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NONSTANDARD PROBABILITY

S. MICHAEL WEBB

Introduction1 If F is a finite set, there is a natural probability measure on
F given by μp(A) = || A | | / | | F | | , where A c F and | |x| | denotes the number of
elements in a finite set X. In their paper [l], A. R. Bernstein and F. Watten-
berg have shown the existence of a *finite set F such that if A is a Lebesgue
measurable subset of [0, 1], then μF(A) = ||*A Π F | | / | | F | | ^ m(A), where m is
Lebesgue measure. The measure μp is called a sample measure. Since
Lebesgue measure on [0,1] is the measure induced by the uniform distribu-
tion on [0,1], it is natural to ask for what other probability distributions on
the real numbers can a similar result be shown. If the notion of sample
measure is generalized, then the result of [l] may be extended to arbitrary
real measures induced by probability distributions. This generalization and
extension form the main portion of this paper. As an application of this
extended result two nonstandard theorems of the central limit type are
stated.

Preliminaries Let *R be an enlargement of the real number system R.
Each set or concept in R will receive the prefix '*' when denoting the
corresponding set or concept in *R, e.g., a *finite subset of *R is a subset
on which there is an internal bijection onto an initial segment of *N, the
enlargement of the natural numbers. (See [3] or [4] for more details.) Let
<zn)n £ Nbe a sequence (necessarily external) in *R. Then lim zn = z will
mean z e R and, for every standard e > 0, there exists an m e N such that
n ^ m implies I zn - z | < e. Equivalently, lim zn = z means the zn are even-
tually near-standard and z is the limit of the standard parts of these zn.

A double sequence {{xnk}} will be a collection of random variables with
n e N, 1 ̂  k ̂  kn, and kn —* °° as n —> °°. A double sequence {{xnk}} is said to

1 The results announced in this paper form a part of the author's doctoral dis-
sertation, Nonstandard Probability Theory, written under the directorship of
Professor E. William Chapin, J r . with the support of an NDEA Title ΓV Fellowship
and completed August 1972 at the University of Notre Dame.

Received December 1, 1973



398 S. MICHAEL WEBB

be infinitesimal if and only if, for each standard e > 0, lim max P{|xnkl^
n k

e} = 0. A double sequence is said to be row-wise independent if and only if
the random variables Xnl, . . . , Xnkn are independent for each n. If {{xnk}}
is a double sequence, then the characteristic and distribution functions of
Xnk will be denoted by φ^ and F^, respectively. The normal distribution
with mean 0 and variance 1 will be denoted by N(0,1).

Results Let M be the set of real measures induced by probability distri-
bution functions. Let μ e M. If μF is a sample measure such that F is
actually infinite, then

μ F ( { x } ) 4 ° ' X / F ^ 0 .
( l / l l F l l ; x e F

But μ({x}) need not equal 0. Thus, sample measures are not sufficient for
approximating arbitrary elements of M. However, if the *finite set F is
replaced by a *finite sequence, the result can be proven.

Definition Let S = (xj), i = 1, . . . , ω, be a *finite sequence, define the
sequence measure μs(A) = Σ/[xi<ΓA] Vω, for A an internal subset of *R. If
A c R, let μs(A) = μs(*A).

Theorem 1 If μ e M, then there exists a sequence measure μs such that for
each μ-measurable set A, μs(A) ̂  μ(A).

The proof is given in the following two lemmas.

Lemma 1 There exists a sequence measure μs such that μs(l) — μ(l) for
each interval I.

Proof: Let F be the distribution function of μ, i.e., F(x) = μ({yly ^x}). Let
ω be an infinite natural number. Set xk = inf {x| (2k - l)}2ω+1 ^ F(x)} for k =
1, . . . , 2ω. Then, for S = <xk), k - 1, . . . , 2ω, μs(l) ̂  μ(l) for each interval I.

Lemma 2 Let μs be a sequence measure such that μs(l) — μ(l) for each

interval I; then μs(A) ̂  μ(A) for each μ-measurable set A.

Proof: Let a standard e > 0 be given. Let A be μ-measurable; then there
exist countable collections of intervals {ij} and {Ji} such that U Ii D A,
U Ji D (R - A), and {

(ΐ) Σ μdi) - e/4 < μ(A) = 1 - μ(R - A)< 1 - Σ μ(Ji) + c/4.
i i

For each n e N,

IΣμίJi)- ί)μs(Ji)l<e/4,
i= l i = l

(2)
IΣμdi)- ί)μs(li)l <£/4.
i=l i = l

Thus, if T = {n e *N| condition (2) holds}, then T must contain an infinite
natural number ω. Thus,
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IΣμ(Ji)- Σμs(Ji)l <e/4,
i=l i=l

(3)
ω ω

IΣμdi)- ΣμsttOl <«/4.
i=i i=i

Furthermore,
ω

Σ μ(Ji) - Σ μ(Ji),
i = l i

(4)
Σ μ(li) - Σ μ(Ii).
i = l i

Combining (1), (3), and (4) yields

μ(A) - e/2 < 1 - Σ μ(Ji) - e/4 « 1 - Σ μ(Ji) - e/4
i i = l

« 1 - Σ μs(Ji) « μS(A) « Σ μs(li)
i=i i=i

« Σ μ(Ii) + e/4 <* Σ μdi) + e/4 < μ(A) + e/2.
i = i i

Thus |μ(A) - μs(A)| < e. Since e was arbitrary, μs(A) ^ μ(A).

Remark 1 The sample measures μF constructed in [ l] had the additional
properties:

(i) [0, 1) c F; (ii) F + 1/n = F for each n e N; (iii) μF(A + y) ^ μF(A),

where addition is modulo 1. Using the methods of Lemma 1 a *finite set F
can be constructed which satisfies the properties (ii) and (iii); however,
property (i) is not obtained by this method.

Remark 2 Just as in [l] if the integral, f fdμs, is defined as 2y f(χi)/ω,
then for μ and μ$ as in Theorem 1, J fdμs — / fdμ for each bounded,
measurable function f.

Application Let X be a random variable. Then X induces a measure on R
via its distribution function. Let S = (xi) be a *finite sequence, and let μ be
the measure induced by X. Then S — X will mean μ and μs satisfy Theorem
1. The symbols ΣΓ and Σ€ will denote the sums over the indices i for
which I Xi I ^ e and |x j < e, respectively.

Theorem 2 Suppose the double sequence {{xnk}} is row-wise independent
and each Xnk has mean zero. If there exist ^finite sequences Snk = (x(nk),
i = 1, . . . , ωnk, such that Snk - Xnk and, for every standard e > 0,

(5a) lim E l/ωn kΣ e(x (ώ 2 = l,
n k

(5b) lim Σ Σe 1/W= 0,

(5c) lim Σ l/ωnkΣx (nk=0,
n k i

then {{xnk}} is infinitesimal and the sequence {Σ^nk} converges weakly to a
random variable which is distributed N(0, 1). k
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Theorem 3 Suppose {{Xnk}} is a double sequence which is row-wise inde-
pendent. Suppose there exist ^finite sequences Snk - Xnk, satisfying, for
every standard e > 0,

(βa) lim ΣΣ€ l/ωn k=0,
n k

(6b) lim Σ 1/ωnkΣe (x&)2 = 1>
n k

(6c) lim E l/ω n k |Σ* x«kl =0,
n k

then {{Xnk}} is infinitesimal and the sequence {Σ/ Xnk) converges weakly to a
random variable distributed N(0,1). k

The proof of Theorem 2 is based on the following result.

Lemma 3 Let {{Xnk}} be an infinitesimal system of random variables with
variances σlk and means zero. Let 0nk(t) = φnk(t) - 1. If there exists a
positive constant C such that Σ σ̂ k < C, then lim Π φnk(t) = lim
e x p [ Σ /3nk(t)].

 k - k π
k

This result is proven using the series expansion of log φn\J<t), the fact that
Aik(t) = f (exp[itx] -1 - itx)dFnk, and lim max |/3nk(t)| = 0. (See [2], pp. 259-
260.) Ω k

If the expression Σ βnk(t) is written in terms of the Snk using Remark 2
to replace integrals byksums, and if exp[itx] is expanded in a Taylor series
with two terms and remainder, then it becomes apparent that the conditions
(5) are sufficient to imply lim Σ Aik(t) = - i t 2 . But the conditions (5) also

n k
imply that for sufficiently large n the Xnk satisfy the hypotheses of Lemma
3, and Theorem 2 follows.

The original motivation for this work was a nonstandard proof of the
Lindeberg Central Limit Theorem. However, Theorem 2 is not sufficient
for this purpose. Theorem 3 is similar to a standard theorem in [2] which
is known to be sufficient for the Lindeberg theorem. However, the proof of
Theorem 3 depends only on Theorem 2 and elementary results in proba-
bility, while the theorem in [2] requires a much stronger central limit
theorem whose proof depends on the Levy-Khintchine representation of
infinitely divisible characteristic functions. Furthermore, Theorem 3 has
as a corollary the Lindeberg theorem which is stated here for completeness.

Central Limit Theorem (Lindeberg) Suppose {xk} is a sequence of inde-
pendent random variables with means αk and non-zero variances σk. Let

rl = Σ <V Vy for eveγy standard e > 0, lim l/τ2

n Σ /ιx_α ι<6 x2dFk = 0, then
k=i Q k

the sequence \Σ Vτn(Xk - k̂)} converges weakly to a random variable which
k=i

is distributed N(0,1).
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