A THEOREM ON RECURSIVELY ENUMERABLE VECTOR SPACES

RICHARD GUHL

This paper* is based on [1] and [2], but since we study only r.e. spaces, we prefer an exposition which is almost self-contained. Let F be a countable field for which there is a one-to-one mapping ϕ from F onto a recursive subset of $\varepsilon=(0,1, \ldots)$ such that: $\phi\left(0_{F}\right)=0, \phi\left(1_{F}\right)=1,+_{F}$ and.$_{F}$ correspond to partial recursive functions, $\phi(F)=(0, \ldots, q-1)$, if $\operatorname{card}(F)=$ q and $\phi(F)=\varepsilon$, if $\operatorname{card}(F)=\aleph_{0}$. We write ψ_{F} for the vector space over F which consists of all sequences of field elements with at most finitely many nonzero components, together with component-wise addition and scalar multiplication. Put

$$
\begin{equation*}
\Phi\left\{x_{n}\right\}=\prod_{n \leqslant k} p_{n}^{\phi\left(x_{n}\right)-1, \text { for }\left\{x_{n}\right\} \in \mathscr{W}_{F}, ~} \tag{1}
\end{equation*}
$$

where $p_{0}=2, p_{n}=$ the n 'th odd prime, k any number such that $x_{n}=0_{F}$, for $n>k$. Then Φ maps \mathcal{U}_{F} onto a vector space $\bar{U}_{F}=\left[\varepsilon_{F},+, \cdot\right]$, where ε_{F} is an infinite recursive set and + and \cdot are partial recursive functions. Note that the ordinary number 0 is also the zero element of \bar{U}_{F}. Set $e_{n}=p_{n}-1$, $\eta=\left(e_{0}, e_{1}, \ldots\right)$, then η is an infinite recursive basis of \bar{U}_{F}, hence $\operatorname{dim}\left(\bar{U}_{F}\right)=\aleph_{0}$. The word "space" will be used in the sense of "subspace of \bar{U}_{F} ', A space $\bar{V}=[\alpha,+, \cdot]$ is called r.e., if the set α is r.e., recursive, if \bar{V} is r.e. and has at least one r.e. complementary space, decidable, if α is a recursive set, i.e., if both α and $\varepsilon_{F}-\alpha$ are r.e.

The purpose of this paper is to examine the relationship between (I) \bar{V} is a recursive space, and (II) \bar{V} is a decidable space. We shall prove:
(a) if F is finite, (I) \Leftrightarrow (II),
(b) if F is infinite, (I) \Rightarrow (II), but not conversely.

A linearly independent subset of ε_{F} is called a repère. According to [1], p. 2, there is an effective procedure which enables us to decide for any

[^0]finite subset σ of ε_{F} whether σ is a repère. It follows ([1], p. 3) that a space is r.e. if and only if it has a r.e. basis. If $\bar{\beta}$ is a r.e. basis of the r.e. space \bar{V} we can ($c f .[1], \mathrm{p} .5$), given any $x \in \bar{V}$, test whether $x \in \bar{\beta}$; moreover, if $x \neq 0$ and $x \notin \bar{\beta}$, we can effectively express x as a linear combination of elements in $\bar{\beta}$, i.e., find the nonzero elements $r_{0}, \ldots, r_{k} \in F$ and the distinct elements $b_{0}, \ldots, b_{k} \in \bar{\beta}$ such that
(2) $x=r_{0} b_{0}+\ldots+r_{k} b_{k}$.

For a subset S of \bar{U}_{F} we write $L(S)$ for the span of S. A repère β is perfect, if for $x \in \varepsilon_{F}$,
(3) $x \in \mathrm{~L}(\beta) \Leftrightarrow x \in \mathrm{~L}\left\{y \in \varepsilon_{F} \mid y \in \beta\right.$ and $\left.y \leqslant x\right\}$.

A basis of a space V is a perfect basis of V, if it is also a perfect repère. One can prove ([2], Prop. B) that every space V has exactly one perfect basis, say π_{V}, and that V is a decidable space if and only if π_{V} is a recursive set. If $f(n)$ is a function from ε into ε, we write ρf for the range of $f(n)$. Let V and W be spaces; then $W \leqslant V$ means that W is a subspace of V and $W<V$ that W is a proper subspace of V.

Proposition A Every recursive space is decidable.
Proof: Let \bar{V} be a recursive space with \bar{W} as a r.e. complementary space. Suppose that $\bar{\beta}, \bar{\partial}$ are r.e. bases of \bar{V}, \bar{W} respectively. An element $x \in \varepsilon_{F}$ belongs to \bar{V}, if either (i) $x=0$, or (ii) $x \neq 0$ and relative to the r.e. basis $\bar{\beta} \cup \bar{\partial}$ of \bar{U}_{F} all coordinates of x with respect to elements in $\bar{\partial}$ are zero. Thus \bar{V} is a decidable space.
Proposition B If the field F is finite, a r.e. space \bar{V} is recursive if and only if it is decidable.
Proof: Let \bar{V} be a decidable space. Since every finite dimensional space is r.e., every r.e. space of finite codimension is recursive. We may therefore assume that $\operatorname{codim}(\bar{V})=\aleph_{0}$. Put

$$
\begin{align*}
& c_{0}=(\mu x)\left[x \in \varepsilon_{F} \& x \neq 0 \& x \notin \bar{V}\right], \\
& c_{n+1}=(\mu x)\left[x \in \varepsilon_{F} \& x \notin L\left(c_{0}, \ldots, c_{n}\right) \& \bar{V} \cap \mathrm{~L}\left(c_{0}, \ldots, c_{n}, x\right)=(0)\right], \tag{4}
\end{align*}
$$

then $\bar{V} \oplus \mathrm{~L}(\rho c)=\bar{U}_{F}$. The number c_{0} can be computed from (the recursive characteristic function of) \bar{V}. Assume that c_{0}, \ldots, c_{n} have been computed and that $\bar{V} \cap\left\llcorner\left(c_{0}, \ldots, c_{n}\right)=(0)\right.$. Then we can for every $x \in \varepsilon_{F}$ test whether
(i) $x \notin \mathrm{~L}\left(c_{0}, \ldots, c_{n}\right)$, i.e., whether $x \notin\left(c_{0}, \ldots, c_{n}\right)$ and $\left(c_{0}, \ldots, c_{n}, x\right)$ is a repère,
(ii) in case (i) holds, whether $\bar{V} \cap \mathrm{~L}\left(c_{0}, \ldots, c_{n}, x\right)=(0)$.

Note that (i) can be tested whether F is finite or infinite. However, in (ii) we use the fact that F is finite. For if $\operatorname{card}(F)=q$, we can for every $x \notin \mathrm{~L}\left(c_{0}, \ldots, c_{n}\right)$ compute the q^{n+2} elements of $\mathrm{L}\left(c_{0}, \ldots, c_{n}, x\right)$ and determine whether any belongs to \bar{V}. Hence the function c_{n} defined by (4) is recursive and so is the space \bar{V}.
Proposition C If \bar{V} is a recursive space and $p \in \varepsilon_{F}$, then $\bar{V}+\mathrm{L}(p)$ is also a recursive space.

Proof: We only need to show that
(6) \bar{V} recursive \& $p \notin \bar{V} \Rightarrow \bar{V} \oplus L(p)$ recursive.

Assume the hypothesis. Let $\bar{\beta}$ be a r.e. basis of $\bar{V}, \bar{\partial}$ a r.e. basis of some r.e. complementary space of \bar{V} and $\bar{\delta}=\bar{\beta} \cup \bar{\partial}$. Let $p=r_{0} d_{0}+\ldots+r_{n} d_{n}$, where $r_{0}, \ldots, r_{n} \in F-(0)$ and d_{0}, \ldots, d_{n} are distinct elements of $\bar{\delta}$. Since $p \notin V$ at least one of d_{0}, \ldots, d_{n} belongs to $\bar{\partial}$; we may assume w.l.g. that $d_{0} \in \bar{\partial}$. Define $\partial^{*}=\left[\bar{\partial}-\left(d_{0}\right)\right] \cup(p)$, then $L\left(\partial^{*}\right)$ is also a r.e. complementary space of \bar{V}. It follows that $\bar{\beta} \cup(p)$ is a r.e. basis of $\bar{V} \oplus L(p)$, while $\bar{\partial}-\left(d_{0}\right)$ is a r.e. basis of the r.e. complementary space $L\left[\bar{\partial}-\left(d_{0}\right)\right]$ of \bar{V}. Thus $\bar{V} \oplus L(p)$ is a recursive space.

Corollary The sum of a recursive space and a finite dimensional space is again a recursive space.

We say that the element $x \in F$ can be computed, if we can compute $\phi(x)$. Similarly, a function $f(n)$ from ε into F is recursive, if the function $\phi f(n)$ from ε into ε is recursive. These definitions become superfluous if one identifies F with a subset of ε, but it remains important to distinguish the field operations of F, the vector space operations of \bar{U}_{F}, and ordinary addition and multiplication in ε. If $x>0$ we write x^{-}for $x-1$; thus $e_{n}=p_{n}^{-}$, for $n \in \varepsilon$. Finally, for $r \in F$ we abbreviate the number $2^{\phi(r)}$ by $h(r)$. The next proposition plays the key role in our paper.
Proposition D For every infinite field F and every one-to-one recursive function s_{n} ranging over a subset of (p_{1}, p_{2}, \ldots), there is a recursive function $m(n)$ from ε into F such that

$$
\begin{equation*}
\bar{D}=\mathrm{L}\left[m(0) \cdot e_{0}+s_{0}^{-}, m(1) \cdot e_{0}+s_{1}^{-}, \ldots\right] \tag{7}
\end{equation*}
$$

is a decidable space.
Proof: Let the one-to-one recursive function s_{n} be given. Define for every function $m(n)$ from ε into F,

$$
\begin{align*}
& \bar{D}_{n}=\mathrm{L}\left[m(0) \cdot e_{0}+s_{0}^{-}, \ldots, m(n) \cdot e_{0}+s_{n}^{-}\right], \tag{8}\\
& q_{0}=\min \left[\bar{D}_{0}-(0)\right], q_{n+1}=\min \left[\bar{D}_{n+1}-\bar{D}_{n}\right] .
\end{align*}
$$

If we can define a recursive function $m(n)$ such that the function q_{n} is strictly increasing and recursive, we are done. For then $\left(q_{0}, \ldots, q_{n}\right)$ is the perfect basis of \bar{D}_{n}, hence ρq the perfect basis of \bar{D}; moreover, ρq is a recursive set, hence \bar{D} a decidable space. First of all, for every recursive function $m(n)$, the function q_{n} defined by (8) and (9) is recursive. For if

$$
a_{n}=\left[m(0) \cdot e_{0}+s_{0}^{-}\right]+\ldots+\left[m(n) \cdot e_{0}+s_{n}^{-}\right]
$$

then a_{n} is a recursive function such that

$$
a_{0} \in \bar{D}_{0}-(0) \text { and } a_{n+1} \epsilon \bar{D}_{n+1}-\bar{D}_{n}
$$

Also,

$$
\begin{aligned}
q_{0} & =\left(\mu y \leqslant a_{0}\right)\left[y \in \bar{D}_{0}-(0)\right], \\
q_{n+1} & =\left(\mu y \leqslant a_{n+1}\right)\left[y \in \bar{D}_{n+1}-\bar{D}_{n}\right] .
\end{aligned}
$$

Since we know a finite basis for each of $\bar{D}_{0}, \bar{D}_{1}, \ldots$ and given any finite repère β, we can for every $x \in \varepsilon_{F}$ test whether $x \in L(\beta)$, it follows that q_{n} is a recursive function. All that remains is the definition of a recursive function $m(n)$ from ε into F such that the function $q(n)$ is strictly increasing. We put $m(0)=1_{F}$. Assume as inductive hypothesis that field elements $m(0), \ldots, m(n)$ have been defined such that $q_{0}<\ldots<q(n)$. As observed above, q_{0}, \ldots, q_{n} can be computed from $m(0)$, . . ., $m(n)$, hence q_{n} is known. We now examine how $m(n+1)$ and q_{n+1} should be related in order that

$$
\begin{equation*}
q_{n+1}=\min \left[\bar{D}_{n+1}-\bar{D}_{n}\right]>q_{n} \tag{10}
\end{equation*}
$$

An element $x \in \bar{D}_{n+1}-\bar{D}_{n}$ looks like

$$
\left[t_{0} m(0) \cdot e_{0}+t_{0} \cdot s_{0}^{-}\right]+\ldots+\left[t_{n+1} m(n+1) \cdot e_{0}+t_{n+1} \cdot s_{n+1}^{-}\right]
$$

where $t_{0}, \ldots, t_{n+1} \in F$ and $t_{n+1} \neq 0$. Thus, by (1),

$$
\begin{equation*}
x=\left[h\left(\sum_{i=0}^{n+1} t_{i} m(i)\right) \prod_{i=0}^{n+1} s_{i} \phi\left(t_{i}\right)\right]^{-} \tag{11}
\end{equation*}
$$

where the summation sign refers to addition in F and the product sign to ordinary multiplication in ε. Replacing $m(n+1)$ by v, we can rewrite (11) as

$$
\begin{equation*}
x=\left[h\left(\sum_{i=0}^{n} t_{i} m(i)+_{F} t_{n+1} v\right) \prod_{i=0}^{n+1} s_{i}^{\phi\left(t_{i}\right)}\right]^{-} \tag{12}
\end{equation*}
$$

The expression between the brackets in (12) will be abbreviated by Δ_{v}. Hence $x=\Delta_{v}^{-}$. Note that Δ_{v} is a function of $\left(t_{0}, \ldots, t_{n+1}\right)$, for every $v \in F$. We wish to choose $v=m(n+1)$ in such a way that for all $\left(t_{0}, \ldots, t_{n+1}\right)$,

$$
\begin{equation*}
\left(t_{0}, \ldots, t_{n+1}\right) \in F^{n+2} \& t_{n+1} \neq 0 \Longrightarrow \Delta_{v}>q(n)+1 \tag{13}
\end{equation*}
$$

For a specific ordered $(n+2)$-tuple satisfying the hypothesis of (13), each of the following two conditions will guarantee that the conclusions of (13) be true:

$$
\begin{align*}
& s_{i}{ }^{\phi\left(t_{i}\right)}>q(n)+1, \text { for some } i \leqslant n+1 \tag{14}\\
& h\left[\sum_{i=0}^{n} t_{i} m(i)+_{F} t_{n+1} v\right]>q(n)+1
\end{align*}
$$

We call an ordered $(n+2)$-tuple $\left(t_{0}, \ldots, t_{n+1}\right)$ with $t_{n+1} \neq 0, b a d$, if it does not satisfy (14); let B denote the set of all bad $(n+2)$-tuples. If B is empty, $\Delta_{v}>q(n)+1$, for every v, hence $x>q(n)$ for every choice of $m(n+1)$; then we define $m(n+1)=1_{F}$. From now on we assume that B is nonempty. B is finite, since for every $i \leqslant n+1$, there are only finitely many elements t_{i}; such that $s_{i}{ }^{\phi\left(t_{i}\right)} \leqslant q(n)+1$. Let $\operatorname{card}(B)=w+1$, then w can be computed and B can be effectively generated in a finite sequence $\beta_{0}, \ldots, \beta_{w}$. With every $u \leqslant w$ we wish to associate a field element $r(u)$ such that for all $v \in F$,

$$
\begin{equation*}
\phi(v)>\phi r(u) \Longrightarrow \Delta_{v}>q(n)+1 \tag{16}
\end{equation*}
$$

Such an element $r(u)$ exists, for if we put

$$
a=\sum_{i=0}^{n} t_{i} m(i), b=t_{n+1},
$$

then a and b are constants (depending on u) and Δ_{v} is of the form $h\left[a \oplus_{\mathrm{E}} b v\right]$, a one-to-one function of v. From a and b we can compute the set

$$
\delta_{u}=\left\{v \in F \mid h\left[a \oplus_{\oplus} b v\right] \leqslant q(n)+1\right\},
$$

i.e., find out whether it is empty and determine its elements and cardinality if it is nonempty. Put

$$
r(u)=\left\{\begin{array}{l}
0_{F}, \text { if } \delta_{u} \text { is empty } \tag{17}\\
y, \text { if } \delta_{u} \text { is nonempty and } \phi(y)=\max \phi\left(\delta_{u}\right)
\end{array}\right.
$$

It follows that (a and b being defined in terms of u, i.e., in terms of β_{u}), we have for all $v \in F$,

$$
\phi(v)>\phi r(u) \Longrightarrow v \notin \delta_{u} \Longrightarrow h\left[a+_{F} b v\right]>q(n)+1
$$

The set $(r(0), \ldots, r(w))$ of field elements can be computed from B, hence from $m(0), \ldots, m(n)$. Thus the element $c \in F$ such that

$$
\phi(c)=1+\max (\phi r(0), \ldots, \phi r(w))
$$

can be computed. Then we have for all $v \in F$,

$$
\phi(v) \geqslant \phi(c) \Rightarrow v \notin \bigcup_{u=0}^{w} \delta_{u} \Rightarrow h\left[a+_{F} b v\right]>q(n)+1
$$

and this holds for every $\beta_{u} \in B$. Thus $h\left[a+_{F} b c\right]>q(n)+1$ and (12) will be true if we take $v=c$. We therefore define $m(n+1)=c$. Then all elements of $\bar{D}_{n+1}-\bar{D}_{n}$ exceed $q(n)$ by (11); in particular, $q_{n+1}>q_{n}$. This completes the proof.
Proposition E For every infinite field F there is a decidable, but not recursive space.

Proof: Suppose s_{n} is a one-to-one recursive function ranging over a subset of (p_{1}, p_{2}, \ldots. . Let $m(n)$ be a recursive function from ε into F such that the r.e. space \bar{D} defined by (7) is decidable. Then $e_{0} \notin \bar{D}$ and
(18) $\bar{D} \oplus L\left(e_{0}\right)=L\left(e_{0}, s_{0}^{-}, s_{1}^{-}, \ldots\right)$.

In fact, ($e_{0}, s_{0}^{-}, s_{1}^{-}, \ldots$) is the perfect basis of $\bar{D} \oplus \mathrm{~L}\left(e_{0}\right)$. We now choose s_{n} in such a way that the r.e. set ρs is not recursive; then the perfect basis of $\bar{D} \oplus L\left(e_{0}\right)$ is not recursive, hence $\bar{D} \oplus L\left(e_{0}\right)$ is not decidable. If, however, \bar{D} were a recursive space, $\bar{D} \oplus L\left(e_{0}\right)$ would be recursive by (b) and decidable by Proposition A. We conclude that the space \bar{D} is not recursive.

Remark. This proof implies that for every infinite field F there is a r.e. space \bar{V} and an element $p \in \varepsilon_{F}$ such that
(19) \bar{V} decidable \& $p \in \bar{V} \& \bar{V} \oplus \mathrm{~L}(p)$ not decidable,
in striking contrast with (b).

RE FERENCES

[1] Dekker, J. C. E., "Countable vector spaces with recursive operations," The Journal of Symbolic Logic, vol. 34 (1969), pp. 363-387 and vol. 36 (1971), pp. 477-493.
[2] Dekker, J. C. E., "Two notes on vector spaces with recursive operations," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 329-334.

Rutgers, The State University
New Brunswick, New Jersey

[^0]: *This paper was written under Dr. J. C. E. Dekker.

