
97
Notre Dame Journal of Formal Logic
Volume X, Number 1, January 1969

THEORY OF PROCEDURES
I. SIMPLE CONDITIONALS

M. K. RENNIE

Introduction. The aim of this paper is to set up the beginnings of a
logical theory of procedures, one of the major uses of which will be as a
theory of computation. Much of the initial portion of the paper consists of a
generalization and re-setting of the theory developed in McCarthy [6]. (For
the translation of McCarthy's theory into practice, see McCarthy et al. [7].)
In [9], Thiele has developed a similar theory, oriented especially toward
algorithmic languages such as are used in digital computer programming.
It is not to be thought that a theory of computability, such as is provided by
Turing machines or Markov algorithms1 is in any way a theory of computa-
tion or a general theory of procedures. In fact the latter is used repeatedly
in an informal fashion whenever one constructs Turing machines or Markov
algorithms.

In section 1, we describe informally the nature and structure of pro-
cedures, giving examples of procedures and of the way in which they may
be diagrammed and symbolized. The morphology of a formal theory for
procedures is set out in section 2, and in section 3 and section 4 interpre-
tations are given for the various parts of this formalism. In section 5, a
theorem on the eliminability of propositional operators within the theory is
proved. Then in section 6 we prove a normal form theorem, which yields a
sufficient condition for complete axiomatizations of procedure theory at
this first level, where only simple conditionals occur.

1. The Structure of Procedures. The treatment of procedures begins
from a different point from the theory of Turing machines or Markov
algorithms. In these theories, a space is assumed at the very start; for
Turing machines the space is the tape which the machine uses for reading,
shifting or printing, and for Markov algorithms the space is the alphabet
over which the algorithm operates. A Turing machine is assessed in terms
of its effect on the tape, in particular the 'number' which it writes on the
tape as its final output, and Markov algorithms are assessed in terms of
their effect on words drawn from their alphabet, in particular their
terminal production. In procedure theory we can assess procedures purely

Received July 20, 1967

98 M. K. RENNIE

in terms of their internal structure, and not in terms of their effect on any
space external to them.2

Without pretending to give a formal definition, we can say that a
procedure consists of a coherent, interconnected set of steps, where each
step is either an operational step or a decision step or a structural step.
Examples of each sort of step may be found in the homely realm of office
procedures. Some of the operational steps are: banking in cash, sending
out invoices, sending out account overdue notices. Some of the decision
steps are: checking whether a correspondent is already mentioned in our
files, checking whether an account is more than 60 days overdue, deter-
mining whether an amount ordered is held in stock. Structural steps are
not quite so easy to find; some examples are: taking a file to the credit
manager, returning unfilled orders to the orders file. Structural steps are
usually carried out on the basis of the result of decision steps, and their
effect is always internal to the procedure.

Inside the quadruples with which Turing machines are defined (see
e.g. Hermes [4] p. 31) we may also find examples of each sort of step. A
typical quadruple has the form

qϊSjOkqn

where Qi and q^ denote internal states of the machine, Sj denotes one of the
symbols which may appear on the tape, and Ok denotes a machine operation,
which may be one of the symbols (for printing) or a shifting operation or a
halting operation. In such a quadruple, qiSj is a decision, since the
quadruple is active only if the machine is in state qι and scanning symbol
Sj: Ok is an operation, which is carried out on the basis of the decision:
and #*τ causes a structural step, since it causes the machine to shift into
state q^, which has no effect on anything external to the procedure.

As a sample of the way in which we may diagram a procedure, showing
the interconnection of the three basic sorts of steps, consider Figure 1.

Obtain (new)
Γ ^ ^ ^ - . form and fill ^ _ ^ Proceed to —^

Start> (lj in (new) details N - 1 C 2 J — D e p t ' N f o r — C 3 J

\^s^ Name, Units, ~ Course Approval ~̂̂ ^
etc.

/C\ f Approval ΛYES ί Last ΛYES Register Sy κA

\ZJ V Granted? J I Department?/ Form \T

JNO Ί N O

(V) I Addl _Π\
^ toN \U

Figure 1. Enrollment Procedure

THEORY OF PROCEDURES 99

Each operational step is represented by a rectangular box, each decision
step by an ovoid box and the two3 possible paths leading away from it, and
the structural steps are represented by the passage from one occurrence of
a numbered connector4 (in the small circles) to another.

Passage through the diagram is always from left to right, and from top
to bottom; when we come to a numbered connector with nothing following,
we pass to the other occurrence of a connector, with the same number,
from which we may progress either towards the right or towards the
bottom. Via the structural steps so defined, this procedure is iterative,
e.g. if any department does not grant course approval then, via connector
number 1, the procedure is iterated with a new form and new details.

In this first level of the theory of procedures, we will not treat
iterative procedures of this sort. The present theory is constructed for the
purposes of logical analysis of the properties of the simple conditional
effect on operational steps given by decision steps, and in it there will be a
minimum of structural steps. Indeed, there will be no explicit structural
steps, and the only structural steps will be those implicitly involved in
passing from one step in the procedure to another, or in ignoring a step if
the condition for carrying out that step is not satisfied.

One semi-philosophical point is required before we proceed to the
logic of procedures, and this concerns the expression of operations within
operation steps. In general, we have to distinguish between an action itself,
the doing of the action, the proposition that the action is done, a command
or imperative that the action should be done, and the effect or result of the
action's being done. Of these, we may rule out any consideration of effects
or results, since we are operating in abstraction from any particular class
of actions. We will use small Greek letters a, β, γ, δ, a1.... to refer to
actions, and these will be interpreted as gerundive phrases such as "Your
shutting the door" or "the adding of x to y". We will write 'Da' for the
proposition that the action is done, or alternatively for the command "Do
a\", often written as Ίa'. Although 'Da' and '\a' must be clearly dis-
tinguished in general, they can be conflated for the purposes of procedure
theory. This is because one must assume, in setting up a procedure, that
just those actions which the procedure licenses or exhorts, and only those
actions, will be done. Again, exhortation and licensing, or obligation and
permission, coincide in procedure theory. Nothing is optional—there will
be no steps saying to the office worker or the computer "You may do a
here if you feel like it". As a further remark on the equivalence of 'Da'
and '\a' for the purposes of procedure theory, we note that a procedure will
have precisely the same structure, as far as the relation of operational
steps and decision steps is concerned, when presented in the indicative
mood as when presented in the imperative mood. If we were describing an
office procedure to an outsider, we would use the indicative mood; if we
were setting it out to the office staff who have to operate under it we would
use the imperative mood, yet it would be precisely the same procedure in
each case. One often thinks in terms of the imperative mood when address-
ing a computer; however computers have a somewhat naturalistic ethic, and

100 M. K. RENME

provided there are no technical difficulties, one has \a = Da for a com-
puter—they do what they are told and only what they are told.

We will also quite often conflate a and Da in procedure theory, and the
operator 'D9 will often play little more part than a role as a punctuation
sign. This conflation will only provide us with grammatical worries at an
interpreted level; for purely manipulative reasons we will frequently con-
join and disjoin propositions and actions, where for ease of interpretation
we should conjoin or disjoin propositions with propositions to the effect
that an action is done.

2. Formalism for the first level of procedure theory.

Primitives

1. (a) The letters p, q, r, s, p\ . . . designated as propositional variables.

(b) 0 and 1 designated as propositional constants.

(c) —, &, v, D, = designated as propositional operators.

2. The letters a, β, γ, δ, α1, . . . designated as action variables.

3. (a) The letters £ a n d £

(b) The symbols C for i > 2. (C2 will mostly be written as C).

4. (,) for use as parentheses.

Formation Rules

1. (a) A propositional variable or constant standing alone is a we 11-formed
proposition (wfp).

(b) If P and Q are wfps, then (P), (P & Q), (P v Q), (P D Q), (P = Q) are
wfps. (Propositional operators are used autonomously in the meta-
language).

2. If A is an action variable then (DA) is a well-formed procedure expres-
sion at the first level (wfpel).

3. If Pi . . . P» are wfps, and Yx . . . Yn are wfpel's, then (C w P 1 F i P 2 F 2 . . .
PnYn) is a wfpel, for n > 2.

4. If X and Y are wfpel's, then (YX) is a wfpel (where juxtaposition in the
metalanguage denotes juxtaposition in the object language).

5. If X and Y are wfpel's, thenXEY is a well-formed formula of procedure
theory at level 1 (wffl).

When writing wfpel's and wffl's, we will conventionally drop outside
parentheses and others not needed to prevent ambiguity. Some sample
wfpel's, with some parentheses dropped, are

(i) ((Da)(Dβ))(Dγ)

(ii) (C3p(Da)q(DβHDΎ))
(iii) (Da)(Cp((Dβ)(Dγ))q(Dδ))(Dδ<)

THEORY OF PROCEDURES 101

(iv) CpDβlDγ
(v) Cp(Da)q(Cr(Dβ)s(Dγ))

3. The interpretation of wfpeVs. Each wfpel can be interpreted as a
description (or prescription) of a procedure. The (syntactical) order of
occurrence of wfpel's within a larger wfpel determines the order in which
each part is to be carried out. Thus (i) interprets as the simple uncondi-
tional procedure in which first a, then β and then γ is done, or is to be
done. This can be represented by a simple flow-chart as in Figure 2.

> a β γ >

Figure 2.

Concatenation interprets, implicitly, as "and then", and this operator
has intuitively the same formal properties as concatenation, namely as-
sociativity but not commutativity. If we take equivalence of procedures in
an intuitive sense of 'having the same result', then (Da)(Dβ) will not in
general be equivalent to (Dβ)(Da). To borrow an example of RusselPs, let a
be putting on one's socks and β be putting on one's boots. Then clearly
doing a then doing β, i.e. (Doι){Dβ\ does not have the same result as doing β
then doing a, i.e. (Dβ)(Da). For actions within a Turing machine, we could
let a be printing a V , and β be shifting right one square. Then (Da)(Dβ)
will cause a '+' to be printed on the square to the left of that on which
(Dβ)(Da) will cause '+ ' to be printed.

However, a sequence of simple D-expressions does associate; in fact
this is implicit in the lack of parentheses in Figure 2. Hence we are
justified in using juxtaposition (or, for formal syntactical purposes,
concatenation) to express the operation of direct passage from one step to
another in a procedure.

The symbols Cι are our symbols for conditional expressions within the
procedure. They do not correspond directly with the ovoid boxes for
representing decision steps on flow-charts, nor are they to be confused
with material implication, for which we are using the ordinary Peano-
Russellian ' D \ The interpretation of a C'-expression is formally identical
to the interpretation of the if . . . then . . . else . . . conditional statement-
form in ALGOL5. The general form CnP1YιP2Y2 . . . PnYn is interpreted
as the procedure of doing Y1 if Pi is true, or if Pi is not true then doing Y2

if P2 is true, etc. In general, Pj .&. f\ Pi is the condition under which Yj
ί<j

will be done according to the conditional procedure expressed by the wfpel:
CnPιYι . . .PnYn.

Under this interpretation, the question arises as to effect of such a
conditional procedure if none of the Pi, for 1 < i ^ n are true. In this case

102 M. K. RENNIE

we say that the procedure is not eυaluable and generally we will confine
our attention to evaluable procedures. We will apply these properties
ambiguously to procedures and the wfpel's which express them: a Cn-

n

expression CnPιYΊ . . . PnYn is defined to be evaluable if y P{ is true. Of
ί = l

the evaluable C -expressions, there will be a subclass of logically evalu-

able Cw-expressions, which are those for which y Pi is logically true.
1 = 1

We will call a whole wfpel evaluable if and only if all the Cw-expressions
contained in it are evaluable, and logically evaluable, or simply logical, if
and only if all the Cn-expressions contained in it are logically evaluable.
Any procedure expressed by a wfpel containing only ^-expressions, such
as our sample wfpel (i), will be logical and a fortiori evaluable.

To facilitate the expression of logical procedures, we will introduce
the symbol ζθ\ whose interpretation is, roughly, 'otherwise'. Just as
'otherwise' expresses a definite condition only in context, so we cannot
give ζθ' an explicit definition but instead we define it contextually. We
require that 'θ' can only occur in the Pw-place of a Cn-expression, and the
contextual definition is

CPiYx. . .Pn^Yn^θYn^Df C'PiFi . . . P * - ! ^ ^ Pi) Y*

It immediately follows that any Cn-expression containing 'θ9 is logically

evaluable, since y Pi .v. y P, is logically true.
i = l ί = l

In fact, 'θ9 could be replaced by 'V, and an equivalent procedure would
result. In either case, Yn will be done if and only if none of Yi . . . Yn-i are
done. Of course, any Cw-expression containing a 'Γ for any P, , in particu-
lar Pr,, will be logically evaluable, since 1 is a logical truth, and if p is a
logical truth then so is p v q. The point of using the 'θ9 symbol is that it
gives the condition under which Yn is done, which we would not have if we
used 'V in place of 'θ9.

With these remarks, we may now turn to a consideration of the
interpretation of the wfpel's (ii)-(v). The wfpel (ii) interprets as the
conditional procedure of doing a if p is true, doing j3 if q is true and p is
not true, and doing γ if r is true and neither p nor q is true. As it stands,
this procedure is not logical, since p v q v r is not a logical truth. It would
become logical if (r9 were replaced by 6Θ\ or if an extra action were added,
resulting in C4pDaqDβrDγθDδ* The flow-chart for this procedure is shown
in Figure 3.

The portion above the dotted line is the original procedure, and the
whole flow-chart is the procedure as made logical by the addition of 'ΘDδ*.
Notice that we need add no decision step for 'θ': the effect is the same as
if 'V were written in place of ζθ9 and it is clearly otiose to ask if 1 is true,,
It is not otiose in general to ask if (p v q v r) is true, but given that we are
only in a position to ask the question if neither p, nor q, nor r is true then
the question becomes otiose.

THEORY OF PROCEDURES 103

> ί p? \YES a Q ^

NO

(\ry™—I β I—0
NO

(^Γy™ y Q
NO

Figure 3.

The wfpel's (iii), (iv) and (v) may be interpreted in a similar fashion,
and represented by a flow-chart, (iv) is logical, but (iii) and (v) are not
logical as they stand, (v) illustrates the point that the Yi's in a (^-expres-
sion do not have to be simple D -expressions or concatenations of them, but
may themselves be Cm-expressions. In terms of the procedure expressed
by such a wfpel, this means that some decision steps may be followed by
further decision steps rather than by an operational step.

4. The interpretation of wffVs. We now turn to the interpretation of
wffl's, which are formed by infixing an Έ' between two wfpel's. The
intuitive interpretation of Έ' is as a proposition-forming operator on
procedures; thus 'XEY' is read as "Procedure X is equivalent to procedure
Γ". Now " . . . is equivalent to . . . " is an explicandum which requires
explication: the first step towards an explicatum6 is to spell the explican-
dum out into " . . . has the same results under the same conditions as. . .",
and this in turn may be spelled out to ". . . causes (or prescribes) the same
actions to be done, in the same order, for the same truth-values of the
conditional propositions, as . . . " This latter form motivates the following
precise definition of evaluation and equivalence.

Firstly, we give evaluation rules for wfpel's in primitive notation, i.e.
with all occurrences of 'Θ' removed by contextual definition. These are set
up so that any Cn -expression CnPiY1 . . . PnYn which is not logically
evaluable is treated as if it were Cw+1PiΓi . . . PnYnθ(Da0) where a0 is the
null action, i.e. the action of doing nothing. A wfpel is evaluated with
respect to a standard truth-tabular matrix, formed from all the distinct
propositional variables appearing in P-places within the wfpel. If the wfpel

104 M. K. RENNIE

contains no Cw-expressions, it has a one-row evaluation. For each row of
the matrix, we evaluate a wfpel according to the prescriptions:

1. The evaluation of (XY) is the evaluation of X followed by the evaluation
of Y.
2. The evaluation of CnPιYι . . . PnYn is the evaluation of the first Γ* , for
1 ^ i ^ n, for which Pi is true for the particular row of the matrix, and is
nil if there is no such Pi. If any P f is a compound proposition, an ordinary
truth-tabular calculation will be needed to determine its truth-value.
3. The evaluation of DA is carried out by writing A in the row of the
matrix beneath its occurrence in the wfpel.

These rules are obviously effective, in that at any stage during the
evaluation of a wfpel, the rule to be used is fully determined, and whenever
the evaluation of a compound wfpel requires the evaluation of another
wfpel, the second wfpel is shorter syntactically than the first and so the
procedure must terminate. The evaluation procedure is itself a recursive
procedure (or algorithm), of a type which cannot be expressed by a wfpel
(but which can be expressed at a more advanced level of procedure theory).
Some sample evaluations are:

Da Dβ Dγ p I {CpDaψDβ)Dγ

a β γ 1 a γ

0 β γ

p q CpDaqDβφ &q)Dγ p q CpDap(CqDβqDγ)

l l a l l a

1 0 a 1 0 a
0 1 β 0 1 β
0 0 γ 0 0 γ

Now the evaluation of a wfpel sets out what actions are done (or pre-
scribed) under all logically possible states of the conditional propositions
within the wfpel. In evaluation rule 3, it is required that the action
variable A should be written in the row of the evaluation beneath its oc-
currence in the wfpel: hence the order of occurrence of the actions on any
row of the evaluation will be the same as the order in which the actions are
done within the procedure. Hence we may use the evaluation of wfpel's to
define their equivalence.

We will define XEY to be true if and only if each row of the evaluation
of X contains the same action variables in the same order as the corre-
sponding row of the evaluation of F, where X and Y are evaluated with
respect to a matrix formed for the distinct propositional variables
occurring either in X or in Y. This definition is the explicatum of our
original explicandum "X is an equivalent procedure to Y". An example of
a true wffl is

(C3 pDaqDβθDγ) E(CpDaθCqDβθDγ),

as may be seen by checking the last two sample evaluations.

THEORY OF PROCEDURES 105

In the following sections we will assert that various wffl's are true
without supplying any proof: in each case the proof is a routine matter
using the evaluation rules of this section.

5. The eliminability of propositional operators. In this section we
prove that for every logical wfpel there exists an equivalent wfpel which
contains no propositional operators.

For the proof of this proposition, we note two preliminary results.
Firstly, we note that every Cw-expression is equivalent to a wfpel contain-
ing only C2-expressions. This follows by a generalization of

(C3 pDaqDβrDγ) E(C2pDaθ(C2qDβθDγ)),

which may be readily established by a truth-tabular evaluation. In general

(CnP{Yχ. . .PnYn)EC2P1Y1ΘC2P2Y2θ . . .θC2Pn^Yn^PHYn)

where the right-hand wfpel contains n-1 C2-expressions.
Secondly, we note that every logical C2-expression of the form

C 2 PiFiP 2 F 2 is equivalent to C 2 PiFi£F 2 . (It does not follow from this that
θ = P 2) . Putting these two facts together gives the result that every
logical Cw-expression is equivalent to an expression all of whose well-
formed parts are of the form C2PiYiθ F 2 .

Hence, to establish the required result that every logical wfpe is
equivalent to a wfpel containing no propositional operators, it suffices to
show that all the propositional operators in a wfpe of the form C2PιYiθY2

may be eliminated, and to show that it suffices to show that we may
eliminate the ' - ' from C2pY1ΘY2 and the '&' from C2{pkq)Y1ΘY2. These
latter eliminations are carried out using the equivalences

(C2pγ1ΘY2)E(C2pY2ΘYi)

(C2(p&q) Yrf Y2)E(Cp(CqY1ΘY2)ΘY2),

and hence the required result is established.7

We do not retain this result if we insist that the wfpel should be in
primitive notation and contain no propositional operators. We can however
assert, on the basis of the proof just given, that for every wfpel there is a
wfpel in primitive notation containing no dyadic propositional operators.
This follows since in each case where we expand a ζθ9 into primitive nota-
tion, we will introduce a negation operator, but no dyadic operators.

6. Normal Forms and a sufficient condition for complete axiomatiza-
tions. In this section we define explicit-conditional normal forms (ecnf's),
and perfect explicit-conditional normal forms (pecnf's), and use them to
derive a sufficient condition for complete axiomatizations of this level of
procedure theory.

A wfpel is defined to be in explicit-conditional normal form iff either
(a) it contains no Cn-expressions or (b) if it contains any Cw-expressions,
then it contains just one, and this is the main operator of the wfpel, so that
it is of the form CnQiYi . . . Q«F«; and furthermore in this case each

106 M. K. RENNIE

Yi for 1 < i < n (all of which are D-expressions or concatenations of them)
is done if Qz is true.

A wfpel is defined to be in perfect explicit-conditional normal form if
it is in ecnf and moreover each Qi for l^i^n has the form of a state-
description (see [2] p. 9) in all the propositional variables occurring in the
wfpel.

We require to prove that for every wfpel there is an equivalent wfpel
which is in pecnf (and hence in ecnf). The first result we need is that for
every Cn-expression of the form CnPiYi . . . PnYn there is an equivalent
Cn-expression of the form CnQY . . . Qn Yn, in the evaluation of which each
Yi is evaluated if the corresponding Qi is true. The rule for construction

is: for each i, 1 ̂ i < n, put Qj = P t .&. / \ Ψj. In particular, Qx = Px and

Qn = Pn •&. f\Pj= Pn .&. V pi b y DeMorgan's Law, so that if Pn = θ
/ < « ; = i •

so does Qn
To show that (CnPxYx . . . PnYn)E(CnQ1Y1 . . . Qn Yn) we use an ap-

propriate generalization of (CpDaqDβ)E(CpDa(q&p)Dβ), which may be
established in truth-tabular fashion. To show that for l^i^n, Yi is
evaluated if Q{ is true, we see that this will be so if

since if this holds then if Qt is true, no Γ for K j o * will be evaluated,
and so Yi will be evaluated. Now by definition

Qi => Λ Pi
j<i

and also

Pi ^Qi

and hence

Qi Ώ Λ "Qi

and hence the required condition holds. We call this the condition of
explicitness, which we may express using the Scheffer stroke function thus

(Vf)(Vj)(t <nM.j<n .&. i Φ j :z>: Qi |Q,).

Whenever this holds we will write CQ^ . . . QnYn as CjQiΓΊ . . . QnYn, the
subscript te9 indicating that the conditional wfpel is explicit. Since p\p, we
always have CIP1Y1ΘY2 as a particular case of explicit conditional
expressions.

Hence, since for any Cw-expression there is an equivalent Cn -expres-
sion, if we now show how any wfpel may be transformed into an equivalent
Cn -expression if it contains any Cm-expression, then we will have given a
procedure for placing any wff into ecnf.

Theorem: For any wfpel there is an equivalent wfpel containing at most
one Cn-expression where that Cn is the main operator.

THEORY OF PROCEDURES 107

Proof: The proof is by induction and the basis established immediately
since DA contains no Cn -expression if A is an action variable. Next, we
make the inductive hypothesis that each Fz contains at most one Cm -ex-
pression, and consider CnPiYi . . . PnYn- Let F ; , 1 ^ j ^ n, be the first F*
in this Cw-expression to contain a Cm-expression (if there is no such F, ,
then clearly there is nothing to prove). Let Fy = CmRίZ1 . . . RmZm, for
from the inductive hypothesis, if Yj contains a Cw-expression then that Cm

is its main operator. Now consider the C r-expression, where r - n- 1 + m:

C r P i F i . . . (Pj hRjZyiPj &R2)Z2 . . . (Pj 8zRm)Zm . . . PnYn;

this C r-expression r e s u l t s from the Cw-expression by substituting
(Pj LR1)Z1 . . . (Pj kRm)Zm for PjYj. We require to show that this expres-
sion is equivalent to CnPiYi . . . Pj(CτnRιZ1 . . . RmZm) . . . PnYn. Now so
far as the pairs P{Yi, for iφ j , are concerned, the C r-expression is
identical to the Cn -expression, so we need consider only the pairs oc-
curring in the jth to (j + m- l)th positions of the Cr-expression, and show
this portion equivalent to the jth pair of the Cn-expression. The required
equivalence holds here because of an appropriate generalization of the
equivalence

(C3pDaq(CrDβsDγ)p'Da1)E(C4pDa(q &r)Dβ(q &s)DγpWa<),

and hence we have shown that the C r-expression is equivalent to the Cn -
expression and contains one less Cm-expression. By repeating the forma-
tion of such Cr -expressions, we may remove all Cm-expressions from the
Cn -expression, except the final Cr -expression which constitutes the main
operator. Hence this inductive step is established.

Next we prove two lemmas, to be used in establishing the inductive
step for concatenation. The first lemma states that if a Ce -expression
CeQiYi . . . QnYn satisfies the distinctness condition

(Vi)(Vj)(l^iJ^n Λ.iΦj : D : Yί Φ YJ),

then QiYί pairs may be permuted within that Ce-expression: i.e. given the
distinctness condition then

(CΪQ^.. .QiYi .. .QjYj .. .QnYn)E(CΪQ1Y1.. .QjYj .. .QiYi .. .QnYn)

This is immediate once we observe that in a Ce -expression satisfying the
distinctness condition, Yi will be evaluated if and only if Qi is true, so that
the position in which QiY{ appears is immaterial to the evaluation of the
expression.

The second lemma states that for any C"-expression, there is an
equivalent Ce-expression satisfying the distinctness condition. To prove
this, let Yi = Yj for some i < j in CeQiYi . . . QnYn. Then we have

(C^QiFx.. .QnYn)E(cΓ1QiYi... (Qi vQj)Yi. ..Qj-1Yj-1Qj+1Yj+1...Q«Yn),

and on the right-hand side of this equivalence, Yj no longer appears and so
does not cause the expression to fail the distinctness condition. If n = 2,
then we use the equivalence (CeQiFiQ2Fi)£(Cf iFiOZta'), where a' is an
action-variable appearing nowhere else in the expression.

108 M. K. RENNIE

Now we may make the inductive hypothesis, thatX and F a r e in ecnf,
and consider (XF). We may assume that both X and Y contain just one
C-expression each, since we can use the equivalence {Da)E{ClDoιODa*),
where a1 is an active-variable occurring nowhere else in X or Γ, to
introduce artificially a C-expression if one of them does not already con-
tain one. (If neither X nor Y contains a C-expression, there is nothing to
prove). Further, we may assume that each of these C-expressions is
explicit, and then by the second lemma we may assume that each of them
satisfies the distinctness condition as well. Under these assumptions, we
set

X = CSQiYi . . . QiFx, Y= CξQlYl . . . Qi Yi

Now, for 1 ̂ i < n and 1 < j < m, put

Qij =(Q/&Q/), Yif ={YiYj)

Now consider the Cnxm-expression

CnXm Q i i F u Q i a Γ i a . . Qlm YlmQ2lY21 ...Qnm Ynm .

According to the inductive hypothesis, each F ί ; contains no C-expressions,
and hence the Cnxm-expression obeys the required conditions. We require
to show that it is equivalent to (XY) to establish the inductive step.

Let us observe firstly that the Cnxm -expression is explicit if both the
Cn and the Cm -expressions are explicit. To show that the Cnxm -expression
is explicit, we have to show that the distinct Qij 's are incompatible, i.e.,

iΦk .v.jΦl :^:Qij \Qki

B y d e f i n i t i o n , t h i s b e c o m e s iΦk .v . j Φ 1 : D : Q{ & Q ; . | . Qk & Q /

B y h y p o t h e s i s iΦk . D . Q{ \Qk

and jΦl .D.QyΊQ/ ,

hence i Φ k .v. j Φ 1 . D . Qi \Qk .v. Q) \Q\.

Also, p\q .v. r\s : D : P &r . | . q &s

is a tautology, and by substitution we have

Qί \Qk .v. QjlQί : D : Qi &Q .\.Qk & Q] ,

and hence by syllogism we have the required result.

Further, the Cnxm -expression will also satisfy the distinctness condi-
tion if both X and Y do. Hence in the Cnxm -expression, the order of writing
the Qij Yij pairs is immaterial, and Yij will be evaluated if and only if Qij is
true, that is, iff Qi and Q) are true. That is, Yi and then YJ will be evalu-
ated iff Qi and Q) are true. But this is precisely the case for {XY), which
is

((C ί Q i Γ i . . . QnYn)(CfQlYl ...Qί Yi)),

and hence the required equivalence holds.

THEORY OF PROCEDURES 109

Hence we have completed the proof that for every wfpel there is an
equivalent wfpel in ecnf. In order to perfect an ecnf we simply note the
result from propositional calculus that every truth-function,8 φ(pi, . . . , pn)

say, may be expressed as a disjunction y S{, where each s, is a state -
i

description in the n propositional variables pi, . . . , pn. In any ecnf, we
replace each propositional function by such a disjunction, and then we apply
repeatedly the equivalence9 (Ce(Pvq)DaθDβ)E(CepDaqDaθDβ) in order to
derive a pecnf. For any logical wfpel, its pecnf will be a C2"-expression,
where n is the number of propositional variables occurring in the wfpel.
(Appendix A contains a full-scale worked example of reduction of a wfpel to
pecnf.)

Perfect explicit-conditional normal forms mirror the evaluation of a
wfpel in much the same way as perfect disjunctive normal forms in
propositional calculus mirror the ordinary truth-tables. Both pecnf and an
evaluation set out the actions which are done under the conditions given by
a state-de script ion in the propositional variables concerned. From this it
follows that if XEY, then the pecnf of X is identical (within the order of the
terms, and this may be made unequivocal by a suitable lexicographic con-
vention) to the pecnf of Y.

Hence any formal system whose wff's are our wffl's, and whose
axioms and rules of derivation are sufficient to ensure that E is an RST
relation and that the pecnf metatheorem holds with respect to the system,
will be complete with respect to the set of true wffl's as determined by the
evaluation procedure. For, if XEY, then the pecnf's are identical,, We then
express the (identical) pecnfs by a wff of the formal system, A say. Then
ΛEA is a theorem of the system if E is reflexive. Then we apply the pecnf
procedure to each side of this equivalence, but in reverse, so that we
transform A on one side into a wff, X\ expressing X, and on the other side
into a wff, F 1 , expressing Y. If E is RST, thenXΈF 1 will be a theorem of
the system, and hence the system is complete.

This then is our sufficient condition for completeness of axiom sets
for procedure theory at level 1. Such an axiom set will also be decidable,
for similar reasons. Any number of axiom sets will satisfy the condition:
the simplest but least elegant way is to take as axiom schemata the general
principles such as

(GQiYi. . .QnYn)iP7QlYl . Q i F ^ ^ C ^ Q u F n . . .QnmYnm)

which were needed in our informal pecnf proof. Or else we can take
restricted versions of these, and prove the more general schemata using
induction in the metalanguage. The choice of axiom sets depends upon our
purpose, in particular whether the formal system is to be used for
deriving theorems or for metatheoretic investigations. Since we are going
to do neither of these in this paper, we leave open the choice of any
particular set of axioms.

110 M. K. RENNIE

APPENDIX A

Take the wfpel:

* = C(pCqD aθDβ)(ΘC(rCqDo>ΘDy)(θ{CpDaθDδ)(CsDa1θDδ'))) .

Write Ψ as

* = CpiCqDa ΘDβ) θ(CrAθB)

Remove θ's, and we get

Ψ =Cp (CqDaqDβ)'p(CrArB) .

Now we have an instance of the case in the first inductive step. We ''distribute''/) and

~p according to the formula there, and derive

EC(p &q)Da{p &q)DβCp &r)B

Now B = (CpDa ΘDδ) (CsDa'ΘDδ') = (CpDάpDδ) {CsDa'Ί Dδ')

This is now an instance of the case in the second inductive step. We put

Yn = (DaDa1), Yl2 = (DaDδ1), Y2l = (DδDa}), Y22 = (DδDδ')

and

Qn =P &s,Q 1 2 =(P &s),Q2i = (P &s),Q 2 2 = (~p &s)

Then B is equivalent to

C 2 X 2 Q n F U Q 1 2 Y12Q21 Y21Q22 Y22

i.e.

C4(/> &s)(DaDa') (p & s) (D aDδ') (p & s)(DδDa') (p & s) (DδDδ')

Now we put this for B in Φ, and A = CqDaθ Dy, and then we use the method of the first

inductive step again. Expanding over A first we have

* EC5(p &q)Da(p &q) Dβ(p &r & q) Da(p & r hq)Dy{~p &r)β

Then by expanding over 5

*EC8{p&q)Da(p &q)DβCp&r & q) Da(p hr & q)Dy{~p & r & /> & s) (DaDar)

{~phr 8ιp &s)φaDδ')(~pbr hp & s) {D δ Dar) {~p 8z r hp &s)(DδDδ')

Now we remove a couple of terms with contradictory expressions in P-place, and get

*EC6(p &q)Da(p8ιq) Dβ(]) hr &q)Ώa^hr &q)Dy{~p&r & s) (D δ Da') {~p & r & s)

(DδDδ1)

We now have obtained an ecnf for Φ, since it may be checked that the wfpel is an

explicit conditional. The perfection process yields

C1 6 (p &q &r &s) (Z)α)

{p &q &r &Ίs) (Da)

(p &q &r &s) (Do?)

{p hq &r & s") (D α)

(P &^ &r &s) (Dβ)

THEORY OF PROCEDURES 111

(P &? &r &s) (Dβ)
(p kq_ &r &s) (D/3)
(/> &# &r &s) (Z>/3)
(? &q &r &s) (JDCK)

(? &# &r &7) (Da)
(p &q &r &s) (DδDδ})
(p &q &r &?) {DδDδ')
(p &q &r &s) (Dγ)
{p &q &r &s) (-Dγ)
(? &# &r &s) (DδDci1)
CP &q &r &s) (DδDδ')

after a little re-arrangement, and this is the pecnf in systematic form. The wfpel Ψ
is logical, containing as it does a liberal sprinkling of '0' 's, and hence its pecnf is a

C2« = C 2 4 = c 1 6 -expression.

NOTES

1. For descriptions of Turing machines and Markov algorithms, see respectively
Hermes [4] and Markov [5].

2. That is, we will do this until we explicitly assume a result space, when we will be
able to assess procedures in terms of their external effects on this space. Result
spaces will not be introduced in this paper.

3. In general, there is no reason why there should be only two possible branches
from a decision. E.g. we could ask "For what month is the procedure being
carried out?", and this would lead to a twelve-fold branch. However, all such
decisions could be carried out by means of a series of two-branch decisions, in
the sample case by a series of decisions beginning "Is this for January?" and
ending "Is this for November?", and two-branch decisions are obviously more
amenable to treatment by a logic of a propositional style.

4. For a general description of the use of this sort of diagram ('flowchart') in com-
puter programming, and for some history of computing lagniappe, see Goldstine
and von Neumann [3].

5. For which, see McCracken [8], or any commercial programming manual for
ALGOL.

6. These technical terms are, of course, Carnap's. See, e.g. Carnap [1] pp. 1-8.

7. The normal form of a wfpel which results after all eliminations of propositional
operators have been carried out corresponds to McCarthy's "canonical form for
generalized Boolean functions", McCarthy [6] p. 56. McCarthy does not define a
normal form corresponding to our explicit conditional normal form in section (4),
and does not discuss the question of completeness of hik axiom set.

8. Provided it is not a contradiction, in which case it may be removed in virtue of
{C3pDaODβΘDy)E (CpD aθDy), and similar equivalences and generalizations of
them.

112 M. K. RENNIE

9. This equivalence is stated in terms of an explicit conditional, rather than any
C-expression, since for example the following two wfpel's are not equivalent

C\p v q)DaqDβθDγ, C*pD aqD βqD aθD y

For Ce -expressions, it is immaterial where the two terms resulting from a
separation of a disjunction are placed, and this facilitates the systematic ar-
rangement of the terms in a pecnf.

REFERENCES

[1] Carnap, R., Logical Foundations of Probability, Routledge and Kegan Paul, London,
1950.

[2] Carnap, R., Meaning and Necessity, University of Chicago Press, Chicago, 1947.

[3] Goldstine, H. H., and J. von Neumann, "Planning and Coding Problems for an
Electronic Computing Instrument" in John von Neumann Collected Works, A.
Taub (Ed.), Vol. V, pp. 80-235.

[4] Hermes, H., Enumerability, Decidability, Computability, Springer-Verlag, Berlin,
1965.

[5] Markov, A. A., Theory of Algorithms, Academy of Sciences of the USSR Transla-
tion, Volume 42, 1961.

[6] McCarthy, J., "A Basis for a Mathematical Theory of Computation'', in Braffort
& Hirschberg (Eds.), Computer Programming and Formal Systems, North-
Holland, Amsterdam, 1963.

[7] McCarthy, J., (et al.), LISP 1.5 Programmer's Manual, M.I.T. Press, Massa-
chusetts, 1962.

[8] McCracken, D. D., A Guide to ALGOL Programming, John Wiley & Sons, New
York, 1962.

[9] Thiele, H., Wissenschaftstheoretische Untersuchungen in algorithmischen
Sprachen I, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966.

The University of Auckland
Auckland, New Zealand

