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A SEMI-COMPLETENESS THEOREM*

STEPHEN L. BLOOM

In [2] and [3] the hyperprojective hierarchy of subsets of ft (the func-
tions from N, the natural numbers, into N) was constructed using the
hyperarithmetic hierarchy as a model. As a consequence, many properties
of the hyperarithmetic sets have perfect analogues in the hyperprojective
sets. In this paper we consider the problem of finding a "projective
analogue" for the following important fact connected with the hyper-
arithmetic hierarchy:

The set of Gδdel numbers of the recursive well-orderings is a
complete Έ\ set of natural numbers (see [5]).

In [2] it was shown that the set of indices of the projective well-
orderings1 of subsets of ft is a Δ2 set2 and thus cannot be a "complete π2

set" in any natural sense, as our analogy would have it. The difficulty is
that in order to express the notion "there is no countable descending chain
of functions such that . . . " one needs only a function quantifier, not a
quantifier over functions from ft into N. Thus we are led to consider the
collection W* of indices of those projective linear orderings having no
uncountable descending chains.

In this paper we will show that W* has a semi-completeness property
with respect to a subclass of the π2 sets. Our proof will assume the
existence of a projective well-ordering <* of all of ft such that ft in this
ordering is order-isomorphic to the first uncountable ordinal Ω. This
assumption is consistent with the usual axioms for set theory, since the
existence of a Δ£ well-ordering of ft (of length Ω) follows from the Axiom of
Constructibility [l].

Definition. If a subset B of ft is linearly ordered by some relation <B,

*This result is contained in the author's Ph.D. dissertation, [2], done under the
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we say B has an uncountable descending chain (UDC) if there is a function/
from Ω into B such that if μ < v (<Ω) then f{v)<Bf(μ); i.e. / is order-
reversing.

The real numbers R in their usual order have no UDC. For suppose
that /: Ω —> R is order-reversing. For each μ < Ω let rμ be a rational
number between /(μ) and/(μ + 1). Since μ Φ v implies rμ Φ rV9 the collec-
tion {rμ} of rationale must be uncountable, an impossibility.

Since we are assuming ft and Ω are equivalent as well-ordered sets,
we can say that B has a UDC if there is function from ft into B which is
order-reversing. Using this observation (and the fact cited in note 2) it is
not difficult to show that the set W* of the indices of projective linear
orderings having no UDC is τί\.

Definition. A π\ set B is said to be semi-complete (complete) with
respect to a subclass & of Ή\ sets if for each set C in & there is a projec-
tive function / such that a ε C iff f{a) εB (and B is in σ as well).

Definition. A primitive recursive predicate R(a, δ,F) is called bounded
if, for fixed a, the arguments of F are all < *α.

For example, if R(a, δ,F) is the predicate

F(a) = δ(0)

then R is bounded; but if R{a, δ, F) is the predicate

F(δ) = α(0)

R is not bounded. Note that if R is bounded, so is the negation of R.
Let CO be the collection of all sets C definable in the form

δεC<->(VF)(la)R(a, δ,F)

where R(a,δ,F) is a primitive recursive bounded predicate. We can now
state our main result.

Theorem. W* is semi-complete with respect to CO.

Before beginning the proof, we introduce some notation. For any
function β, let βn be the function defined by3

βn(x)=β«n,x»

also, let βt (x) = βn(x + 1).
Let F be any functional (i.e. a function from ft into N). For a fixed

function a, we define a functional F/a and a function "Fa as follows:

F/a(γ)= {F(γ)ifγ<*a;
\θ otherwise.

Fa is the <*-least function β having the following three properties:
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(i) If y < *α, then y = βt, some n.
(ii) For each n, β+ < *α

(iii) F(βi) = βn(0).

Thus JP/Q? is a functional agreeing with F on the segment of functions
y<*α; Fα is a function which codes the values of F (and F/a) on this
segment. Note that this segment contains at most a countable number of
functions.

For later reference, we note an important property of bounded
predicates.

(a) If F is a functional such that

(Vβ)^*αβ(/3,δ, F/a)

then

(Vβ)<:*aR(β,δ,F)

and conversely.
We now begin the proof. Let R(a, δ,F) be any bounded primitive

recursive predicate, and let the function δ be fixed. We define a set U(δ) by

U(δ) = {Fa : (Vβ)^a R(β, δ,F/a)} .

U(δ) is the set of functions coding the functionals that "work" up to a.
We impose a Kleene-Brouwer ordering on U(δ)4;

(b) Fa <KBGβiϊϊ

(i) β<*aγG/β=F/β,

or

(ii) F{γ0) <G(γ0), where y0 is the < *-least function on which F and G
disagree.

The important clause in this definition is (i); if Fa codes a longer
segment of the functional coded by "Gβ, then 7a <κB ~Gβ. We will denote an
UDC in U(δ) by ψaβa}a; i.e. for each αεft , Faβa is in U{δ) and if aλ <* α2

then Fa βa <^^Faβa . Our proof will be completed by the following
lemmas.

Lemma 1. U(δ) is a projective set and < K B is a protective linear
ordering of U(δ). Moreover, there is a projective function kb(δ) giving the
index1 of <KB a s a function of δ; i.e. <KB on U(δ) = COv\> (<5).

Lemma. 2. If (IF) (a)R (a, δ,F) then there is an UDC in U(δ).

Lemma 3. If there is any UDC in U(δ), then there is one of the form
{Fβa}a> where each function in the chain codes is a segment of the same
functional.

Lemma 4. If there is an UDC in U(δ), then (IF) (a)R (a, δ,F).
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Proofs, The proof of lemma 1 is tedious but routine, and is omitted
(see [2], section 9). Suppose that F is a functional such that (a) R(a,δ,F).
Then {Fa}a is a UDC in U(δ); indeed, if aλ <* a2 then FQ2 <KBTai by (b),
clause (i). This proves lemma 2.

Lemma 3 is the heart of the argument and we postpone its proof until
the end. To prove lemma 4, assume that {Fβa}a is a UDC in U(δ). This is
no loss of generality by lemma 3. But now we may define a functional Fo by

FoW) = ™ ̂ -> (3 j8β) (y < * βa & Fβa(γ) = m)

where

Fj8«(y) = m <-> (In) (x) (Fβa(<n, x + 1 » = γ(x) & Fβa(<n, 0 » = ra).

F o is well-defined, since the functions ~Fβa agree on their common domain.
Fo is defined everywhere since for any fixed y the set of functions ^ * y is
countable. Thus there must be a βα such that y < * βa.

We claim that (a) R(a, δ,F0). Indeed, let γ be any fixed function. As
noted above, there is an βa such that γ < * βa. Since Fβa is in Z7(δ),
(β)^*βαβ(β, δ,F/βa); in particular then, Λ(y, δ,F/βa). But since β is
bounded and F0/βa = -P/βα, we have, by (a), #(y, 6,^0). Since y is arbitrary,
our claim is proved.

Proof of the Theorem. Let C be some set in β>0. Then for some
bounded primitive recursive R,

δfίC<-^(lF) (a)R(a,δ,F)

Let kb(δ) be the function of lemma 1. By lemmas 2 and 4

δ^C^-> kb(δ) ίW*9

or

δ ε C < ^ kb(δ)εW*

which shows that W* is semi-complete with respect to CO.

Proof of lemma 3. We note first that
(c) if Fβ is in *7(δ) and y < * β, then Fγ is in U(δ) also.

Now suppose that 70 = {Fβj3β}β is some UDC in ί/(δ). We will write
Ψa for Fαβα and Fα(y) for the value of the functional Fa/βa on y. We will
prove the following assertion by induction on <*:

(d) For each a there is a function ra such that for every y, τa ^*y, the
functionals coded by Fγ agree on the segment of 5ft <*α; i.e. if τα < * y and
ξ < * α , thenF Γ α (ξ)=F y (ξ).

Now suppose that (d) holds for all β < * α. We show that (d) holds for a
as well. There are three possibilities.

Case I: a is <*-least. Let B = {Fβ(a) :Fβ ε^}. B i s a set of non-negative
integers and has a least. Let τa be a function such that ~FTa (a) is least in B.
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If τα <* γ, theπFγ < K B ^ ; t n u s either Fγ extends FΓ(3e (in which case they
agree on a) or at the least function γ0 on which they differ, ~Fγ (γ0) < ί γ α (yo)
But since a <* γ0 and ΎTa (a) < ¥γ (α), ~Fγ and TΓα must agree on a. (By (c),
~FTQL a is in U(δ).)

Case II. α is the <*-successor of alt By assumption τ Λ l is defined.
Suppose α 2 is the <*-successor of τα . Then FQ2 in ft/ must be defined at
least up to and including a, since Fθ2 < K B ^ Q i an<^ <̂*2 agrees with 7rai on
all function <* αflβ Thus the set ί? is non-empty, where B is the set
{jfyία): Ύβ ε fl£ & τ α i < * β}. Again choose τα such that 7Vα (a) is least in 5.
Arguing as in case I, we can show that τa satisfies (d).

Case III. a is a <*-limit. Let {βn} be a countable sequence of functions
such that 0i < * β2 < * . . . and a_= limw βn

5. For each w, τ^w is defined. Let
Qf0 = sup^T^^}5. Then if a0 < * y, F y and F α o must agree on all function < %.
Indeed, if γ0 < * α, there is an n such that y0 < * ft* But all functionals Fγ

for Tβn < * y agree on yo Thus if aλ is the < *-successor of a0, Fai(a) must
be defined. As before then, we choose τα such that ~FTa (a) is least in the
set {Fβ(a):~Fβε Kb α 0 ^ * j8}.

This completes the proof of (d). Finally, we choose the chain {FT(xoi}. By
(c) and (d) respectively we know that each function ΎTa a. is in U(δ) and that
if QΊ <* a2 then FTQL2a2 extends FT(Xia1 so that FTa£i2 < K B ^r α i «i. Thus lemma
3 is proved.

Remark. With only a slight modification of the above proof, one can
show that W* is semi-complete with respect to the class <yx of those Έ\ sets
C definable in the form

δεC <-> (VF) (3 a) R (α, δ, 10

where R is primitive recursive and weakly bounded. (We say R(a, δ,F) is
weakly bounded if there is a projective function/(α) such that, for fixed a,
the arguments of the functional F in R are <*/(α).) ox is a much larger
collection than O0 but is still a proper subclass of Ή\. Our method does not
apply when we cannot legitimately limit our knowledge of the values of the
functional to a proper segment of 5ft.

NOTES

1. A subset B of ft is Projective if it is analytic in a finite number of functions; i.e. if
there are functions Φlt Φ2, . . . , Ψm in ft and a formula Φ of second order number
theory having one free function variable v and m function constants wi, . . . , ww

such that for any function a, a e B iff Φ is true in the standard model of second-
order arithmetic when v is interpreted as a. and w j, . . . , w m as Ψx, . . . , ^m

respectively. An index y of the projective set B is a function coding in some uni-
form way a Gδdel number of a formula Φ defining B and the parameter functions
Φi, . . . , Φw. We let (Zy be the projective set with index γ. dy is a projective
well-ordering {linear ordering) if the relation a. ̂ γ β (defined by: a ^γ β -*-*-
(a, β) e CLy (see note 3)) well-orders (linearly orders) the set {a: a ^ γ a}.
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2. A relation R c ft* is called πf if i? is definable in the form

R(ai, . . . , ak) — (VG)(3 0 S(Q?I, . . . , ak, β,G)

where G is a variable over the functions from ft into N , and where S is primitive
recursive [4]. R is called A \ if both R and its negation are πϊ. In [2] it was
shown that the relation J(α, β) —-* a e ββ is Δi.

3. (n ,x) = 2W3X; (o>, β) is the function whose value at x is (a{x), β{x)).

4. There are three orderings being used at this point: the projective well-ordering
<* of ft of length Ω; the Kleene-Brouwer ordering < K B of U{δ); and the normal
ordering < of the natural numbers.

5. The sequence {βn} and the least upper bound of the set {τβn:n=l, 2 . . .} exist
since each function in ft corresponds to a countable ordinal in the well-ordering
<*.
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