THE APPLICATION OF TERNARY SEMIGROUPS TO THE STUDY OF n-VALUED SHEFFER FUNCTIONS

JAMES ROSENBERG

If we consider a set of one-variable truth functions we can define on this set a product operation, namely composition. If we assume that this set is closed under composition then the algebraic structure which results is that of a semigroup. In this paper we extend this notion to consider sets of binary truth functions by introducing the concept of a ternary semigroup, and prove a theorem concerning n-valued Sheffer functions. (For one of the most recent papers on this subject with an excellent bibliography see [1].) The methods presented are entirely algebraic, but then it may be argued that problems involving the characterization of n-valued Sheffer functions belong more properly to abstract algebra than symbolic logic.

1. Definition: A ternary semigroup is a set G with a closed ternary product operation fgh such that for any $f, g, h, x, y \in G$,

$$(fgh)xy = f(gxy)(hxy)^{1}$$

For the best example of a ternary semigroup consider a set F of binary functions on a set T-i.e. a set of functions which map $T \times T \rightarrow T$. Define a ternary product on F by the *ternary composition map*:

$$fgh(x,y) = f(g(x,y),h(x,y)) x, y \in T, f, g, h \in F$$

The similarity between this definition and the condition of Definition 1 will readily be seen. In fact, if we assume that for $f,g,h \in F fgh \in F$ then F is a ternary semigroup under composition. In this case F will be said to be a ternary semigroup *acting on T*. We will define isomorphism in the natural way, namely two ternary semigroups G and H will be said to be *isomorphic* iff there exists a 1-1 onto map $\phi: G \to H$ such that $\phi(abc) = \phi(a)\phi(b)\phi(c)$ for any $a, b, c \in G$.

2. Theorem: For any ternary semigroup G there is a set T and a ternary semigroup H acting on T such that G is isomorphic to H.

Received March 14, 1968

^{1.} If a system of notation were used in which function arguments were placed on the lef_{ι} of the function symbol the condition would be written xy(fgh) = (xyf)(xyg)h.

Proof: Let $\infty \notin G$, and define $T = G \cup \{\infty\}$. For each $x \in G$ define $\xi_x: T \times T \to T$ as follows. For $(a,b) \in G \times G \ \xi_x(a,b) = xab$, and for $(a,b) \in T \times T - G \times G \ \xi_x = x$. Let $H = \{\xi_x | x \in G\}$, and define $\phi: G \to H$ by $\phi(x) = \xi_x$. Clearly ϕ is onto. Now if $(a,b) \in T \times T - G \times G$ then $\xi_x \xi_y \xi_z(a,b) = \xi_x(\xi_y(a,b), \xi_z(a,b)) = \xi_x(y,z) = xyz$ and $\xi_{xyz}(a,b) = xyz$. If $(a,b) \in G \times G$ then $\xi_x \xi_y \xi_z(a,b) = \xi_x(yab,zab) = x(yab)$ (zab), and $\xi_{xyz}(a,b) = (xyz)ab$; but by Definition 1 x(yab) (zab) = (xyz)ab. Thus we have shown $\xi_x \xi_y \xi_z = \xi_{xyz}$. The fact that ϕ is 1-1 follows immediately from the fact that $\xi_x(\infty,\infty) = x$.

We will now restrict our attention solely to ternary semigroups which act on a set. If G is a ternary semigroup acting on T and $f \in G$ then the expression f(a,a), $a \in T$ defines a one-variable function on T. In the following section we consider these one-variable functions and their interraction with the two variable functions in G.

3. Definition: Let G be a ternary semigroup acting on $T, f \in G$. By f° we will mean the function mapping $T \to T$ by

$$f^{(a)} = f(a,a).$$

The set $G^{-} = \{ f^{-} | f \in G \}$ will be called the *companion* of G.

4. Theorem: If G is a ternary semigroup acting on T then the companion of G is a (binary) semigroup under composition.

Proof: Since G° is a set of one-variable functions the composition is automatically associative, so in order to prove G° is a binary semigroup it is merely necessary to show that for $f,g \in G$, $f^{\circ}g^{\circ} \in G^{\circ}$. But $f^{\circ}g^{\circ}(a) = f^{\circ}(g^{\circ}(a)) = f^{\circ}(g(a,a)) = f(g(a,a),g(a,a)) = fgg(a,a) = (fgg)^{\circ}(a)$ and $fgg \in G$.

Now that we have seen that these one-variable truth functions are closed under composition we must examine "mixed composition" between two-variable and one-variable functions. In particular, if G is a ternary semigroup acting on T, $f,g,h \in G$, $a,b \in T$, then the expression $f(g^{(a)},h^{(b)})$ defines a function of a and b. Does this function belong to G? This question leads to the following notion.

5. Definition: A ternary semigroup G acting on T will be said to be realized iff for every $f,g,h\in G$ there exists $z\in G$ such that for any $a,b\in T$,

$$f(g^{(a)},h^{(b)}) = z(a,b).$$

The *realization* of G, denoted G^* , is the intersection of all realized ternary semigroups acting on T which contain G.

Examples: (1) The ternary semigroup B(T) of all functions mapping $T \times T \to T$ is realized. (2) Let $T = \{true, false\}$ and let $f:T \times T \to T$ be the Sheffer Stroke-i.e. $f(a,b) = \sim (a \wedge b)$. Define G to be the ternary semigroup generated by $\{f\}$, i.e. the intersection of all ternary semigroups acting on T which contain $\{f\}$. It can be verified by direct computation that $G = \{f,g,h,i\}$ where $g(a,b) = a \wedge b$, h(a,b) = true, and i(a,b) = false. Define t(a,b) =

 $f(f^{(a)}, f^{(b)})$. $t(a,b) = (a|a)|(b|b) = \sim a|\sim b = \sim (\sim a \land \sim b) = a \lor b$. Thus $t \notin G$ and G is not realized.

We now give an equivalent definition of realization which is easier to work with.

6. Theorem: Let G be a ternary semigroup acting on T. Define $G_0 = G$, $G_i = the ternary semigroup generated by G_{i-1} \bigcup \{ \langle f,g,h \rangle | f,g,h \in G_{i-1} \}$ where $\langle f,g,h \rangle$: $T \times T \to T$ is defined by $\langle f,g,h \rangle \langle a,b \rangle = f(g^{(a)},h(b))$. Let $G^+ = \bigcup_{i=0}^{\infty} G_i$. Then $G^+ = G^*$.

The proof is very straightforward, and consists essentially of observing that G^+ is a realized ternary semigroup acting on T and that $G_i \subseteq G^*$ implies $G_{i+1} \subseteq G^*$. Now G^* is a ternary semigroup, and has companion G^* . It is natural to inquire about the relation between G^* and G^* .

7. Theorem: If G is a ternary semigroup acting on T then $G^* = G^*$.

Proof: In view of Theorem 6 it is sufficient to show that $G_i = G_{i+1}$, since each G_i , by construction, is a ternary semigroup. Let $f_j, g_j, h_j \in G_i, j = 1, 2, 3$, and let $z = \langle f_1, g_1, h_1 \rangle \langle f_2, g_2, h_2 \rangle \langle f_3, g_3, h_3 \rangle$. We wish to show that $z \in G_i$. For $a \in T$,

$$\begin{aligned} z^{(a)} &= \langle f_{1}, g_{1}, h_{1} \rangle \left(\langle f_{2}, g_{2}, h_{2} \rangle (a, a), \langle f_{3}, g_{3}, h_{3} \rangle (a, a) \right) = \\ & \langle f_{1}, g_{1}, h_{1} \rangle \left(f_{2} \left[g_{2}^{(a)}, h_{2}^{(a)} \right] \right], f_{3} \left[g_{3}^{(a)}, h_{3}^{(a)} \right] \right) = \\ & \langle f_{1}, g_{1}, h_{1} \rangle \left(f_{2} g_{2} h_{2}(a, a), f_{3} g_{3} h_{3}(a, a) \right) = \\ & f_{1} \left[g_{1}^{(c)} \left(f_{2} g_{2} h_{2}(a, a) \right), h_{1}^{(c)} \left(f_{3} g_{3} h_{3}(a, a) \right) \right] = \\ & f_{1} \left[g_{1} \left(f_{2} g_{2} h_{2} \right) \left(f_{2} g_{2} h_{2} \right) \right] (a, a), \left[h_{1} \left(f_{3} g_{3} h_{3} \right) \left(f_{3} g_{3} h_{3} \right) \right] (a, a) \end{aligned}$$

and since G_i is closed under ternary products it follows that indeed $z \sim G_i$. From the mechanics of the above expansion it can easily be seen that if z is any finite ternary product of elements in $G_{\bigcup}\{< f, g, h > | f, g, h \in G_i\}$ then $z \sim G_i$. Thus $G_{i+1} \subseteq G_i$ and hence $G_{i+1} = G_i$.

We now turn our attention to ternary semigroups generated by a single binary operator. If f is a unary operator on a set T and G is the binary semigroup generated by $\{f\}$ then it is evident that $G = \{f^i | i = 0, 1, ...\}$ where the exponent has its usual meaning. In other words G has a more or less "cyclic" structure. If however f is a binary operator on T and G is the ternary semigroup generated by $\{f\}$ unless we place a restriction on f we cannot be sure of such a simple structure. This leads to the following notion.

8. Definition: A binary operator f on a set T will be called *slightly* associative iff for each $x \in T$ the groupoid generated by $\{x\}$ under f is a semigroup-i.e. iff for each $x \in T$ in any finite product by f in which only x appears the parentheses may be placed in any order.

The meaning of this definition is simply that for any $x \in T$ the expression x^i (using product f) is unambiguously defined for any natural number i.

Note that if f(x,x) = x for each $x \in T$ then f is slightly associative but may not be associative. We shall now use the symbol $gen\{f\}$ for the ternary semigroup generated by $\{f\}$.

9. Theorem: Let f be a slightly associative binary operator on T, and define $f_1 = f, f_i = ff_{i-1}, i = 2, 3, \ldots$ Then gen $\{f\} = \{f_i\}$

Proof: $f_2(a,b) = f(f(a,b) = f(f(a,b), f(a,b)) = (a \cdot b)^2$ where $a \cdot b = f(a,b)$, since f is slightly associative and we may use non-negative exponents. By induction it is evident that $f_i(a,b) = (a \cdot b)^i$. Thus $f_i f_j f_k(a,b) = f_i((a \cdot b)^j, (a \cdot b)^k) = [(a \cdot b)^j \cdot (a \cdot b)^k]^i = (a \cdot b)^{i(j+k)} = f_{i(j+k)}(a,b)$. Thus $\{f_i\}$ is closed under ternary products and hence is a ternary semigroup, so gen $\{f\} \subseteq \{f_i\}$. But clearly for each $i f_i \in \text{gen}\{f\}$. Hence $\{f_i\} = \text{gen}\{f\}$.

We are now about ready to use the machinery developed above to obtain a result concerning *n*-valued Sheffer functions. Let $N = \{1, 2, ..., n\}$ and as above let B(N) be the ternary semigroup of all functions mapping $N \times N \to N$ (i.e. the set of all *n*-valued binary truth functions.)

10. Theorem: Let $f:N \times N \to N$ be a slightly associative binary operator on N, where n > 2. Then $(gen \{f\})^* \neq B(N)$.

Proof: Let $G = \text{gen}\{f\}$. We wish to show that $G^* \neq B(N)$. If F_n is the set of all unary operators on N then it is sufficient to show that $G^{*, \neq} F_n$, since $B(N)^* = F_n$. But by Theorem 7 $G^* = G^{*, *}$ so it is sufficient to show that $G^* \neq F_n$. Since f is slightly associative $G = \{f_i\}$ where $f_i(a,b) = (a \cdot b)^i$, $(a \cdot b) = f(a,b)$, by Theorem 9. Now for each $a \in N$ define α_a as the smallest natural number k s.t. for some natural number $j \neq 0$ $a^k = a^{k+j}$, and define β_a as the smallest natural number j s.t. $a^{\alpha_a} = a^{\alpha_a + j}$. It is clear that $\beta_a, \alpha_a \leq n$. Choose $a_0 \in N$ s.t. $\alpha_{a_0} = \max_{a \in N} \{\alpha_a\}$, and define $\delta = 1.c.m._{a \in N} \{\beta_a\}$. Now for any $a \in N$ $a^{\alpha_a} = a^{\alpha_a + k\beta_a}k = 1, 2, \ldots$ so in particular it follows that for $i \geq \alpha_a$ $a^i = a^{i+\delta}$ and hence if $i \geq \alpha_{a_0} a^i = a^{i+\delta}$ so that $f_i = f_{i+\delta}$. From this we see that $\#G \leq \alpha_{a_0} + \delta$. But $\alpha_{a_0} \leq n$ and δ is the l.c.m. of a set of numbers all $\leq n$, so certainly $\delta \leq n$! Thus we have $\#G \leq n + n!$ and if n > 2, $n + n! < n^n$. Since $\#G^* \leq \#G$, $\#G^* < n^n$, but $\#F_n = n^n$ so obviously $G^* \neq F_n$.

11. Definition: A binary operator f on T will be said to produce the identity iff the identity map on T, 1_T is a member of $(gen{f})^{2}$.

We see immediately from Theorem 9 that a slightly associative binary operator on T produces the identity iff there exists a natural number n > 0 s.t. $a^{2n} = a$ for all $a \in T$. We are now ready for the main result.

12. Main Theorem: Let f be slightly associative binary operator on N which produces the identity n > 2. Then f is not an n-valued Sheffer function—i.e. $\{f\}$ is not functionally complete.

Proof: Let f be slightly associative binary operator on N which produces the identity. We see from the argument in the proof of Theorem 10 that

 $(gen{f}^*)^{\hat{}} \neq F_n$. Now it can be easily seen that if g is any binary operator on T which can be defined by means of composition in terms of $\{f\}$, then $g^{\hat{}} \epsilon (gen{f}^*)^{\hat{}}$. The conclusion follows immediately.

The above results indicate the manner in which the theory of ternary semigroups can be applied to the study of *n*-valued Sheffer functions. A more extensive treatment of this theory will be found in [2].

REFERENCES

- Graham, R. L., "On n-Valued Functionally Complete Truth Functions," The Journal of Symbolic Logic, (June 1967), pp. 190-195.
- [2] Rosenberg, J., Introduction to the Theory of Ternary Semigroups, Mathematics Department, Pomona College, in preparation..

Pomona College Claremont, California