
389
Notre Dame Journal of Formal Logic
Volume XVI, Number 3, July 1975
NDJFAM

COMPACTNESS IN ABSTRACTIONS OF POST ALGEBRAS

R. BEAZER

Introduction An algebra (A; F) is said to be equationally compact if the
existence of a simultaneous solution of any finite subset of any set Σ of
polynomial equations (with constants) in A implies the existence of a
simultaneous solution of Σ. An algebra (A; F) is said to be topologically
compact if A is endowed with a compact, Hausdorff topology under which
all the operations in F are continuous. The problem of determining the
equationally compact algebras and the answer to Mycielski's question (see
[15]), "Is every equationally compact algebra a retract of a topologically
compact algebra?" for a particular class of algebras, is usually a difficult
one. The problem has been solved for semilattices in [11] and [3], for
Boolean algebras in [17], and for Post and Post-like algebras in [2]. In
recent years, several abstractions of Post algebras have been studied. The
purpose of this note is the characterization of the equationally compact
algebras in some of these classes.

Preliminaries A Brouwerian algebra is an algebra (A; v, Λ, —>), where
(A; v, Λ) is a lattice and —* is a binary operation such that XAy^z if and
only if x ^ y —» z. Every Brouwerian algebra is distributive and has a
greatest element 1. A Heyting algebra is a Brouwerian algebra with a
least element 0. In a Heyting algebra A, the element x —• 0 will be
denoted by x* and is the pseudocomplement of x in A. The set S(A) =
{xe A; x = #**} forms a Boolean algebra; the algebra of closed elements of
A. The set D(A) = {xeA; x* = 0} forms a filter; the filter of dense elements
in A. A bounded, distributive, pseudocomplemented lattice satisfying the
identity x* v x** = 1 is called a Stone algebra. In any Stone algebra A, S(A)
coincides with the centre C(A) of A. An L-algebra is a Heyting algebra
satisfying the identity (x —> y) v (y —> x) = 1. Any L-algebra is a Stone
algebra and satisfies the identity xvy = ({x -* y) —> y) * ((y —> x) -+ x). Con-
sequently, the operation v can be omitted from the set of fundamental
operations. For the connection between L-algebras and logic, the reader is
referred to [13],
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n

A Kn-algebra is a Brouwerian algebra satisfying the identity V (x{ —•

#m) = 1, « ^ 2 . The class of all Kw-algebras is denoted by Kn. An
Ln-algebra is a Kw-algebra with least element 0. The class of all
Lw-algebras is denoted by £n. The classes Kn

 a n ί * Jin were introduced and
studied in [12].

A P-algebra is an L-algebra whose dual is an L-algebra. Equivalently,
a P-algebra is an L-algebra whose dual is a Stone algebra. For other
characterizations and applications of P-algebras to logic, the reader is
referred to [7] and the references therein. The class of all P-algebras is
denoted by P. A P^-algebra is an Lw-algebra whose dual is an L-algebra.
The class of all P^-algebras will be denoted by P^n\ Such algebras arise
quite naturally. Indeed, it can be shown that the lattice of equational
classes of P-algebras is the chain P[ί] c P[2] c . . . c />M c . . . c p.
Furthermore, P^ is the class of all P-subalgebras of Post algebras of
order n (see [7]).

A Lukasiewicz algebra of order n (n^2) is an algebra (A; v, Λ; ~,
si> •> s«-i> I)? where (A; v, Λ; 1) is a distributive lattice with 1 and ~,
Si, . . ., sw_i are unary operations of A satisfying the following conditions:

Ml. —*x = x,
M2. ~(xvy) = ~XΛ~y,

M3. *i(xvy) = Si{x)vSi(y),

M4. β<(*)v~s,(*) = 1,
M5. s f.(s,(*)) = S 7 (ΛΓ),

M6. s f (~Λτ) = ~ s n . i ( * ) ,

M7. s f (Λτ) v s f +i(Λr) = sί+1(Λr), (Ki*zn- 2),

M 8 . XvSn.λ(x) = Sn-i(x),

M 9 . (xA~Si(x)*si+1(y))vy =y, {l^i^n - 2 ) .

The class of all Lukasiewicz algebras of order n is denoted by -Lukw.
A systematic study and references to previous work on Lukasiewicz
algebras can be found in [4] and [5]. In any Lukasiewicz algebra ~1 = 0
(the least element) and we have:

x e C (A) if and only if Si(x) = x (1 ̂  i ^ n - 1).

Furthermore, if x e C {A) then the complement of x is ~ AT.

Some abstractions of Post algebras involving a chain of distinguished
elements are defined below.

A Po-lattice is a bounded, distributive lattice A which is generated by
its centre C(A) and a finite subchain 0 = e0 ̂  eL ̂  . . . ̂  ew_i = 1, called a
chain-base for A. The order of a Po-lattice A is the smallest integer n
such that A has a chain-base with n distinct terms. A P^lattice is a
P0-lattice with a chain base such that e, +i ~* ©i = ©*• A P2-lattice is a
Pi-lattice (A; e0, . . ., e«_i) such that !e* exists, where !ΛΓ is the largest
central element which is ^x and called the pseudo-supplement of xinA.
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If A is a lattice whose dual is a Stone algebra then \x exists and equals x++,
where x + is the dual pseudocomplement of x in A.

Post algebras can be defined in various ways. From [9], a Post
algebra is a P2-lattice (A; e0, . . ., e«-i> such that !e«_2 = 0. From [4], a
Post algebra of order n is a Lukasiewicz algebra of order n having n - 2
elements βi, . . ., e«-2 satisfying

!

0, i + j < n

l,i + j ^ n

Further definitions may be found in [2] and the references therein.

A Stone-lattice of order n (n ̂  2) is an L-algebra A in which there
exists a chain 0 = e0 < eι < . . . < en-i = 1 such that ef +1 is the smallest
dense element in the interval [e2 , l]. A systematic study of Stone-lattices
of order n was made in [14].

1 Compactness in P^-algebras The following results, the proofs of which
are in [12] and [9] respectively are crucial in characterizing the equa-
tionally compact P^-algebras.

Lemma 1 If A is a Heyting algebra then Ae <£n(n^2) if and only if C(A) is
a subalgebra of A and D(A) e Kn-i*

Lemma 2 A is a P2-algebra of order n if and only if it is a Stone lattice of
order n whose dual is a Stone algebra.

Theorem 1 If A e P^ then the following are equivalent:

(i) A is equationally compact*
(ii) A is a direct product of finitely many complete Post algebras of order

at most n.
(iii) A is a retract of a topologically compact algebra in P*-n\

Proof: (i) => (ii). Let A e P^ be equationally compact and let e e A - {l}.
Then, since A is a Heyting algebra, the interval [e, 1] is a pseudocom-
plemented lattice; x —» e being the pseudocomplement of x in [e, 1], Let De

denote the dense filter in [e, 1]. The set Σ of equations

x Ae = e
x -» e = e

{Λ Λd = x; de De}

is easily seen to be finitely solvable and, therefore, by compactness, is
solvable. Clearly, a solution of Σ is the smallest dense element in [e, 1].
Thus, we can produce an ascending chain E: 0 = e0 ^ e2 ^ . . ., where ei+1 is
the smallest dense element in [e, , 1]. Since Ae £m we conclude from
Lemma 1 that E has cardinality at most n. Therefore, A is a Stone lattice
of order at most n whose dual is a Stone algebra. Equivalently, by
Lemma 2, A is a P2-algebra. According to [8], A must be a direct product
of finitely many Post algebras of order at most n. Finally, A> being
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equationally compact as a lattice, is complete and therefore each factor in
the direct decomposition is complete.

(ii) =#>(iii). Let A = 11 Ai<9 where each A{ is a complete Post algebra of

order m < n. Then from [2], there exist cardinals 9W, and retractions
p{: n^i —> Ai preserving v, Λ, -> and its dual. Clearly, the family {p{: 1 ^

i ^ r\ induces a retraction 1 lp,: 11 wf

 w<i —• 11 Λ, and 11 wf

 OT* is a topologically

compact algebra in P when each chain algebra wf is endowed with the
discrete topology.
(iii) =» (iv). This is well-known (see [17]).

Prior to characterizing the topologically compact algebras in P^n\ we
recall some definitions.

A subset F of a P-algebra A is said to be a P-filter if it is a lattice
filter closed under !.

If K is a class of similar algebras then A e K is said to be profίnite if it
is an inverse limit of finite algebras in K.

Theorem 2 If A eP^ then the following are equivalent:

(i) A is topologically compact.
(ii) C(A) is a topologically compact Boolean algebra.
(iii) C(A) is complete and completely distributive.
(iv) A is profinite.
(v) A is complete and completely distributive.
(vi) A is a direct product of finitely many complete and completely
distributive Post algebras of order at most n.

Proof; (i)==>(ii). Let A be a topologically compact algebra in P^n\ Then
C(A) is a topologically compact Boolean algebra; since C(A) is a Boolean
subalgebra of A and the continuous image of A under the mapping x —> x**.
(ii) ==> (iii). This is proved in [16], Proposition 3.
(iii) =Φ (iv). In any P-algebra A there is a one-to-one correspondence
between the P-congruences Φ and the P-filters F (see [7]). Under this
correspondence F = {x e A; (x, 1) e φ} and Φ = {{x, y) e A2 (x-*y)* (y-*x) eF}.
It is easy to see that a principal (lattice) filter in A is a maximal P-filter if
and only if it is generated by an atom in C(A). Now, following the proof of
Theorem 5.2 in [1], let <A be the set of atoms of C(A) and let 9 = {fa; ae A}
be the set of finite joins of members of cA. Then 9 is a sublattice of C(A)
with vfa = 1. Partially ordering the index set A by requiring the β ^ a in A
if and only if fβ ^ fa in A insures that A is a down-directed set indexing the
P-congruences Φa = {(x, y) eA2 (x —> y) Λ (3; —» x) ^ fa} in such a way that
Φa c Φβ whenever β ^ a. Consequently, the quotient algebras Aa = A/Φa and
homomorphisms φaβ: Aa> —» Aβ defined by φaβ([x]a) = [x]β whenever β ^ a
(where [x]a is the congruence class modulo Φa containing x) form an inverse

r(q)

system. Now, if fa = V aa., where aaitc4, and Φai = {(x, y) eA2; (x -* y) Λ



COMPACTNESS IN ABSTRACTIONS OF POST ALGEBRAS 393

(3; -* x) ^ aa.} then, following the proof of Theorem 5.2 in [1], we see that Aa

r(a)

can be embedded in llA/Φα . . The maximality of Φai implies that A/Φai is

a simple algebra in /* . According to [7], a simple P-algebra must be a
n

chain. However, the identity y (χt -* χuΰ = 1 holds only in those chains of
cardinality at most n. Consequently, each Aa is finite. Clearly, ΓιΦα is the
smallest congruence on A and so the correspondence φ: A —• Lim Aa defined
by [φ(x)](ά) = [x]a is an embedding of A into a profinite algebra. The proof
that 0 is surjective can be lifted verbatim from Theorem 5.2 in [1],
(iv)=#>(i). Trivial,
(iv) =Mv). If A = Lim Aa is profinite then A is a complete sublattice of the

complete and completely distributive lattice 1 lAa. Therefore A is com-
pletely distributive,
(v) ==> (iii). It suffices to show that C(A) is a complete sublattice of A. Let

{bi'9 iel}c C(A) and b = Λ^δi; ie /}, where Λ̂  indicates that the meet is
taken in A. Then δ** ^ δf ** = b{, for all i e /, so that δ** ^ b. Since δ** ^ 6,

it follows that &** = 5eC(A). A dual argument shows that V {̂5Z'; Z€/}e
C(-A). Thus, C(A) is a complete sublattice of A.
(i)=φ(vi). If AeP^ is topologically compact then it is equationally

compact and therefore A = 11 Ai9 where each A( is a complete Post algebra
1 = 1

of o r d e r at m o s t n. F r o m Propos i t ion 4 in [16], C ϊ Π AA i s complete and
V=i /

11 4̂/) = IT C(A;), it follows that each
ί=l / ί = l

C(Ai) is complete and completely distributive. Therefore, by results in [6],
r

each Ai is complete and completely distributive and so is Π A{.
1 = 1

(vi) =Φ»(v). Trivial.

2 Compactness in P0-lattices The following was proved in [9]:

Lemma 3 Any Px- lattice of order n is a Stone lattice of order n.
Theorem 3 If (A; e0, . . , e«-i) is a PQ-lattice then the following are
equivalent:
(i) A is an equationally compact lattice.
(ii) A is a direct product of finitely many complete Post algebras of order
at most n.
(iii) A is a (lattice) retract of a topologically compact P0-lattice.

Proof: It suffices to prove that (i) ==> (ii). Let A be an equationally compact
Po-lattice. Let a, be A, U = {ueA; a NU ̂  b} and consider the set Σ of
equations

bv(a*x) = b
{x A u = u\ ue ύ\.
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Clearly, Σ is finitely solvable and, therefore, by compactness, is solvable.
Any solution is the largest xeA satisfying a*x ^b. Consequently, A is a
Heyting algebra. A dual argument shows that the dual of A is also a Heyting
algebra. According to [8], a Po-lattice which is also a Heyting algebra
must be an L-algebra in which there exists a chain-base 0 = f 0 ^ . . . ̂
fw_! = 1 such that (A; f0, . . ., fw-i) is a Pi-lattice. Now, since the dual of A
is a P0-lattice and a Heyting algebra, it follows that the dual of A is an
L-algebra. Consequently, A is a P2-lattice; since it is a Stone lattice of
order at most n whose dual is a Stone algebraβ Therefore A is a direct
product of finitely many Post algebras of order at most n each of which is
complete; by virtue of the completeness of A.

Corollary 1 A P0-lattice (A; e0, . . ., eM-i) is topologically compact if and
only if it is a direct product of finitely many complete and completely
distributive Post algebras of order at most n.

3 Compactness in Lukasiewicz algebras The proofs of the following re-
sults can be found in [9] and [4] (Theorem 6.1) respectively.

Lemma 4 If A is a bounded, distributive lattice then the dual of A is a
Stone algebra if and only if \x exists and \(xvy) = \x v \y, for all x, ye A.

Lemma 5 If (A; v, Λ; ~, Si, . . ., s ^ ; 1) e Lukw and beC(A) then <(&]; v , Λ;
-, Si, . . ., sn-1; b) e Lukw, where -x = ~ # Λ 6 whenever xe (b], and h: A -* (b]
defined by h(x) - xi\b is a surjective (Lukasiewicz) homomorphism.

Theorem 4 If (A; v, Λ; ~, s1? s2; 1) e Luk3 then the following are equivalent:

(i) A is equationally compact.
(ii) A is complete and has a smallest dense element.
(iii) A is the direct product of a complete Boolean algebra and a complete
Post algebra of order 3.
(iv) A is a (Lukasiewicz) retract of a topologically compact algebra in
Uιk3.

Proof: (i) (ii). Let Ae Luk3 be equationally compact. Clearly, sλ(x) is
the largest central element in A which is ^x and so sλ(x) = Ix. It follows
from M3 and Lemma 4 that A is a dual Stone algebra; ~Si(#) being the dual
pseudocomplement x+ of x in A. Similarly, since s2(x) is the smallest
central element in A which is ^x and S/OVAJ;) = S/WAS/W holds in any
Lukasiewicz algebra, A is a Stone algebra; ~s2(x) being the pseudocomple-
ment x* of x in A. Now, the set Σ of equations

~S2(ΛΓ) = 0

{xΛf=x;feD(A)}

is finitely solvable and, therefore, by compactness, is solvable. Any
solution of Σ is the smallest dense element in A. A, being equationally
compact as a lattice, is complete,
(ii) =^>(iii). Let A be complete, d be the smallest dense element in A and
a = ά++. Then, by Lemma 5, (a] and («*] are Lukasiewicz algebras of
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order 3 and hλ: A —> (a], h2: A —> («*] defined by h^x) = a*x, h2(x) = a* AX
respectively, are surjective (Lukasiewicz) homomorphisms. Clearly, since
a and α* are complementary, the mapping h: A -• (α] x (α*] defined by &(%) =
(hι{x), h2{x)) is a (Lukasiewicz) isomorphism. Now, the pseudocomplement
of b e (a] i s b° = a*b* and so b v b° = (b va) A (b v b*) ^ a; s ince £ v δ *eD(A)

implies that bvb*^d^ d++ = a. But bvb° ^a and s o 6 v δ ° = α. Hence (a]

is a complete Boolean algebra. Next, the dual pseudocomplement of b e (α*]
is b°° = b+Λa* and, since A is a dual Stone algebra, b0000 = δ++Λ«*,
Defining ex = dΛβ*e(α*], we see that s^e j = W Λ ^ ) 0 0 0 0 = W A ^ ) + + A « * =
W++Λίf+)Λβ* = OΛfl* = 0. Similarly, s2(eλ) = (^fl*)**Aa* = (d**Λα*)Λα* =
1Λ α* = α*. Thus, («*] is a complete Post algebra of order 3.
(iii) =Φ (iv). Trivial,
(iv) =Mi). Well-known.

Corollary 2 /f (A; v, Λ; ~, s 1 ? s 2; 1) etuk3 #z£ft ^ ŝ topologically compact
if and only if it is the direct product of a complete and completely
distributive Boolean algebra and a complete and completely distributive
Post algebra of order 3.

Cignoli [4], calls a lattice filter in a Lukasiewicz algebra A a Stone
filter if it is closed under the unary operation s l β The isomorphism of the
lattice of (Lukasiewicz) congruences Φ on A with the lattice of Stone filters
F under the correspondence F = {x eA; (x, 1) e Φ}, Φ = {(x, y) eA2; x*f= y*f
for some feF} was established in [4], Theorem 3.10. However, the
coincidence of Stone filters and P-filters in A, coupled with the known
equivalence of XAf=y*f and (x -* y) Λ (3; -> x) ^ / in any Heyting algebra,
shows that the above correspondence coincides with its counterpart in P^
(see Theorem 2). Furthermore, the simple algebras in -Lukw are finite
(Corollary 5.6, [4]). Bearing these facts in mind, a simple modification of
the proof of Theorem 2 shows that the equivalence of (i) through (v) in the
statement of Theorem 2 holds for any Lukasiewicz algebra.
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