GENERALIZATION OF A RESULT OF HALLDÉN

ROBERT V. KOHN

We take M, \vee , \neg as primitive connectives; let \mathcal{L} be the set of all wffs in these connectives. We take the connectives \wedge , \neg , \neg , \equiv , and L to be defined in the usual ways. If $\alpha \in \mathcal{L}$, we write $\mathcal{L}[\alpha]$ for the smallest subset of \mathcal{L} containing α and closed under the connectives M, \vee , \neg . A *modal logic* is a proper subset of \mathcal{L} which is closed under the rules of uniform substitution and modus ponens, and contains all tautologies. If L_1 and L_2 are modal logics, then L_1 is an *extension* of L_2 iff $L_2 \subseteq L_1$. Let PC denote the classical propositional calculus. For any wff $\alpha \in \mathcal{L}$, let $\hat{\alpha}$ be the wff of PC obtained by erasing all occurrences of "M" in α .

Lemma Let $\alpha \in \mathcal{L}[p]$, and suppose $|\overline{PC}\widehat{\alpha} \supset p$. Then there is an $n \ge 1$ such that $|\overline{\beta}| \ge 2$ $\alpha \to M^n p$.

Proof: First of all, notice that for any wffs γ , δ and any affirmative modality F, if $|_{\overline{S2}}\gamma \to \delta$ then $|_{\overline{S2}}F \gamma \to F\delta$; moreover, for each such F there is an n such that $|_{\overline{S2}}Fp \to M^np$. The proof now proceeds by induction, showing that the Lemma is true of both β and $\neg \beta$ for every $\beta \in \mathcal{L}[p]$. In the case $\beta = p$, the assertion of the Lemma is trivial for β and vacuous for $\neg \beta$. Suppose the Lemma has been verified for both γ and $\neg \gamma$. If β is $M\gamma$ and $|_{\overline{PC}}\hat{\beta} \supset p$, then $|_{\overline{PC}}\hat{\gamma} \supset p$, so by hypothesis there is an n such that $|_{\overline{S2}}\gamma \to M^np$. Then $|_{\overline{S2}}M\gamma \to M^{n+1}p$. If β is $\neg M\gamma$ and $|_{\overline{PC}}\hat{\beta} \supset p$, then $|_{\overline{PC}}\hat{\gamma} \supset p$. So there is an n such that $|_{\overline{S2}}\neg \gamma \to M^np$. Then $|_{\overline{S2}}L\neg \gamma \to LM^np$, so $|_{\overline{S2}}\neg M\gamma \to M^{n+1}p$. Now suppose the Lemma has been verified for $\gamma_1, \gamma_2, \neg \gamma_1$, and $\neg \gamma_2$. If β is $\gamma_1 \vee \gamma_2$ and $|_{\overline{PC}}\hat{\beta} \supset p$, then $|_{\overline{PC}}\hat{\gamma}_1 \supset p$ and $|_{\overline{PC}}\hat{\gamma}_2 \supset p$. So there are n_1 and n_2 such that $|_{\overline{S2}}\gamma_1 \to M^np$ and $|_{\overline{PC}}\hat{\gamma}_1 \to p$ and $|_{\overline{PC}}\hat{\gamma}_2 \to p$. Put $n = \max(n_1, n_2)$; then $|_{\overline{S2}}\gamma_1 \vee \gamma_2 \to M^np$. Now suppose β is $\neg (\gamma_1 \vee \gamma_2)$, and $|_{\overline{PC}}\hat{\beta} \supset p$. Then $|_{\overline{PC}}(\neg \hat{\gamma}_1 \wedge \neg \hat{\gamma}_2) \supset p$; since γ_1 and γ_2 are in $\mathcal{L}[p]$, it follows that $|_{\overline{\gamma}_1} \supset p$ for either i = 1 or i = 2. Then by hypothesis, there is an n such that $|_{\overline{S2}}\neg \gamma_i \to M^np$, so $|_{\overline{S2}}\neg (\gamma_1 \vee \gamma_2) \to M^np$. The induction is now complete.

The modal logic Tr of [2] is that modal logic which contains all $\alpha \in \mathcal{L}$ such that $\operatorname{Fr} \hat{\alpha}$. McKinsey [3] has shown that Tr is the unique Post-complete extension of S4.

Theorem Let L be any modal logic which extends S2. Then either $L \subseteq Tr$ or there is an $n \ge 2$ such that $\vdash M^n p$.

Proof: Suppose L is not a sublogic of Tr, and choose $\alpha \in L$ such that $\frac{1}{PC}$ $\hat{\alpha}$. Then there is a substitution instance α^* of α such that $\alpha^* \in \mathcal{L}[p]$ and $\frac{1}{PC}$ $\hat{\alpha}^* \supset p$. Hence by the Lemma there is an n such that $\frac{1}{S^2}$ $\alpha^* \to M^n p$, and so $\frac{1}{L}$ $M^n p$.

Corollary Let L be a modal logic which extends S3. Then either $L \subseteq Tr$ or S7 $\subset L$.

Proof: This follows immediately from the Theorem, since $\frac{1}{53}M^{n_1}p \equiv M^{n_2}p$ for $n_1 \ge 2$ and $n_2 \ge 2$, and since S7 can be axiomatized by adding MMp to S3, with only uniform substitution and modus ponens as rules of inference.

REFERENCES

- [1] Halldén, S., "Results concerning the decision problem of Lewis's calculi S3 and S6," The Journal of Symbolic Logic, vol. 14 (1949), pp. 230-236.
- [2] Segerberg, K., "Post completeness in modal logic," The Journal of Symbolic Logic, vol. 37 (1972), pp. 711-715.
- [3] McKinsey, J. C. C., "On the number of complete extensions of the Lewis systems of sentential calculus," *The Journal of Symbolic Logic*, vol. 9 (1944), pp. 42-45.

University of Warwick Coventry, England