr, and so under β,

(0 3 ax) = ax.

LEMMA 3. AZZ theorems of P2 αr# uniformly designated under β.

Proof. For any 2 given truth-values of ^H, at least one of Lattices 1, 2,
3 contains both of them. Hence, by Lemma 1, every axiom of P2 is
uniformly designated. Obviously substitution preserves uniform designa-
tion; and so does modus ponens, by Lemma 2.

LEMMA 4. The classical tautology,

A = ((p Z) q) D ((q Ώ r) Z) (p Z) r))),

is not uniformly designated under β.

Proof. We need the following preliminary results:

(0 3 a3) = a3,

(0=>b 2 )=b 2 ,
(a2 =D ax) = 0,
(ai 3 as) = 0,
(a2 3 a3) = a3 or b 2 .

The first two have already been proved during Lemma 2. The other results
can be argued out in a similar kind of way. The ambiguity in the last
result arises because we have not said precisely which expression in terms
of N, &, is to represent D.

Assuming the preliminary results, if we set

P = a a ,
a = a 1 ?

r = as,

we have

A = a3 or b 2 .

Lemmas 3 and 4 give us our theorem at once.

THEOREM 2. P2 is incomplete.

The proofs of Theorems 1 and 2 illustrate two different methods of
demonstrating incompleteness:
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(1) The direct, as in Theorem 1. This involves describing the class of
theorems of the system we hope to prove incomplete.

(2) The indirect, as in Theorem 2, by means of a specially contrived model.

The direct method provides more information, but tends to be much longer.
I do give a direct proof of Theorem 2 in my Thesis, [2], but it is too long to
inflict on the reader here (about 6 times as long as the indirect proof).
However, for interest's sake, I will quote without proof the extra informa-
tion it gives about P2.

THEOREM 3. The class of theorems of P2 coincides with the closure under
substitution of the set of those tautologies which belong to the set T of wff
defined as follows:

Every wff with ^2 distinct variables belong to T;

If A9 B both belong to T and have no variable in common, then any ivff
of the form φ(A,B) belongs to Γ.

Let me mention that I could have given a shorter, indirect proof of
Theorem 1, using a model with 4 truth-values, of which two are designated;
however, I wished to illustrate the direct method.

In [1], Diamond and McKinsey use the indirect method. They show the
inadequacy of 2-variable axioms for Boolean algebra, and hence deduce a
similar result for the propositional calculus.

In [7], an earlier result by Wajsberg is quoted without proof, to the
effect that {p D (q D (r D p))) is not deducible from 2-variable tautologies.
This result is a corollary of our Theorem 3 (above). Alternatively, an
indirect proof can be given using the model JW(O,1), defined below.

The rest of this section is devoted to showing that P2 is not finitely
axiomatizable. Let Q be any propositional calculus whose axioms consist
of a finite set of tautologies having <2 distinct variables; and let D be the
specified expression of implication for Q. We shall describe a model
M(r,s), defined for any r > 0, s > 1, with the property that, for sufficiently
large r, s, the class of wff uniformly designated under β(r,s) contains all
theorems of Q, but not all 2-variable tautologies.

THE MODEL β(r,s).

The model has the following truth-values:

designated: t l 7 . . . , t»+2;

i f f

i l j j i«+2>

a 1 ? . . . , a w + 2 j
b 1 ? . . . , b w + 2 ?

where n = r + s. The function assigned to any connective φ of Q is obtained
by expressing φ in terms of N, &, as for the earlier model M. The
functions N, & are determined by the following tables, together with the
stipulations that (i) there is duality between the symbols a, b, and (ii) the
function & is symmetric.
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TABLE FOR N.

P 1 N(p)
U U

u u
a , I b ,

TABLE FOR &.

P Q 1 (Pit)

tί t; t*

U f; ίfc

tf a/ b w + 2 , if f, j = n + 2, w + 1,
respectively,

a&, otherwise,

f* ay fΛ
a, a ; fw+2, ]ii9j=n+l,n + 2

or w + 2, n + 1,
a&, otherwise.

a, by aw+2, \ii,j =n + 2,n + 1
bw + 2, if z,j = w+ 1, w + 2,
fjfe, otherwise.

The suffix & in the final column is given by,
k = mαχ{z,i} + 1, if both of i, j< n, and

at least one of i, j < r,
maχ{i,j}, otherwise.

I give one illustration: suppose r = 1; then, by the table f2 & &! = f3;
hence, by symmetry of &, ax & f2 = f3; hence, by duality between a and b,
b1fcf2 = f3.

One further definition before the proof beings: we define the rank of a
wff to be the total number of occurrences of N, & in the expression
representing it.
LEMMA 5. Any wff A of the form φ(p,q) with rank < s is uniformly desig-
nated under β(r,s).

Proof. We show that A is designated whenever the suffixes of p, q both
fall into any one of the following sets. (Meaning of "suffix": if p = t? , for
instance, then i is the suffix of p.)

(i) The set {1, . . . , n + l}. Under the identification,

ί ti = . . . = tn+i = ax = . . . = a^+i = t,

(fi = . . . = f»+i = bi = . . . = b w + 1 = f,

that part of β(r,s) which deals with these values translates into JL
Similarly for the dual of the above identification. Hence A is designated in
this case, by the same sort of argument as used in Lemma 1.

(ii) The set {r + 1, . . . , n, n + 2}. It is sufficient to note that under both
the identification,
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) tr-{-i = . . . = t w = tn+2

 = 2-r+l = = &n = &n+2 = t ,

(fr+1 = = f« = f»+2 = t ) r + 1 = . . . = bw = b w + 2 = f,

and its dual, the relevant part of β(r,s) translates into φ.
(iii) The set {n + 1, n + 2}. It is sufficient to note that under both the
identification,

\ t«+l = t n + 2

 = aw+l = b w + 2 = t,
(f«+i ~ f«+2 = b w +! = a^+2 = ί>

and its dual, the relevant part of 4ffl(r,s) translates into ffi.
(iv) The set {1, . . . , r, n + 2}. Under the identification,

\ t x = . . . = t w + 2 = &! = . . . = a«+2 = t,
(fj. = . . . = fw+2 = bi = . . . = b w + 2 = f,

and its dual, |H(r,s) translates into Jfc, w f̂e f/zβ exception of those rows of
the &-table in which one argument has suffix n + 1, and the other has suffix
n + 2. If we can show that the exceptional cases do not arise for rank of
A < s, it will follow that A is designated. An exceptional case can arise
only if the expression for A in terms of N, &, p, q contains a sub-expres-
sion B, such that B has suffix n + 1. But this would require B to contain at
least 5 occurrences of &, which is impossible because the rank of A is too
small.

Whatever the suffixes of p, q, there is always one of the sets (i)-(iv),
above, into which they both fall. So we have shown that A is uniformly
designated.

LEMMA 6. If (p ̂  q) has rank <s, then modus ponens preserves designa-
tion under β(r,s).

Proof. It is sufficient to show that if p is designated but q is not, then
(p => q) is non-designated. The various cases can be classified according
to the suffixes of p, q, and argued out as in the previous lemma. (Compare,
too, Lemma 2.)

LEMMA 7. For sufficiently large s, all theorems of Q are uniformly
designated under β(r,s).

Proof. Choose s larger than the largest rank of axiom inQ, and larger
than the rank of (p D q). The result then follows from Lemmas 5 and 6.

LEMMA 8. Given any s ^ 1, we can choose an r ^ 0 and construct a 2-
variable tautology of Q which is not uniformly designated under β(r,s).

Proof. We choose any r > rank of (p D q).
Consider the 2-variable tautology,

A = ((B^q)z)((Q Ώp)Ώ(BΏp))),

where

B = (C oq),
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and

C = (q D {q D . . . {q D <?) . . . ) ) ,

the number of explicit appearances of # being >w.

Let us set p = aw+2> # = &i- I give only the outline of the calculation.
We have

C = t, , where z" > n.

(It was in order to be able to make statements like the one about the suffix
of C, that we chose r as large as we did.) Hence

B = aw+1.

So

A = ((aw+1 => ax) => ((ax => ^ + 2 ) 3 (aw + 1 = aw + 2))),

= aw+2.

(Compare Lemma 4.)
Combining Lemmas 7 and 8, we see that the class of theorems of Q

cannot contain all 2-variable tautologies. This gives us the required
theorem.

THEOREM 4. P2 is not finitely axiomatizable.

§6. The Propositional Calculus Pn, where n> 3. For the duration of the
proof of Theorem 5, let φ stand for a typical m-place connective of Pn, and
let V-% stand for a typical K-valuation. Let

A =φ{p!, . . , pm).

We define

A* = (A v q), if A = t under V%,
(A D q), otherwise,

and for 1 < i < m, we define

Pί* = iPi vtf), i f^ = t under 1^,
(/>£ D ̂ ), otherwise.

Finally, we define

^ = ( / > i * = ^ ( / > 2 * = ) . ( / > „ * = ) A * ) . . . ) ) .

Intuitively, J5 represents the assertion that either q is true or A has the
appropriate truth-value under i/$. Clearly ^ is a tautology.

We can save ourselves some work by borrowing the following result
from Henkin (for proof, see [3]):

LEMMA 1. For a propositional calculus Qto be complete, it is sufficient
that its axioms include

(i) a certain finite set of tautologies, each having ^ 3 distinct
variables,
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(ii) all wff B {above) given by letting φ range over all connectives ofQ,
and Vgrange over all K-valuations.

Note that, if the set of connectives of Q is finite, then so is the set (ii)
of wff, since, so far as any particular connective φ is concerned, there are
effectively only 2m distinct K-valuations.

All the wff listed in Lemma 1 are axioms of ?n, except those wff B for
which m> n. Our main object now is to show that, for m=n, B is a
theorem of ?„, and so deduce that, if no case m> n arises, then ?n must be
complete.

Let {ru . . . , rm} be any permutation of {pl9 . . . , pm}, satisfying the
condition that, if at least one of pl9 . . . , pm is f under Vτ&, then so is rm.

For 1 < i < m, we now define a series of 2-variable wff, ^Δ^, in
Tables I and II, below. The definitions are dependent upon the values taken
by rl9 . . . ,rm,A, under V*.

TABLE I. 1< i < m.

Tj pΔjq

t p Dtf

f 1 P v Q

TABLE Π. i = m.

rm A 1 p&mq
t t pD q
t f p ^Diq
f t p v q
f i \ qop

It is necessary to justify the expressibility of Ί in the 2nd row of Table II.
Now, rm - t implies rλ - r2 = . . . = rm-i = t. Hence, if rm = t, A - f, then A
takes the value f when all its variables take the value t. Thus a wff truth-
table equivalent to not-/? is given, for instance, by

(P oφ(P, . ,/>))•

We define

C = (r1Δ1(r2Δ2 . . . (rmΔmA) . . . ) ) •

Intuitively, C represents the assertion that A has the appropriate truth-
value under V-&. For instance,

(rxv (r 2 i)(Ai)r 3 )))

may be read as

"not-rx implies (r2 implies (not-r3 implies not-A))".

Clearly C is a tautology.

LEMMA 2. If m = n, then HP B.

Proof. Since C (above) is an n-variable tautology, we have
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W (1)

Now (C D ((C D q) D #)) is an instance (i.e v substitution instance) of a
2-variable tautology and hence is a theorem of Pw. Applying modus ponens
to it and to result (1), we have

hpn{(C^q)^q). (2)

We now wish to show that, for any wff X, and set Γ of wff,

for 1 < i < m, if Γ Hp (((r, Δ*X) D #) D #) then Γ, r, * f-p ((X D #) D q). (3)

This will follow by two applications of modus ponens, if we can show

\-?n[((rAiX) ^ q) => q] => [n* 3 [ ( l D ^ ί ] ] ,

But this last line is an instance of a 3-variable tautology. So result (3) is
established.

Next we require the result, for any set Γ of wff,

if Γ \-Pn(((rmAmA) D #) => q) then Γ, rw* h^A*. (4)

This can be proved in the same sort of way as result (3), by 2 applications
of modus ponens to a suitable instance of a 3-variable tautology.

From results (2) and (4), and from (m - 1) applications of result (3), it
follows that

r x * , . . . , rM* t-?nA*.

Hence, by the deduction theorem (which depends only upon axioms with <3
distinct variables), we have

THEOREM 5. Far P« to be complete, where n ^ 3, it is sufficient that it
contain no connective with >n argument-places. Furthermore, if this con-
dition is satisfied and Pn has only finitely many connectives, then Pn is
finitely axiomatisable.

Proof. At once from Lemmas 1 and 2.

The rest of this section is devoted to showing that the sufficiency
condition of Theorem 5 is also a necessary one. The definitions of V<%, A,
B, etc., specially introduced for Theorem 5, are now discarded.

A model f̂l is now to be described, whose class of uniformly designated
wff includes all theorems of ?n but not all classical tautologies involving
connectives with >n argument-places, β has n + 3 truth-values, namely

{t, f, a1? . . . , aw+1},

with t as the designated value.
Before assigning an Ji-function to each connective, we need a prelim-

inary definition. For each truth-value p, we define
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P* = t, if p = t,
f, otherwise.

Note that the range of />* consists of those truth-values common to both M
and ^R. Now let φ be any m-place connective. We complete the description
of β by defining

• ( 0 i , . . , Pm) = the value of φ(p^, . . . , pM*)
under "fi,

all of a1? . . . , aw + 1 appear among pl9 . . ., £OT, in which case we have

φ(Pu - > ft«) = whichever of t, f is woί
the value of 0 ( ^ * , . . . , />/)
under JR.

LEMMA 3. For each M-valuation, Vm, let V~$ be the corresponding K-
valuation such that9 for each variable x9

value of x under V% = (value of x under V^)*.

Let A be any wff with ^n distinct variables. Then

value of A under V%-= {value of A under V$^*.

Proof. The last part of the description of β, namely the proviso,
''unless . . . under ^> J, is obviously never applied when calculating the
value of a wff with <n distinct variables. So we may delete thjs proviso
when dealing solely with A.

Once the proviso is deleted, we can transform β into $, and every
M -valuation V& into the corresponding K-valuation V^, by the identification

ax = . . . = aw+1 = f.

The lemma follows at once.

LEMMA 4. All theorems of Pn are uniformly designated under β.

Proof. It follows immediately from Lemma 3 that the axioms of Pn take
the value t uniformly under β. Obviously substitution preserves uniform
designation. There remains modus ponens. By applying Lemma 3 to the
case when A = (p D q), we have that, in any Ji-valuation, if q * t then
(p z> q) ψ t (otherwise, in the corresponding K-valuation, we would have
( t ^ f) = t). In other words, modus ponens preserves designation.

LEMMA 5. If ?n contains a connective wifh>n argument-places, then the
wff °f P» include a classical tautology which is not uniformly designated
under β9

Proof. Let 0 be a connective of ?n with m argument-places, where
m >n. As our counter-example we present the wff,

A =(/>iv(/>2v . . . (pM vB) . . .)),

where



14 M. D. GLADSTONE

B = (Pmv θ(pl9 . . . , pm), if θ(ph . . . , pM) = t

under the K-valuation
in which px = . . .

(0(/>i> > , Pm)^ pm), otherwise,

Intuitively, A represents the assertion that B has the appropriate truth-
value in the K-valuation in which all variables take the value f. Clearly A
is a tautology.

Consider the J^-valuation,

pi = (a, , if 1 < i < n + 1,
| a n + i , otherwise.

Using the results that

(i) if q Φ t, then (t => q) ψ t (already proved during Lemma 4),
(ii) if pψt, 'q.*t, then (p v q) * t (proof similar to that of (i), taking

A = (p v q) in Lemma 3),

we easily calculate that, under our Ji-valuation,

A*t.

Combining Lemmas 4 and 5, we have the required theorem.

THEOREM 6. For Pn to be complete, where n ^ 3, it is necessary that it
contain no connective with >n argument-places.

§7. Final Discussion. I list some lines of enquiry in this field.
(1) Restrictions may be placed upon the number of distinct variables
appearing in each axiom (as here), the number of occurrences of each
axiom, the number of occurrences of all variables in each axiom, the total
number of occurrences of variables and connectives in each axiom, the
number of axioms, and the particular connectives available. By making one
or more of these restrictions simultaneously, various minimum conditions
compatible with completeness may be obtained. I am aware of the following
results of this kind.

(i) Let n = the greatest number of variable-occurrences in any one
axiom. Then, for the C - N propositional calculus, the least value of n
compatible with completeness is 5. (Sobociήski, [8].)
(ii) The shortest single axiom adequate for the implicational calculus

contains 7 variable-occurrences. (Lukasiewicz, [6].)
(iii) Let P be a propositional calculus whose specified expression for
implication is a single 2-place connective. Then, for P to be complete,
it is necessary that its axioms include at least one wff eleven symbols
long, or at least 2 wff each 9 symbols long (no. of symbols = no. of
variables + no. of connectives). (Jaskowski, [4].)
(iv) Let n - greatest number of occurrences of any one variable in any
one axiom. Then the least value of n compatible with completeness is
3. (Jaskowski, [5].)
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(2) The fact that a lower bound of 3 crops up both in the present paper and
in Jaskowski's paper, [5] (just mentioned), suggests that there may be a
deeper link between the two results, but I have not discovered any yet.
(3) Each result of type (1) presents us with a set of incomplete systems to
be investigated, as P1? P2 have been, in the present paper. However, not
even Pl9 P2 have been investigated to exhaustion. One may ask:

(i) Is Px finitely axiomatizable ? The answer No is obtained, fairly
easily.
(ii) Does either of P1? P2 have a finitely axiomatizable, undecidable
sub-system? Open.

(4) Do the results listed above extend to the Intuitionistic Propositional
Calculus?
(5) It is natural to ask: Which, if any, of the above lines of enquiry are
important enough to be worth pursuing? But I do not have any answer to
offer myself.

BIBLIOGRAPHY

[1] Diamond, A. H., and J. C. C. McKinsey, "Algebras and their Subalgebras," Bull.
Amer. Math. Soc., vol. 53 (1947), pp. 959-962.

[2] Gladstone, M. D., Ph.D. Thesis (unpublished), University of Bristol (1964).

[3] Henkin, Leon, c'Fragments of the propositional calculus," The Journal of Sym-
bolic Logic, vol. 14 (1949), pp. 42-48.

[4] JaskowsM, S., "Trois contributions au calcul des propositions bivalent," Studia
Societatis Scientiarium Toruniensis, sectio A, vol. 1, no. 1 (Toruή, 1948), pp.
1-15.

[5] JaskowsM, S., "Uber Tautologien in welchen keine Variable mehr als zweimal
vorkommt," Zeitschrift fur Math. Logik und Grund. Math., Band 9 (1963), Heft 3
pp. 219-228.

[6] Lukasiewicz, J., "The shortest axiom of the implicational calculus of proposi-
tions, " Proc. of Royal Irish Academy, vol. 52, sect. A, no. 3 (1948), pp. 25-33.

[7] Lukasiewicz, J., and A. Tarski, ''Untersuchungen uber den Aussagenkalkίil,"
Comptes Rendus des Seances de la Societe des Sciences et des Lettres de Var-
sovie, Classe III, no. 23 (1930), pp. 30-50.

[8] Sobocinski, B., "Note on a problem of Bernays," The Journal of Symbolic Logic,
vol. 20 (1955), pp. 109-114.

University of Bristol
Bristol, England




