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COUNTERFACTUALS

DONALD NUTE

A complete analysis of our ordinary use of counterfactual conditionals
should provide us with a means of determining (at least in principle) the
truth value of any ordinary counterfactual claim. Such an analysis is a
much more ambitious project than I propose to undertake here. A more
modest goal would be to provide a means of determining the validity of any
ordinary counterfactual claim. This is still a very ambitious project, so I
will concentrate on an account of the validity of counterfactuals which does
not consider any problems of quantification. A number of authors have
made recent attempts at developing an adequate conditional sentence logic.
I will examine these attempts and pinpoint certain controversial assump-
tions upon which they are based. Then I will offer two new calculi which
are based upon the denial of these assumptions. Finally, I will produce
proof sketches of the semantical completeness and decidability of these two
new systems using a method of proof for decidability unlike that of any
other author writing on counterf actuals. I should warn the reader in
advance that it is not my purpose to show the inadequacy of any of the
systems I criticize; I am rather concerned with showing the diversity of
uses we made of counterf actuals. The new logics I develop are not
intended to replace those offered by others, but to augment their efforts.
In short, I hope to show that we use counterfactuals on different occasions
in different and even incompatible ways. Some of these usages—I would
even claim some of the most common usages—have not been investigated
until now.

Where ">" is the counterfactual connective, there are three schemata
crucial to my discussion:

(1) (A>B)v(A>-B);
(2) (AbB) => W>£);
(3) Π(A 3 B) D. (B > C) D.OU & C) =>. (A > C).

In their article "A Semantical Analysis of Conditional Logic,"1

Robert Stalnaker and Richmond Thomason construct two deductive systems,
Cl and C2, both of which have (1) as a theorem schema. David Lewis, in
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his article "Completeness and Decidability of Three Logics of Counter-
factual Conditionals,"2 discards (1) as counterintuitive and constructs a
system somewhat weaker than Stalnaker's and Thomason's C2 which lacks
(1) as a theorem schema and which, he suggests, properly characterizes
ordinary usage. However, Lewis' favorite system contains (2) as an axiom.

Before arguing that (2) may be counterintuitive also, I would like to
present an informal argument intended to show that (2) follows from (1).
Suppose P and Q are true propositions. Then we surely would not say that
P > -Q. So if we accept (1) we must conclude that P > Q. Since (1) does
entail (2) at the intuitive level, we need only discredit (2) to discredit (I).3

Smith and Jones chance to meet Bill Russell on the street without
recognizing him. Referring to Russell, Smith says to Jones, "That man
would walk exactly that way if he were a basketball player." Although
Smith's statement is a counterfactual with true antecedent and consequent,
it seems clear that it might yet be false. Jones might reasonably reply,
"That's not true. He needn't walk that way just because he happened to be
a basketball player. A lot of tall men walk that way and a lot of tall
basketball players walk differently." Examples like this and others that
might come to mind should convince the reader that (2) is not intuitively
valid. In fact, our whole attitude toward such counterfactuals is quite
different. Rather than base the truth of a count erf actual upon the truth of
its component statements, we most often use the truth of the counter factual
as evidence of the truth of its antecedent. For example, if Jones had not
contradicted him, Smith might have gone on to say, "I'll wager he is &
basketball player, from that walk." Of course the truth of a counter factual
and its consequent do not logically guarantee the truth of its antecedent, but
they frequently are used as evidence for the truth of the antecedent.4 This
practice is quite different from the practice represented by (2).

Let us now examine (3). One consequence of (3) is

(4) (B > C) 3 . 0 (A & C) 3 . {A & B > C).

This is very similar to the much-discussed schema

(5) (B>C) ^(A8z B >C).

It seems to me there are divergent intuitions and usages connected with (4).
Although he was directly concerned with (5), Stalnaker implicitly objected
to (4) as well when he argued that " . . .we cannot always strengthen the
antecedent of a true conditional and have it remain true. Consider 'If this
match were struck, it would light,' and 'If this match had been soaked in
water overnight and it were struck, it would light.'"5 We might interpret
Stalnaker's example in either of two ways. First, we might agree with
Stalnaker that his example is a counter-example and reject (4). Or we
might hold that his example shows "If this match were struck, it would
light" to be false.

What can we conclude from these considerations? First, I would not
want to deny that counterfactual conditionals are ever used in a way which
assumes the validity of (1) and/or (2), or that (1) and (2) are categorically
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counterintuitive. I would instead claim that I have shown examples of
ordinary usage which assumes the invalidity of both (1) and (2). Similarly,
I have tried to show that a particular speaker on a particular occasion
might assume either the validity or invalidity of (3). The conclusion that we
must draw is that there are several different counterfactual connectives
involved in our ordinary usage. The logic of these different connectives
varies in ways which can be represented by the different conditional calculi
we use to represent them. Stalnaker, Thomason, and Lewis have already
constructed calculi which display the formal properties of a portion of our
ordinary use of counterfactuals, but there are some usages which they have
overlooked. It is these that I will now try to characterize.

Beginning with C2 as axiomatized by Stalnaker and Thomason, we can
produce a logic which avoids (1) and (2). At the same time, we can
construct our new logic so that it embraces (3). First we weaken their
Axiom 5 to eliminate (1) and (2); then if we choose, we add (3) to the
resulting axioms. The new systems, which I will call ' ' 0 3 " and "C4", are
determined by the following rules and axioms.

Rules for C3 and C4:

Rl. From A and A 3 B to infer B.
R2. From A to infer DA.

Axioms for C3:

Al. Any tautologous wff is an axiom.
A2. Π(A 3 B) 3 (ΠA 3 ΠB).

A3. Π(A 3 B) 3 (A > B).
A4. ΏA 3. (A >B) 3 -(A>-B).
A5*. A >(B 3 C) 3. (A > B) 3 (A > C).
A6. (A>B)^>(A DB).
A7. Π(A Ξ B) 3. (A > C) 3 (B > C).
A8. A >(B & C) . 3 . {A & B) > C.

Axioms for C4: A1-A8, and

A9. D(A 3 B) 3. (B > C) 3.OCA & C) 3 (A > C).

Provability and derivability are defined in the usual ways using these rules
and axioms. Inconsistent3 ( 4 ) , consistent3 ( 4 ) , and maximal3 ( 4 ) sets of wffs
are also defined in the standard manner.

For our semantics we need the notion of a model structure (Ms)—a
structure (K, R) such that K is a nonempty class and R is a binary reflexive
relation on K. φ will serve the purpose of the isolated element or "absurd
world" (to use Stalnaker's and Thomason's phrase) in the Cms since our
selection functions will pick out classes instead of single elements. A
valuation on an Ms M is defined in the usual way.

Dl. A class-selection function (cs-function) on an Ms (K, R) is any two-
place function / taking wffs and members of K into subsets of K such that
for all a, β e K, if β ef(A, a) for some wff A, then aRβ.
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D2. A quasi-interpretation* I on an Ms M is an ordered pair (v,/) where v
is a valuation on M and / is a cs-function on M.

D3. Where I is a quasi-interpretation* on an Ms (K, R), we define the
truth value \a(A) for wff A and a e K in the usual way for the cases in which
there are wffs B and C such that A is a sentential variable, A = -B, A =
BvC, or A = ΏB. Additionally, for wffs B and C such that A = B>C,
\a(A) = T if \β(C) = T for all βe f(B, a) and \a(A) = F otherwise.

D4. An interpretation* I on an Ms (K, R) is a quasi-interpretation* on
{K, R) which for all wffs A, B, and C, and all a e K meets the following four
conditions:

1) \β(A) = T for all βef(A, a);
2) If \a(A) = T, then a e /(A, a);
3) If /(A, of) = 0, then there is no β e K such that \β(A) = T and αiίβ;

4) If I/3(A) = T for all βef(B, a) and \γ(B) = T for all γef(A, a), then

/(A, « ) = / ( * , « ) .

D5. A regular interpretation* I on an Ms (K, R) is quasi-interpretation* on
(K, R) which for all wffs A and B, and all aeK meets the following
condition:

1) If {βeK: aRβ and \β(A & -B) = T}= 0, \a(B > C) = T and there is a
β e K such that aRβ and I/3(A & C) = T, then lα(A > C) = T.

D6. 1) A set Γ of wffs is simultaneously satisftablezU) if there exists a(n)
(regular) interpretation* I on an Ms (K, R) and a member a of K such that
for all A e Γ, lc*U) = T.

2) A set Γ of wffs implies3U) a wff A if Γ u {-A} is not simultaneously
satisfiable3(4).
3) A wff A is valid3U) if φ implies3(4) A.

Adapting the corresponding proof by Stalnaker and Thomason,6 we can
easily show that

T7. tcΰcϊϊAiffAisvalidsu).

Clearly, (3) is a theorem schema of C4. Now we must make sure that
(1) and (2) are theorem schemata of neither C3 nor C4. Consider the Ms

M = <{0, 1}, {(1, 1), (1, 0), (0, 1), (0, 0)}>.

Let v be any valuation on M such that for sentential variables P and Q,
Vi(jP) = T, vλ(Q) = T, vo(P) = T, and vo(Q) = F. Then we can define a function
/ from wffs and members of {0, 1} into subsets of {0, 1} recursively such
that I = <v,/> is an interpretation* on M and/(P, 1) = {0, l}. Then we can
easily show that IX[(P >Q)v(P> -Q)] = F and l r [ P & Q z> (p > Q)] = F, com-
pleting our argument.

Thomason7 has proven decidability for C2 and Lewis8 has proven
decidability for all the systems he considers using a method different from
Thomason's. The following is an algebraic proof of the decidability of C3
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and C4 which differs in method from those of either Thomason or Lewis.
This proof method is adapted from the work of E. J. Lemmon.9

D8. A structure Wl = (M, u, Π, *, >) is a normal* algebra iff M is a set of
elements closed under the operations u, Π, *, and > such that for all
x9 y, z eM:

1) <M, U, n, *) is a Boolean algebra;
2) (*x U *y) > (x Π y) = (*x > x) Π (*3> > 3>);
3) (*# > x) ^ x (where x < y iff AT Π 3; =x iff ΛΓ U 3> = y);
4) (0 > 1) = 1.

D9. 1) N* = *# >ΛΓ; 2) ΛΓ-> y = *x \jy; 3) x^->3; = (ΛΓ -> y) U (y -> x).

D10. An algebra is standard iff in addition to being normal*, it satisfies
the following postulates:

5) N(x -*y) ^x > y;
6) (x > y) Π (x > *y) ** (x > *x);
7) (x > (y -> z)) n (x > y) ^x > z;

8) x >y ^x-+y;
9) x > (y Γ\z) ^(x ny) > z;
10) N(#<^>;y) Π (y > z) ^x > z;

D l l . An algebra is regular iff in addition to being standard, it satisfies the
following postulate:

11) N(x -• y) Π (y > z) n *N(*(ΛΓ Π ^)) ^ ΛΓ > ^ .

D12. Let 9W = (M, U, Π, *, >) be a standard (regular) algebra. An interpre-
tation of C3(C4) in m is a one-place function I which sends wffs of C3(C4)
into M and which satisfies the following conditions:

1) \{-A) = *|(A);

2) \(ΛvB) = \(A)u\(B);

3) I (A >J?) = I(Λ)>KB).

D13. A standard (regular) algebra 9W satisfies3{4) a wff A iff for every
interpretation 1 for C3(C4) in 3W, I (A) = 1.

T14. If IC3(C4)A, then for every standard (regular) algebra 9W, SP1 satis-

fies^ A.

The proof of T14 is straightforward and will be omitted.

T15. If A is not a theorem of C3(C4), then there is a standard (regular)
algebra 9W = {M, U, Π, *, >) such that W does not satisfy3{4) A and Cαrd(M) ̂

22Cαrd(SF(Λ)) (where S F ( ^ ) i s t h e set of subformulas of A).

Proof sketch: I shall only provide a sketch for the case of C3 since the
case of C4 is proven in exactly the same way. Assume A is not a theorem
of C3 and let M* = (K, R) be an Ms and I* = <v,/> be an interpretation* on
M* such that for some aeK, \a(A) = F. Such an M* and I* exist by T7.
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For each wff B let \m(B) = {aeK: \oι(B) = T}. Let m = <Λf, U, Π, *, >) such
that:

1) M = Π{Γ: {Im(-B): Be SF(A)} c Γ and if lm(£), lm(C)eΓ, then Im(-B),
lm(J3vC), lm(i? > C) e Γ};
2) u, Π, * are the set-theoretic operations of union, intersection, and
complementation;

3) \m(B) > lm(C) = \J{\m(D)eM: \m(D) C lm(£ > C)} for all Im (5), Im (C) €
M.

I will omit the uncomplicated proof that 9W is a standard algebra with at
most 2 2 C α r d ( S F ( Λ ) ) elements. All that remains is to show that Wl does not
satisfy3 A. Define a function I from the set of wffs into M recursively as
follows:

1) I(P) = U{lm (D) e M: Im (D) C Im (P)} for all sentential variables P;
2) \(-B) = *\{B);
3) 1(5 vC) = \(B) U I(C);
4) \(B > C) - I(J5)> I(C).

By (2), (3), and (4), I is an interpretation for C3 in 9W. Furthermore, since
l(P) = lm(P) for all sentential variables Pe SF(A), it is clear that I(B) =
Im (B) for all wffs Be SF(A). Hence, [(A) = lm(Λ) ^ ^ (by hypothesis) and 9W
does not satisfy A. Combining T14 and T15, we get the following complete-
ness and decidability result:

T16. 1C3(C4)̂ 4 iff A is satίsfied3(4) by every standard (regular) algebra with
cardinality no greater than 22 C α r d^S F^^#

We now have two additional conditional sentence logics. Unlike
Stalnaker or Lewis, I am not prepared to claim that any of these is an
adequate representation of the logic of counterfactuals as we ordinarily use
them Instead, I would claim that we use counterfactuals in different (and
incompatible) ways on different occasions with the result that several of the
logics developed characterize one of the usages commonly occurring. I
suspect that C3 and C4 represent the most common usages (C3 being the
favorite), but this is an empirical question not to be decided by logicians.

NOTES

1. R. Stalnaker and R. Thomason, "A semantical analysis of conditional logic,"
Theoria, vol. 36 (1970), pp. 23-42.

2. D. Lewis, "Completeness and decidability of three logics of coimterfactual con-
ditionals," Theoria, vol. 37 (1972), pp. 75-85.

3. (2) is also a formal consequence of (1) in the system C2.

4. This practice was pointed out to me by Dr. Romane Clark.
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5. R. Stalnaker, "A theory of conditionals," in N. Rescher (ed.), Studies in Logical

Theory, American Philosophical Quarterly supplementary monograph series,

Blackwell, Oxford (1968), p. 106. Adding schema (5) to either of the systems C3

or C4 developed later in this paper will produce the result | c 3 • {A > B) =

D(A D ΰ ) as follows. We already have one direction by A3. Suppose (K, R) is an

Ms, I = (v,/> is a regular interpretation* on (K, R), and aeK such that I o>(B>C) = T.

Then by (5) and Rl., \a{B & - C> C) = T, i.e., \β(C) = T for all βef(B & - C, a).

Hence, \β(B & - C & C) = T for all βεf(B & - C, a) and f(B & - C, a) = φ by the

definition of a regular interpretation*. But then there does not exist a βzK such

that aRβ and \β(B & - C) = T by the definition of a regular interpretation*.

Therefore, \a\J(B D C) = T. Using our completeness result, we get the proposed

result. The same result can be obtained by adding (5) to any conditional sentential

logic with which I am familiar, so (5) must be rejected if the counterfactual con-

nective is to represent anything weaker than strict implication.

6. The reference is to the work cited in note 1. Their D5.4 must be changed since

our function will pick out classes. The new function will be defined as follows:

for all A and all Δ'etf, f(A, Δ') = {A:A>BeA}. Since (1) is not a theorem

schema for C3, f(A, Δ') will not in general be a singleton as it is in the semantics

for C2.

7. Cf. R. Thomason, "The finite model property in conditional sentence logic,"

mimeographed and distributed privately. So far as I know, this paper has not

been published.

8. Op. cit.

9. Cf., E. J. Lemmon, "Algebraic semantics for modal logics I , " The Journal of

Symbolic Logic, vol. 31 (1966), pp. 46-65.
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