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THE NON-EXISTENCE OF A CERTAIN COMBINATORIAL DESIGN
ON AN INFINITE SET*

WILLIAM J. FRASCELLA

In [l] the notion of a combinatorial design on an infinite set M was
based on a covering relation of the following kind.

Definition 1. Let F and G be two families of subsets of M and let p be a
non-zero cardinal number. G is said to be a pSteiner cover of F if and
only if every member of F is contained (as a subset) in exactly p members
of the family G.

We showed in [1], roughly speaking, that a rather large class of families F
possess />-Steiner covers of a specified nature. To be more exact, we
introduce the following additional definitions.

Definition 2. Let k be a non-zero cardinal number such that k ^ M. A
family F of subsets of M is called a k-tuple family of M if and only if i) if
x,ye F such that x ψ y then x tf- y, ii) if xeF then f = k and iii) F < M.

In terms of Definitions 1 and 2 we can state the main result of [1] as

Theorem 3.1 Let v, k, n and p be non-zero cardinal numbers such that
i) v is non-finite, ii) k < n < v, and iii) p ^ v. Then if M is a set of
cardinality v every k-tuple family F of M possesses a p-Steiner cover G
such that every member y e G is a subset of M of cardinality n.

A natural question arises as to whether Theorem 3 would be true if
restriction iii) of Definition 2 were removed. The present paper's aim is
to show this restriction is necessary.

All results achieved in the present paper are formalizable within
Zermelo-Fraenkel set theory with the axiom of choice. For the most part
the notation will be standard. If x is a set, # will represent the cardinal
number of x. Moreover, if n is any cardinal number then [x\n = {y c x:
y = n}.2 The expression ((xa y" means "x is a subset of y" improper
inclusion not being excluded. If a is an ordinal ωa is the smallest ordinal
number whose cardinality is Nα. As usual we write ω for ω0.

*The present researches were begun while the author held a Research Associate-
ship of the NRC-ONR, 1967-68, and completed at the University of Illinois, Urbana,
Illinois, under grant NSF-GP 8726.
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The generalization of Definition 2 is now formally stated.

Definition 4. A family F of subsets of M is called a k -tuple family of M, in
the wider sense, if and only if it satisfies i) and ii) of Definition 2.

Definition 5. For each ordinal number a we define a cardinal αα, by trans -
finite induction, as follows: i) α0 = No, ii) if Oί = a0 + 1 then αα = 2°*°, iii) if a
is a limit number, then aa - £) α̂ .

β<a
It is now possible to state the main result of the present work.

Theorem 6. There is a set M of cardinality αω and an fto-tuple family {in
the wider sense) F of M which does not possess a 1-Steiner cover G such
that G c [ l ] H i.

Before directly proceeding with a proof of Theorem 6 we establish
some propositions of a general nature.

Definition 7. Let F be a family of subsets of a set M and n a nonzero
cardinal number. A family G is called an n-spoiler of F if and only if for
every xe F and every y e [M]n there is a z e G such that z c x u y.

Proposition 8. Let k and n be non finite cardinal numbers and let F be a
k-tuple family {in the wider sense) of an infinite set M. Suppose there
exists subfamilies^ Fl9F2 c F such that i) F± Π F2 = 0, ii) F2 is an n-spoiler
of F1 and iii) nkF2 < Fv Then F does not possess a 1-Steiner cover con-
tained in [M]W .

Proof: To the contrary suppose there is a 1-Steiner cover G of F such
that G c [M]w. Thus every member of F is contained in exactly one member
of G. Now define a relation ~ on F as follows.

Definition 9. Let x, x1 e F. x ~ x1 if and only if x and x1 are contained in the
same member of G.

It is immediate that ~ defines an equivalence relation on F. Let [misrep-
resent the equivalence class which contains x.

Lemma 10. {lxoe Fλ) {Vx1 e F2) [{x0 / x1)]

Proof. Observe that since every member of G is a set of cardinality n and
since any such set contains exactly nk subsets of cardinality k we must have

(1) for each z e F,~[zY < n*.

Consequently (1) and iii) of Proposition 8 yield

(2) [){[z]~\ zeF2} < JF2 < %

In view of (2)

(3) (3*0€F,)(Vs€Fa) [xof[*Γl

Hence there is some x0 in Fλ such that it is not the case that x0 ~ z for each
ze F2. This proves Lemma 10.
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Definition 11. Let y0 be that unique member of G which contains x0-

But since F2 is an ^-spoiler of Fλ and xoe F± and yoe G c [M]n we have

(4) ( 3 * * e F 2 ) [x*<zx0 DyQ]

which together with Definition 11 yields

(5) x* c y0.

But Definitions 9, 11 and (5) imply

(6) xoe [x*]~

which says xo~x*. But (6) and (4) contradict Lemma 10. This proves
Proposition 8.

Proof of Theorem 6. Let M be any set of cardinality αω. By Definition 5
there exists for each n, 0 <n < ω, a set Mn such that

(7) M = \J{Mn I 0<n<ω}

(8) Mn Π Mm = 0 if n * m

and

(9) Έn = an.

We begin our construction of a tfb-tuple family (in the wider sense) of M
with the following.

Lemma 12. For each n, 0 <n < ω, there exists a #0-tuple family (in the
wider sense) Fn of Mn such that (Vy e [Mn])^1) (Ix e Fn) [1C3;],

Proof. By the well ordering theorem the family [Mj**1 may be expressed
as follows

(10) [M n f i = ̂ l ξ < μ}.

The construction of the family Fn will be accomplished by transfinite
induction in the following manner. Let y < μ. Suppose we have found a
No-tuple family (in the wider sense) F of Mwsuch that

(11) (Vξ<γ)(lxeF) [x c ^ ] .

The construction will be complete if we can establish the existence of
No-tuple family Fn such that

(12) (Vξ ^γ)(lxeFn) [x c yζ ]

We distinguish the following cases.

Case 1°. (3Λ:€ F) [X C yγ]

Here we may let Fn = F and (12) follows immediately from (11).

Case 2°. (VxeF) [x £ yγ]

Since yγe [M w ]^ x there exists x* such that

(13) P = No
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and

(14) x*ayγ.

Definition 13. Let Fn = (F — {xe F\ X* C X}) U {#*}

We now must show Fn is i) an tf0-tuple family (in the wider sense) of Mn and
it) (12) is satisfied. With regard to i) let x and y be such that

(15) x,yeFn

and

(16) Λ: #3;.

If x,ye F then it is clear, from the fact that F is an No-tuple family (in the
wider sense) that x </iy and 3; φ_ x. Now suppose either x or 3; is #*. In fact,
assume

(17) x =ΛΓ*

which with (15), (16) and Definition 13 implies

(18) ye F - {xeF\x*cx}.

From (18) it is clear that

(19) x=x*£y.

Moreover, suppose

(20) yax.

But (20) together with (17) and (14) give

(21) y<zyγ.

Yet (18) and (21) contradict the assumption of Case 2°. Thus (20) cannot
obtain which shows Fn is an tf0-family (in the wider sense) of Mw.

To see Fn satisfies (12) let ξ < y. If ξ =γ then (14) and Definition 13
show that ΛΓ*€ Fn and x* c 3^. Now suppose ξ < y. By (11) there must be
jίeί 1 such that

(22) x<zyv

Suppose x c AT*. But this would imply by (14)

(23) *C3>y

again contradicting the assumption of Case 2°. Consequently we have x φ.x*
which implies with Definition 13

(24) xeFn.

This shows Fn satisfies (12) and consequently completes the proof of
Lemma 12.

Definition 14, F# = (J {Fn I 0 < n < ω}.
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Remark. Since each Fn is an No-tuple family (in the wider sense) of Mn (and
therefore of M) and since they are pairwise disjoint it follows that F# is an
No-tuple family (in the wider sense) of M.

Lemma 15. F#< aω.

Proof. Since Fn c [M w p° and since

(25) [MwP> = αwKo

we arrive at, in view of Definition 14

(26) F # < £ α*>.
0<n<ω

But for each n, 0 <n < α>, we have

(27) α£° = (^α- 1)^o = ^ f t-i«D = ^ - i = ^

Thus (26) and (27) yield

(28) 7 # < Σ αw = αω
0<w<ω

which proves Lemma 15.

Definition 16. F* = {ye [M]*° I /or £«c/z n, y Π Mn = 1}.

Remark. Since the Mw's are disjoint it is immediate from Definition 16 that
F* is an No-tuple family of M. (Note that if yh y2e F* and yxψ y2, there
must exist some n such that ^i Π Mnψy2 Π Mw. Let 3̂1 Π Mw = {/>i} and
^ Π M β = {/>2}. Clearly ^ e yγ-y2 and fee3^2-^1 showing y2 φ. yx and 3Ί Φ- ^2).

Lemma 17. F* > α.ω.

Proof. It is clear from Definition 16 that the family F* is equinumerous

with the generalized Cartesian product _ X Mn. Hence (9) gives
0<n<co

(29) ¥* = Π Mn = Π an.
0<n<ω 0<n<ω

But by an immediate corollary3 to a theorem by J. Kδnig and the fact that
the sequence of cardinals {αw}w<ωis strictly increasing we obtain

(30) Σ «k< Π αw

0<n<ω 0<n<ω

which together with (29) and Definition 5 yield F* > αω which proves
Lemma 17.

Lemma 18. F# Π F* = 0.

Proof. Immediate.

Lemma 19. (Vye [M]*3) (in < ω) \y Π Mn > N j .

Proof. Let ye [M] x. Now suppose to the contrary that

(31) (Vrc<co) [y Π Mn < Ni]
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which immediately implies

(32) C/w < ω) [ynMn < Hb]

But it is clear that

(33) y =\J{y C\Mn\ 0<n<ω}

which with (32) yields

(34) y <co«o = «o«o = «o

contradicting the fact that y e [M]^ 1. This establishes Lemma 19.

Lemma 20. F^ is an ^x-spoiler of F\

Proof. Let#€ F* and ye [M]^1. Using Lemma 19 there is an n0, 0 <n0 < ω,
such that

(35) y ΠAίpo^Kx

which implies, since y = 81

(36) 7^M«o = ̂ i

Consequently (y Π MWo) e [M^J^i. Using Lemma 12 we know there is anΛτ0

such that

(37) xoeFno

and

(38) xo^y Γ\ Mno.

But (37) and Definition 14 give

(39) xoeF#

and (38) gives

(40) x0 c x u y.

Consequently, in terms of Definition 7, Fw is seen to be an tf x-spoiler of
JF*, which establishes Lemma 20.

Lemma 21. K ^ JF# < F*

Proo/. Since «x < ^ ° = αx it is clear that

(41) K ^ < αi ̂ o = (/o)«o = / o = ^ #

Using Lemma 15 and (41) we obtain

(42) tf^i^ tfi*°αω< α1αω = α<a.

But (42) and Lemma 17 yield

(43) tfΛ F#< α ω < F ϊ

which was to be proved.
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If we let F = F$ u F* we now see, that the conditions of Proposition 8
are satisfied. (Let Fx = F*, F2 = F# & = No and n = «i. Then i), ii), and iii)
are satisfied in virtue of Lemmas 18, 20, and 21, respectively.) Thus the
$o-tuple family (in the wider sense) F of the set M does not possess a
I-Steiner cover G contained in [M]Kl. This concludes the proof of
Theorem 6.

NOTES

1. This appears as Theorem III. 12 in [1].

2. Moreover, we make use of the result that if x is a nonfinite set and if n is a non-
zero cardinal number such that n ^ x then [x]n = xn. For a proof of this see [2],
p. 291.

3. Ibid., p. 204.
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