Notre Dame Journal of Formal Logic Volume X, Number 3, July 1969

CORRIGENDUM TO MY PAPER

"A PROPOSITIONAL CALCULUS INTERMEDIATE BETWEEN THE MINIMAL CALCULUS AND THE CLASSICAL"

CHARLES PARSONS

Dr. R. A. Bull has pointed out to me that a step in the proof of theorem 2 of my paper, 'A propositional calculus intermediate between the minimal calculus and the classical' (this *Journal*, vol. 7 (1966), pp. 353-358) is fallacious. What I was entitled to infer from [iv] and $-A_1 \ldots -A_n \vdash S$ is that S is derivable from all formulae

$$-C_i \vee . - -C_j \supset C_j \quad ,$$

where $C_1 \ldots C_{m+n}$ are $A_1 \ldots A_n$, $B_1 \ldots B_m$. Thus S is provable in **MCC** if $\overline{q} \vee \overline{p} \supset p$ is.

The text shows $\vdash \overline{p} \lor . \overline{p} \supset p$, and $\vdash \overline{p} \lor . \overline{p} \supset p$ by ax. 10. Hence $\vdash \overline{p} \land \overline{p} \lor . \lor . \overline{p} \supset p$. But $\vdash \overline{p} \supset . \overline{p} \supset \overline{q}$ in MC. Hence $\vdash \overline{q} \lor . \overline{p} \supset p$, q.e.d.

Similarly, to justify the claim on p. 358 that every intutionistically valid and pseudo-valid formula S is provable in $MC + \overline{p} \lor : \overline{p} \supset p \supset q$, it is necessary to show $\overline{r} \lor : \overline{p} \supset p \supset q$ provable in that system. We have $\vdash -(s \supset s) \lor -(s \supset s) \supset q$ and hence

 $\vdash r \supset -(s \supset s) .v: p \supset -(s \supset s) .\supset .p \supset q.$

But $\overline{r} \equiv r \supset -(s \supset s)$ and $\overline{p} \equiv p \supset -(s \supset s)$ are provable in MC.

Columbia University New York City, New York

Received April 7, 1969

336