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THE NON-EXISTENCE OF A CERTAIN COMBINATORIAL DESIGN
ON AN INFINITE SET*

WILLIAM J. FRASCELLA

In [1] the notion of a combinatorial design on an infinite set M was
based on a covering relation of the following kind.

Definition 1. Let F and G be two families of subsels of M and let p be a
non-zevo cavdinal numbev. G is said to be a p-Steinev cover of F if and
only if every member of F is contained (as a subsetl) in exactly p members

of the family G.

We showed in [1], roughly speaking, that a rather large class of families F
possess p-Steiner covers of a specified nature. To be more exact, we
introduce the following additional definitions.

Definition 2. Let k be a non-zevo cavdinal numbev such that k = Jl=/l A
family F of subsets of M is called a k-tuple family of M if and only if i) if
x,ve F such that x # y then x ¢ y,ii) if xe F then ¥ =k and iii) F = M.

In terms of Definitions 1 and 2 we can state the main result of [1] as

Theovem 3. Let v, k, n and p be non-zevo cardinal numbevs such that
i) v is non-finite, ii) k <n < v, and iii) p =v. Then if M is a set of
cardinality v every k-tuple family F of M possesses a p-Steiner cover G
such that every member y e G is a subset of M of cardinality n.

A natural question arises as to whether Theorem 3 would be true if
restriction iii) of Definition 2 were removed. The present paper’s aim is
to show this restriction is necessary.

All results achieved in the present paper are formalizable within
Zermelo-Fraenkel set theory with the axiom of choice. For the most part
the notation will be standard. If x is a set, ¥ will represent the cardinal
number of x. Moreover, if n is any cardinal number then [x]” = {ycC x
y = n.> The expression ‘“xC 3’ means ‘‘x is a subset of y’’ improper
inclusion not being excluded. If @ is an ordinal w, is the smallest ordinal
number whose cardinality is 8,. As usual we write w for w,.

*The present researches were begun while the author held a Research Associate-
ship of the NRC-ONR, 1967-68, and completed at the University of Illinois, Urbana,
Ilinois, under grant NSF-GP 8726.
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The generalization of Definition 2 is now formally stated.

Definition 4. A family F of subsels of M is called a k-tuple family of M, in
the wider sense, if and only if it satisfies 1) and ii) of Definition 2.

Definition 5. For each ovdinal number o we define a cardinal aq, by trans-
finite induction, as follows: i) ao = Ro, ii) if @ = ao + I then ag = 2%, iii) if @

is a limit numbeyr, then aq = 3}, ap.
B<a
It is now possible to state the main result of the present work.

Theorem 6. Theve is a set M of cardinality a, and an No-tuple family (in
the wider sense) F of M which does not possess a 1-Steiner cover G such
that G  [M] S,

Before directly proceeding with a proof of Theorem 6 we establish
some propositions of a general nature.

Definition 7. Let F be a family of subsets of a set M and n a nonzero
cavdinal number. A family G is called an n-spoilev of F if and only if for
every x € F and every v e [M]" theve is a z € G such that z C x U y.

Proposition 8. Let k and n be non finite carvdinal numbevs and let F be a
k-tuple family (in the wider sense) of an infinite set M. Suppose there
exists subfamilies Fy, Fy C F such that i) Fy N Fy = 0, ii) Fy is an n-spoiler
of F, and iii) n*F,< F,. Then F does not possess a 1-Steiner cover con-
tained in [M]".

Proof: To the contrary suppose there is a I-Steiner cover G of F such
that G c [M]". Thus every member of F is contained in exactly one member
of G. Now define a relation ~ on F as follows.

Definition 9. Let x,x' € F. x ~x' if and only if x and x' ave contained in the
same member of G.

It is immediate that ~ defines an equivalence relation on F. Let [x]~ rep-
resent the equivalence class which contains x.

Lemma 10. (3xo€ Fy) (Vx'e B) [(x0 £ x")]

Proof. Observe that since every member of G is a set of cardinality » and
since any such set contains exactly #* subsets of cardinality 2 we must have

(1) for each ze F,ﬁ = nk.

Consequently (1) and iii) of Proposition 8 yield
(2) m = n‘%z < ?1.

In view of (2)

(3) @xoeFy) (Vz e Fy) [xod [2]7].

Hence there is some x, in F; such that it is not the case that x, ~ 2 for each
ze F,. This proves Lemma 10.
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Definition 11. Let yo be that unique member of G which contains xo-
But since F; is an n-spoiler of F; and x,¢ F; and yo€ G c [M]" we have
(4) (Fx*e Fy) [x* C xo U ¥o)

which together with Definition 11 yields

(5) x* C yo.

But Definitions 9, 11 and (5) imply

(8) xoe [x*]”

which says xo~x*. But (6) and (4) contradict Lemma 10. This proves
Proposition 8.

Proof of Theovem 6. Let M be any set of cardinality a,. By Definition 5
there exists for each #n, 0 <n < w, a set M, such that

(M =U{M10<n<w}
(8) My N\ My =0ifn+m
and

9) M, = an.

We begin our construction of a Rg-tuple family (in the wider sense) of M
with the following.

Lemma 12. For each n, 0 <n < w, theve exists a So-tuple family (in the
wider sense) F, of M, such that (vy € [M,])®1) @x e F,) [x C y].

Proof. By the well ordering theorem the family [M,]"! may be expressed
as follows

(10) [M,1¥t={y; | £ < p}.

The construction of the family F, will be accomplished by transfinite
induction in the following manner. Let y < u. Suppose we have found a
Ro-tuple family (in the wider sense) F of M, such that

(11) (VE<vy) (AxeF) [x c 3;].

The construction will be complete if we can establish the existence of
No-tuple family F, such that

(12) (V& =vy) @xeF,) [r cy;]

We distinguish the following cases.

Case 1°. (AxeF) [x Cy,]

Here we may let F, = F and (12) follows immediately from (11).
Case 2°. (VxeF) [x ¢ v, ]

Since yy € [M, 15" there exists x* such that

(13) )_C—_* = 30
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and
(14) x* C y,.
Definition 13. Let F, = (F — {xe Flx* cx}) u {x*}

We now must show F, is i) an 8y-tuple family (in the wider sense) of M, and
i7) (12) is satisfied. With regard toi) let x and y be such that

(15) x,ye F,
and
(16) x=#y.

If x, ye F then it is clear, from the fact that F is an 8;-tuple family (in the
wider sense) that x £y and y ¢ x. Now suppose either x or y is x*. In fact,
assume

(17) x =x*

which with (15), (16) and Definition 13 implies

(18) ye F — {xe Flx* cx}.

From (18) it is clear that

(19) x =x* ¢ y.

Moreover, suppose

(20) y C x.

But (20) together with (17) and (14) give

(21) y cy,.

Yet (18) and (21) contradict the assumption of Case 2°. Thus (20) cannot
obtain which shows F, is an 8y-family (in the wider sense) of M,.

To see F, satisfies (12) let £ =<y. If £ =1 then (14) and Definition 13
show that x*e F, and x* C y;. Now suppose ¢ <vy. By (11) there must be
x € F such that

(22) x C y;.
Suppose x C x*. But this would imply by (14)
(23) x c Yy

again contradicting the assumption of Case 2°. Consequently we have x ¢ x*
which implies with Definition 13

(24) x¢ F,.

This shows F, satisfies (12) and consequently completes the proof of
Lemma 12,

Definition 14. F*=J {F,l 0< n < w}.
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Remark. Since each F, is an 8o-tuple family (in the wider sense) of M, (and
therefore of M) and since they are pairwise disjoint it follows that F# is an
Ro-tuple family (in the wider sense) of M.

Lemma 15, F#= Q-
Proof. Since F, c [M,]%0 and since
(25) [Mn]so = a”No
we arrive at, in view of Definition 14
(26) Ff= 3 afbo.

0<n<w
But for each #, 0 < n < w, we have
(27) a,§° - (20"-1)80 _ 2%-1&0 =20n-1 = a,

Thus (26) and (27) yield
(28) F#S Z; Ay = Qg

0<n<w

which proves Lemma 15.

Definition 16. F* = {ye [M]™| for each n, y N My = I}.

Remark. Since the M,’s are disjoint it is immediate from Definition 16 that
F* is an Ry-tuple family of M. (Note that if v,, y2¢ F* and y; # ¥,, there
must exist some # such that y, N Mp#y, "M, Let y, N M,= {1,')1} and
y2 N My = {po}. Clearly p,€ y1—9, and py€ yo—3, showing ¥, ¢ ¥; and ¥1 ¢ »).

Lemma 17. F* > ap.
Proof. 1t is clear from Definition 16 that the family F* is equinumerous

with the generalized Cartesian product o’<>£wM”' Hence (9) gives
n

(29)ﬁ= H ]\__4_,,= ]._[ 0.

0<n<w 0<n<w

But by an immediate corollary® to a theorem by J. Konig and the fact that
the sequence of cardinals {a,},., is strictly increasing we obtain

30) ¥ an< Il a,
0<n<w

0<n<w

which together with (29) and Definition 5 yield F> ap Which proves
Lemma 17.

Lemma 18. F#* N F* = 0,

Proof. Immediate.

Lemma 19. (Wye [MPY) @n < w) [y N M, = 8,].
Proof. Let ye [M]&‘1
(31) (v <w) [y N M, <R]

. Now suppose to the contrary that
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which immediately implies

(32) (v <w) [y N M, = %]

But it is clear that

33) y=U{y M1 o<n<w}

which with (32) yields

(34) y =% =8B =8y

contradicting the fact that ye [M]®1. This establishes Lemma 19.

Lemma 20. F*is an 8 1-Spoiler of F *

Proof. Letxe F*and ye [M]¥1, Using Lemma 19 there is an #y, 0 < 1o < w,
such that

(35) y n Mno—>— Rl

which implies, since y = 8,

(36) y ﬂMﬂ():gl'

Consequently (y N Myo) € [My,]¥1. Using Lemma 12 we know there is an xo
such that

(37) xo€ Fp,

and

(38) %0 Cy N My,

But (37) and Definition 14 give
(39) xoe F¥#

and (38) gives

(40) xo Cx U .

Consequently, in terms of Definition 7, F is seen to be an 8;-spoiler of
Fx* which establishes Lemma 20.

Lemma 21. RS0 s < *

Proof. Since 8, = 2% a; it is clear that
(41) 8,50 = o, %0 = (LYo = o= g,

Using Lemﬂa 15 and (41) we obtain

(42) Nl%ﬁs 8 Ma, = 200 = .

But (42) and Lemma 17 yield

(43) xl*‘oi—?s 4o < F*

which was to be proved.
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If we let F = F" U F*we now see, that the conditions of Proposition 8
are satisfied. (Let Fy =F* F,= F% k=Roand n=%,. Then i), ii), and iii)
are satisfied in virtue of Lemmas 18, 20, and 21, respectively.) Thus the
No-tuple family (in the wider sense) F of the set M does not possess a
1-Steiner cover G contained in [M]Nl. This concludes the proof of
Theorem 6.

NOTES

1. This appears as Theorem II.12 in [1].

2. Moreover, we make use of the resuli that if x is a nonfinite set and if #» is a non-
zero cardinal number such that » = x then [x]? = x”. For a proof of this see [2],
p- 291.

3. Ibid., p. 204.
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