Notre Dame Journal of Formal Logic Volume X, Number 3, July 1969

THE NON-EXISTENCE OF A CERTAIN COMBINATORIAL DESIGN ON AN INFINITE SET*

WILLIAM J. FRASCELLA

In [1] the notion of a combinatorial design on an infinite set M was based on a covering relation of the following kind.

Definition 1. Let F and G be two families of subsets of M and let p be a non-zero cardinal number. G is said to be a p-Steiner cover of F if and only if every member of F is contained (as a subset) in exactly p members of the family G.

We showed in [1], roughly speaking, that a rather large class of families F possess p-Steiner covers of a specified nature. To be more exact, we introduce the following additional definitions.

Definition 2. Let k be a non-zero cardinal number such that $k \leq \overline{M}$. A family F of subsets of M is called a k-tuple family of M if and only if i) if $x, y \in F$ such that $x \neq y$ then $x \not \subset y$, ii) if $x \in F$ then $\overline{\overline{x}} = k$ and iii) $\overline{\overline{F}} \leq \overline{\overline{M}}$.

In terms of Definitions 1 and 2 we can state the main result of [1] as

Theorem 3.¹ Let v, k, n and p be non-zero cardinal numbers such that i) v is non-finite, ii) k < n < v, and iii) $p \le v$. Then if M is a set of cardinality v every k-tuple family F of M possesses a p-Steiner cover Gsuch that every member $y \in G$ is a subset of M of cardinality n.

A natural question arises as to whether Theorem 3 would be true if restriction iii) of Definition 2 were removed. The present paper's aim is to show this restriction is necessary.

All results achieved in the present paper are formalizable within Zermelo-Fraenkel set theory with the axiom of choice. For the most part the notation will be standard. If x is a set, $\overline{\overline{x}}$ will represent the cardinal number of x. Moreover, if n is any cardinal number then $[x]^n = \{y \subset x: \overline{\overline{y}} = n\}^2$. The expression " $x \subset y$ " means "x is a subset of y" improper inclusion not being excluded. If α is an ordinal ω_{α} is the smallest ordinal number whose cardinality is \aleph_{α} . As usual we write ω for ω_0 .

^{*}The present researches were begun while the author held a Research Associateship of the NRC-ONR, 1967-68, and completed at the University of Illinois, Urbana, Illinois, under grant NSF-GP 8726.

The generalization of Definition 2 is now formally stated.

Definition 4. A family F of subsets of M is called a k-tuple family of M, in the wider sense, if and only if it satisfies i) and ii) of Definition 2.

Definition 5. For each ordinal number α we define a cardinal a_{α} , by transfinite induction, as follows: i) $a_0 = \aleph_0$, ii) if $\alpha = \alpha_0 + 1$ then $a_{\alpha} = 2^{\alpha a_0}$, iii) if α is a limit number, then $a_{\alpha} = \sum_{\alpha \in A} a_{\beta}$.

It is now possible to state the main result of the present work.

Theorem 6. There is a set M of cardinality a_{ω} and an \aleph_0 -tuple family (in the wider sense) F of M which does not possess a 1-Steiner cover G such that $G \subset [M]^{\aleph_1}$.

Before directly proceeding with a proof of Theorem 6 we establish some propositions of a general nature.

Definition 7. Let F be a family of subsets of a set M and n a nonzero cardinal number. A family G is called an n-spoiler of F if and only if for every $x \in F$ and every $y \in [M]^n$ there is a $z \in G$ such that $z \subseteq x \cup y$.

Proposition 8. Let k and n be non finite cardinal numbers and let F be a k-tuple family (in the wider sense) of an infinite set M. Suppose there exists subfamilies $F_1, F_2 \subset F$ such that i) $F_1 \cap F_2 = 0$, ii) F_2 is an n-spoiler of F_1 and iii) $n^k \overline{F}_2 < \overline{F}_1$. Then F does not possess a 1-Steiner cover contained in $[M]^n$.

Proof: To the contrary suppose there is a *1*-Steiner cover G of F such that $G \subset [M]^n$. Thus every member of F is contained in exactly one member of G. Now define a relation ~ on F as follows.

Definition 9. Let $x, x' \in F$. $x \sim x'$ if and only if x and x' are contained in the same member of G.

It is immediate that ~ defines an equivalence relation on F. Let [x] ~ represent the equivalence class which contains x.

Lemma 10. $(\exists x_0 \in F_1) (\forall x' \in F_2) [(x_0 \not \sim x')]$

Proof. Observe that since every member of G is a set of cardinality n and since any such set contains exactly n^k subsets of cardinality k we must have

(1) for each
$$z \in F, \overline{[z]^{\sim}} \leq n^k$$
.

Consequently (1) and iii) of Proposition 8 yield

(2)
$$\overline{\bigcup\{[z]^{\sim} \mid z \in F_2\}} \leq n^k \overline{\overline{F}}_2 < \overline{\overline{F}}_1.$$

In view of (2)

(3) $(\exists x_0 \in F_1) (\forall z \in F_2) [x_0 \notin [z]^{\sim}].$

Hence there is some x_0 in F_1 such that it is not the case that $x_0 \sim z$ for each $z \in F_2$. This proves Lemma 10.

Definition 11. Let y_0 be that unique member of G which contains x_0 .

But since F_2 is an *n*-spoiler of F_1 and $x_0 \in F_1$ and $y_0 \in G \subset [M]^n$ we have

(4) $(\exists x * \epsilon F_2) [x * \subset x_0 \cup y_0]$

which together with Definition 11 yields

(5) $x^* \subset y_0$.

But Definitions 9, 11 and (5) imply

(6)
$$x_0 \in [x^*]^2$$

which says $x_0 \sim x^*$. But (6) and (4) contradict Lemma 10. This proves Proposition 8.

Proof of Theorem 6. Let M be any set of cardinality a_{ω} . By Definition 5 there exists for each n, $0 < n < \omega$, a set M_n such that

(7)
$$M = \bigcup \{M_n \mid 0 < n < \omega\}$$

(8) $M_n \cap M_m = 0$ if $n \neq m$

and

(9) $\overline{M}_n = a_n$.

We begin our construction of a \aleph_{0} -tuple family (in the wider sense) of M with the following.

Lemma 12. For each $n, 0 < n < \omega$, there exists a \aleph_0 -tuple family (in the wider sense) F_n of M_n such that $(\forall y \in [M_n])^{\aleph_1}$ ($\exists x \in F_n$) [$x \subset y$].

Proof. By the well ordering theorem the family $[M_n]^{\aleph_1}$ may be expressed as follows

(10) $[M_n]^{\aleph_1} = \{y_{\xi} \mid \xi < \mu\}.$

The construction of the family F_n will be accomplished by transfinite induction in the following manner. Let $\gamma < \mu$. Suppose we have found a \aleph_0 -tuple family (in the wider sense) F of M_n such that

(11) $(\forall \xi < \gamma) (\exists x \in F) [x \subset y_{\xi}].$

The construction will be complete if we can establish the existence of \aleph_0 -tuple family F_n such that

(12)
$$(\forall \xi \leq \gamma) (\exists x \in F_n) [x \subset y_{\xi}]$$

We distinguish the following cases.

Case 1°. $(\exists x \in F) [x \subset y_{\gamma}]$

Here we may let $F_n = F$ and (12) follows immediately from (11).

Case 2°. $(\forall x \in F) [x \notin y_{\gamma}]$

Since $y_{\gamma} \in [M_n]^{\aleph_1}$ there exists x^* such that

(13) $\overline{\overline{x^*}} = \aleph_0$

and

(14) $x^* \subset y_{\gamma}$.

Definition 13. Let
$$F_n = (F - \{x \in F \mid x^* \subset x\}) \cup \{x^*\}$$

We now must show F_n is i) an \aleph_0 -tuple family (in the wider sense) of M_n and ii (12) is satisfied. With regard to i) let x and y be such that

(15) $x, y \in F_n$

and

(16) $x \neq y$.

If $x, y \in F$ then it is clear, from the fact that F is an \aleph_0 -tuple family (in the wider sense) that $x \not\subset y$ and $y \not\subset x$. Now suppose either x or y is x^* . In fact, assume

(17) $x = x^*$

which with (15), (16) and Definition 13 implies

(18) $y \in F - \{x \in F \mid x^* \subset x\}.$

From (18) it is clear that

(19) $x = x * \not\subset y$.

Moreover, suppose

(20) $y \subset x$.

But (20) together with (17) and (14) give

(21) $y \subset y_{\gamma}$.

Yet (18) and (21) contradict the assumption of Case 2°. Thus (20) cannot obtain which shows F_n is an \aleph_0 -family (in the wider sense) of M_n .

To see F_n satisfies (12) let $\xi \leq \gamma$. If $\xi = \gamma$ then (14) and Definition 13 show that $x^* \in F_n$ and $x^* \subset y_{\xi}$. Now suppose $\xi < \gamma$. By (11) there must be $x \in F$ such that

(22) $x \subset y_{\xi}$.

Suppose $x \subset x^*$. But this would imply by (14)

(23) $x \subset y_{\gamma}$

again contradicting the assumption of Case 2°. Consequently we have $x \not\subset x^*$ which implies with Definition 13

(24) $x \in F_n$.

This shows F_n satisfies (12) and consequently completes the proof of Lemma 12.

Definition 14. $F^{\#} = \bigcup \{F_n \mid 0 < n < \omega\}.$

Remark. Since each F_n is an \aleph_0 -tuple family (in the wider sense) of M_n (and therefore of M) and since they are pairwise disjoint it follows that $F^{\#}$ is an \aleph_0 -tuple family (in the wider sense) of M.

Lemma 15. $\overline{F^{\#}} \leq a_{\omega}$. *Proof.* Since $F_n \subset [M_n]^{\aleph_0}$ and since (25) $\overline{[M_n]^{\aleph_0}} = a_n^{\aleph_0}$ we arrive at, in view of Definition 14 (26) $\overline{F^{\#}} \leq \sum_{0 < n < \omega} a_n^{\aleph_0}$. But for each $n, 0 < n < \omega$, we have (27) $a_n^{\aleph_0} = (2^{a_{n-1}})^{\aleph_0} = 2^{a_{n-1}\aleph_0} = 2^{a_{n-1}} = a_n$. Thus (26) and (27) yield (28) $\overline{F^{\#}} \leq \sum_{0 < n < \omega} a_n = a_{\omega}$ which proves Lemma 15.

Definition 16. $F^* = \{y \in [M]^{\aleph_0} \mid \text{for each } n, \ \overline{y \cap M_n} = I\}.$

Remark. Since the M_n 's are disjoint it is immediate from Definition 16 that F^* is an \aleph_0 -tuple family of M. (Note that if $y_1, y_2 \in F^*$ and $y_1 \neq y_2$, there must exist some n such that $y_1 \cap M_n \neq y_2 \cap M_n$. Let $y_1 \cap M_n = \{p_1\}$ and $y_2 \cap M_n = \{p_2\}$. Clearly $p_1 \in y_1 - y_2$ and $p_2 \in y_2 - y_1$ showing $y_2 \notin y_1$ and $y_1 \notin y_2$). Lemma 17. $\overline{F^*} > a_{\omega}$.

Proof. It is clear from Definition 16 that the family F^* is equinumerous with the generalized Cartesian product $\sum_{n=1}^{\infty} M_n$. Hence (9) gives

(29)
$$\overline{\overline{F^*}} = \prod_{0 < n < \omega} \overline{\overline{M}}_n = \prod_{0 < n < \omega} \alpha_n$$

But by an immediate corollary³ to a theorem by J. König and the fact that the sequence of cardinals $\{a_n\}_{n \le \omega}$ is strictly increasing we obtain

$$(30) \quad \sum_{0 < n < \omega} \alpha_n < \prod_{0 < n < \omega} \alpha_n$$

which together with (29) and Definition 5 yield $\overline{\overline{F^*}} > \alpha_{\omega}$ which proves Lemma 17.

Lemma 18. $F^{\#} \cap F^{*} = 0$.

Proof. Immediate.

Lemma 19. $(\forall y \in [M]^{\aleph_1}) (\exists n < \omega) [\overline{y \cap M_n} \ge \aleph_1].$

Proof. Let $y \in [M]^{\aleph_1}$. Now suppose to the contrary that

(31)
$$(\forall n < \omega) [\overline{y \cap M_n} < \aleph_1]$$

which immediately implies

(32) $(\forall n < \omega) \left[\overline{y \cap M_n} \leq \aleph_0 \right]$

But it is clear that

 $(33) \quad y = \bigcup \{ y \cap M_n \mid 0 < n < \omega \}$

which with (32) yields

(34) $y \leq \overline{\omega} \aleph_0 = \aleph_0 \aleph_0 = \aleph_0$

contradicting the fact that $y \in [M]^{\aleph_1}$. This establishes Lemma 19.

Lemma 20. $F^{\#}$ is an \aleph_1 -spoiler of F^* .

Proof. Let $x \in F^*$ and $y \in [M]^{\aleph_1}$. Using Lemma 19 there is an n_0 , $0 < n_0 < \omega$, such that

 $(35) \quad \overline{y \cap M_{n_0}} \geq \aleph_1$

which implies, since $\overline{\overline{y}} = \aleph_1$

 $(36) \quad \overline{y \cap M_{n_0}} = \aleph_1.$

Consequently $(y \cap M_{n_0}) \in [M_{n_0}]^{\otimes_1}$. Using Lemma 12 we know there is an x_0 such that

(37) $x_0 \in F_{n_0}$

and

(38) $x_0 \subset y \cap M_{n_0}$.

But (37) and Definition 14 give

(39) $x_0 \epsilon F^{\#}$

and (38) gives

 $(40) x_0 \subset x \cup y.$

Consequently, in terms of Definition 7, $F^{\#}$ is seen to be an \aleph_1 -spoiler of F^* , which establishes Lemma 20.

Lemma 21. $\aleph_1^{\aleph_0} \overline{\overline{F^{\#}}} < \overline{\overline{F^*}}$

Proof. Since $\aleph_1 \leq 2^{\aleph_0} = \alpha_1$ it is clear that

(41) $\aleph_1^{\aleph_0} \leq \alpha_1^{\aleph_0} = (2^{\alpha_0})^{\aleph_0} = 2^{\alpha_0} = \alpha_1.$

Using Lemma 15 and (41) we obtain

(42) $\aleph_1^{\aleph_0} \overline{F^{\#}} \leq \aleph_1^{\aleph_0} a_\omega \leq a_1 a_\omega = a_\omega.$

But (42) and Lemma 17 yield

$$(43) \aleph_1^{\aleph_0} \overline{F^{\#}} \leq a_\omega < \overline{F^*}$$

which was to be proved.

If we let $F = F^{\#} \cup F^*$ we now see, that the conditions of Proposition 8 are satisfied. (Let $F_1 = F^*$, $F_2 = F^{\#}$, $k = \aleph_0$ and $n = \aleph_1$. Then i), ii), and iii) are satisfied in virtue of Lemmas 18, 20, and 21, respectively.) Thus the \aleph_0 -tuple family (in the wider sense) F of the set M does not possess a *1*-Steiner cover G contained in $[M]^{\aleph_1}$. This concludes the proof of Theorem 6.

NOTES

- 1. This appears as Theorem III.12 in [1].
- 2. Moreover, we make use of the result that if x is a nonfinite set and if n is a nonzero cardinal number such that $n \leq \overline{x}$ then $\overline{[x]^n} = \overline{x^n}$. For a proof of this see [2], p. 291.
- 3. Ibid., p. 204.

REFERENCES

- [1] Frascella, W. J., "Combinatorial designs on infinite sets," Notre Dame Journal of Formal Logic, vol. 8 (1967), pp. 27-47.
- [2] Kuratowski, K. and Mostowski, A., Set Theory, Amsterdam: North Holland Publishing Co., (1968).

University of Illinois Urbana, Illinois