PROPOSITIONAL CALCULUS IN IMPLICATION
 AND NON-EQUIVALENCE

A. N. PRIOR

If we use C for implication, 0 for a false constant, and J for nonequivalence, $J \alpha \beta$ is definable as $C C \alpha \beta C C \beta \alpha 0$. Hence the full classical calculus in $C-0-J$ is obtainable by substitution and detachment from

1. CCCpqrCCrpCsp
2. $C 0 p$
3. $\subset J p q \subset C p q C C q p 0$
4. $С С С р q С С q p 0 J p q$

Here 1 is Łukasiewicz's single axiom for C-pure; 2 with this is known to give full $C-0$, and 3 and 4 are jointly equivalent to the above definition. Moreover, we have $C J p p 0$ from $3 q / p$ and $C p p$, and $C J p p q$ from this and 2; from this in turn we have CJJppJqq, showing that $J p p$ is a constant and can take the place of 0 in the above postulates to give a full set for $C-J .2$ and 3 can then be replaced by $C J p q C C p q C C q p r$, which yields 3 by $r / J p p$, and 2 by q / p and Cpp. Hence 1.CCCpqrCCrpCsp, $2^{\prime} . C J p q C C p q C C q p r$ and $3^{\prime} . C C C p q C C q p J p p J p q$ suffice for $C-J$. This set somewhat abridges that given by Shukla in "A set of axioms for the propositional calculus with implication and non-equivalence", Notre Dame Journal of Formal Logic, Vol. 7 (1966), pp. 281-6.

Similar considerations show that if we use B for non-implication and axiomatise in $C-B$ (as suggested by C. S. Peirce, Collected Papers 3.386), we need only 1, $C B p q C C p q r$ and $C C C p q B p p B p q$. Indeed, we can give a similar proof of an old result, the adequacy of $1, C N p C p q$ and $C C p N p N p$ for $C-N$, thus:
5. $C N C p p C C p p q(C N p C p q)$
*6. $\operatorname{CNCppq}(1,5)$
*7. CNCppNCqq (6)
8. $C \subset p N C p p C p q(1,6)$
*9. CCpNCppNp (1, $8 q / N p, C C p N p N p)$
*10. CNpCpNCpp (CNpCpq)

Here 7 shows the constancy of $N C p p$, so that 6 can be read as $C 0 q$ and 9 and 10 as defining $N p$ as $C p 0$.

In each case ($C-J, C-B, C-N$) the added postulates are intuitionistically valid (with J for intuitionist $N E$ and B for intuitionist $N C$) and the deductions go through if 1 is replaced by an axiom for \bar{C}-positive. And we obtain exactly the same $C-J-B-N$ theorems, given C-positive, from each of
(1) Above $C-J$ pair, and Dff. $N \alpha=C \alpha J \alpha \alpha, B=N C$.
(2) Above $C-B$ pair, and Dff. $N \alpha=C \alpha B \alpha \alpha, J \alpha \beta=C C \alpha \beta N C \beta \alpha$.
(3) Above $C-N$ pair, and Dff. B as in (1), J as in (2).

Given, beyond these, an undefined E with axioms CEpqCpq, CEpqCqp, $C C p q C C q p E p q$, or given $E \alpha \beta$ as $K C \alpha \beta C \beta \alpha$ with the usual for K, we can prove $C J p q N E p q$ and $C N E p q J p q$, and also CEpqNJpq, but not (from the intuitionist basis) CNJPpqEpq-only CNJPqNNEpq. In fact, although J is (as intended) equivalent to $N E$, even intuitionistically, E has no equivalent in intuitionist $C-J$. This follows from its having none in intuitionist $C-N$, to which $C-J$ is equivalent (intuitionistically as well as classically) in functional content.

Note: For the classical system, C. A. Meredith (letter of March 28, 1968) gives the following alternative axiomatisation in $C-B$:

1. CCpqCCqrCpr
2. $С р С С B p q q q$
3. $C q C B p q r$
4. $C B p q p$

In support of its sufficiency, he observes: "Let α be some thesis: define $N q$ as $B \alpha q$; then 2 gives $C C N q q q$, and 3 is $C q C N q r$, so with 1 we have $C-N$; now 2 gives $C p C N q B p q$, 3 gives $C B p q N q$ and, from 4, $B p q=K p N q=N C p q$." He also gives these independence proofs:

For (1):

C	1	2	0	
$*_{1}$	1	1	0	$(B p q$
2	1	1	1	$=C C p q 0)$.
0	1	1	1	

For (2): $B p q=$ Falsum; C normal.
For (3): $B p q=p ; C$ normal.
For (4): $B p q=N q ; C$ normal.
And for the insufficiency of $C C p q C B p q r$ as a replacement for 3 and 4, he gives

C	1	2	0	
${ }^{*} 1$	1	0	0	$(B p q q$
2	1	0	0	$=C C p q 0)$.
0	1	1	1	

Balliol College
Oxford, England

