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A THEOREM ON RECURSIVELY ENUMERABLE
VECTOR SPACES

RICHARD GUHL

This paper* is based on [1] and [2], but since we study only roe. spaces,
we prefer an exposition which is almost self-contained. Let F be a
countable field for which there is a one-to-one mapping φ from F onto a
recursive subset of ε = (0, 1, . . .) such that: 0(OF) = 0, φ(lF) = 1, +F and . F

correspond to partial recursive functions, φ(F) = (0, . . ., q - 1), if card(F) =
q and φ(F) = ε, if cαrd(JP) = 80 We write toF for the vector space over F
which consists of all sequences of field elements with at most finitely many
nonzero components, together with component-wise addition and scalar
multiplication. Put

(1) Hxn} = Upnφ(Xn)- h tor{xn}etop,

where p0 = 2, pn = the n'th odd prime, k anyjiumber such that xn = 0F, for
n > k. Then Φ maps &>Fonto a vector space UF = [εF, +, •]> where εF is an
infinite recursive set and + and are partial recursive functions. Note that
the ordinary number 0 is also the zero element of UF. Set en = pn - 1,
η = teo? eu . . .), then η is an infinite recursive basis of UF, hence
dim(Z7F) = tf0. The word "space" will be used in the sense of "subspace of
UP". A space 7= [a, +, •] is called r.e., if the set a is r.e., recursive, if
V is r.e. and has at least one r.e. complementary space, decidable, if a is a
recursive set, i.e., if both a and εF - a are r.e.

The purpose of this paper is to examine the relationship between (I) V
is a recursive space, and (II) V is a decidable space. We shall prove:

(a) if F is finite, (I) <N> (Π),
(b) if F is infinite, (I) =̂> (II), but not conversely.

A linearly independent subset of εF is called a repere. According to
[l], p. 2, there is an effective procedure which enables us to decide for any

*This paper was written under Dr. J. C. E. Dekker.
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finite subset σ of εF whether σ is a repere. It follows ([1], p. 3) that a space
is r.e. if and only if it has a r.e. basis. If β is a r.e. basis of the r.e. space
V we can (cf. [1], p. 5), given any x e F, test whether x e β; moreover, if x Φ 0
and xfίβ9 we can effectively express x as a linear combination of elements
in β, i.e., find the nonzero elements r0, . . ., rke F and the distinct elements
&o> •> h e β s u c h t h a t

(2) x = robo + . . . +rkbk.

For a subset S of Up we write L(S) for the span of S. A repere β is perfect,
if for ΛΓe εF,

(3) xe L(β)<Φxe i{y e εF \y e β and y ^ x}.

A basis of a space V is a perfect basis of V, if it is also a perfect repere.
One can prove ([2], Prop. B) that every space F has exactly one perfect
basis, say τrVf and that V is a decidable space if and only if ΉV is a
recursive set. If f(n) is a function from ε into ε, we write pf for the range
oίf(n). Let Fand IF be spaces; then W^ V means that IF is a subspace of
F and W< V that PF is a proper subspace of F.

Proposition A Every recursive space is decidable.

Proof: Let F be a recursive space with W as a r.e. complementary space.
Suppose that β, θ are r.e. bases of F, W respectively. An element xeεP

belongs to F, if either (i) x - 0, or (ii) x Φ 0 and relative to the r.e. basis
β U 9 of Up all coordinates of ΛΓ with respect to elements in Ίj are zero.
Thus F is a decidable space.

Proposition B If the field F is finite, a r.e. space ~V is recursive if and
only if it is decidable.

Proof: Let Fbe a decidable space. Since every finite dimensional space is

r.e., every r.e. space of finite codimension is recursive. We may therefore

assume that coclim(F) = 80 P u t

(4) co= (μx)[xeεP &x*0 &x£v\9 __
Cn+i = (μ#)[*e εF & X£L(C09 . . ., cn) & F Π L(c0, . . ., c«, x) = (0)],

then F φ L(pc) = C/p. The number cQ can be computed from (the recursive
characteristic function of) F. Assume that c0, . . ., cn have been computed
and that V Π L(c0, . . ., cw) = (0). Then we can for every x e εF test whether

(i) Xjέ L(c0, . . ., cn), i.e., whether xjί(c0, . . ., cn) and (c0, . . ., cn, x) is a
repere,
(ii) in case (i) holds, whether V Π L(c0, . . ., cn,x) = (0).

Note that (i) can be tested whether F is finite or infinite. However, in (ii)
we use the fact that F is finite. For if cαrd(F) = q, we can for every
x fί L(c0, . . ., cn) compute the qn+2 elements of L(c0, . . ., cn, x) and deter-
mine whether any belongs to F. Hence the function cn defined by (4) is
recursive and so is the space F.

Proposition C If V is a recursive space andp e εF, then V + lip) is also a

recursive space.
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Proof: We only need to show that

(6) V recursive & p£V =^V Θ l(p) recursive.

Assume the hypothesis. Let β be a r.e. basis of ~V, ~d a r.e. basis of some
r.e. complementary space of V and 5 = β U d. Let p = rodo + . . . + rndn,
where r0, . . ., rne F - (0) and d0, . . ., dn are distinct elements of δ. Since
pfέV at least one of d0, . . ., dn belongs to ~d; we may assume w.l.g. that
doe d. Define d* = [θ - (d0)] u (£), then L(θ*) is also a r.e. complementary
space of 7. It follows that β u (p) is a roe. basis of 7_Θ l_(£), while^ - (d0)
is a r.e. basis of the r.e. complementary space l_[θ - (d0)] of V. Thus
F φ L ( ί ) i s a recursive space.

Corollary The sum of a recursive space and a finite dimensional space is
again a recursive space.

We say that the element xe F can be computed, if we can compute φ(x).
Similarly, a function/(w) from ε into F is re cursive, if the function φf(n)
from ε into ε is recursive. These definitions become superfluous if one
identifies F with a subset of ε, but it remains important to distinguish the
field operations of F, the vector space operations of Up, and ordinary
addition and multiplication in ε. If x > 0 we write x" for x - 1; thus en = pή,
for neε. Finally, for reF we abbreviate the number 2^(r) by h(r). The
next proposition plays the key role in our paper.

Proposition D For every infinite field F and every one-to-one recursive
function sn ranging over a subset of (pi, p2, •)? there is a recursive
function m(n) from ε into F such that

(7) 5 = L[m(0) e0 + SQ, m(l) -e0 + 5 7 , . . . ]

zs α decidable space.

Proof: Let the one-to-one recursive function sn be given. Define for every
function m{n) from ε into F,

(8) Dn = L[m(0) e0 +
 s o , . . ., *w(w) e0 +_s«L

(9) #o = min[D0 " (0)], qn+1 = min[Z)w+ι - Dn\.

If we can define a recursive function ra(rc) such that the function qn is
strictly increasing and recursive, we are done. For then {qQ, . . ., qn) is
the perfect basis of Dn, hence pq the perfect basis of D; moreover, pq is a
recursive set, hence D a decidable space. First of all, for every recursive
function m(n), the function qn defined by (8) and (9) is recursive. For if

an = [m(Ό) e0 + SQ] + . . . + [m(ή) e0 + s~],

then an is a recursive function such that

aoeΊ)o- (0) and an+1eΊ)n+1 - ~Dn.

Also,

qo = (μ-y ^<*o)[yeDoj- (0)]±

qn+ι = (μy ^ an+i)[ye Dn+1 - z>n].
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Since we know a finite basis for each of Do, Dl9 . . . and given any finite
repere β, we can for every x etp test whether x e l(β), it follows that qn is a
recursive function. All that remains is the definition of a recursive
function m(n) from ε into F such that the function q(n) is strictly in-
creasing. We put ra(0) = lp. Assume as inductive hypothesis that field
elements m(0), . . ., m(n) have been defined such that q0 < . . . < q(n). As
observed above, q0, . . ., qn can be computed from m(0), . . ., m(ή), hence qn

is known. We now examine how m(n + 1) and qn+ι should be related in order
that

(10) qn+1 = min[5n+1 - Dn] > qn.

An element xe Dn+ι - Dn looks like

[tom(0) e0 + t0 SQ] + . • . + [tn+ιm(n + 1) e0 + tn+1 s"+ 1],

where f0, . . • > ίι+i€ F and tn+1 Φ 0. Thus, by (1),

(ii) * = \h("Σ tMή Π s ^ 'j ,

where the summation sign refers to addition in F and the product sign to
ordinary multiplication in ε. Replacing m(n + 1) by v, we can rewrite (11)
as

(12) x = \h(po tim(i) +F ίmt>jΠ s^\ .

The expression between the brackets in (12) will be abbreviated by Δv.
Hence x= Δ~v. Note that Δ^ is a function of (t0, . . .,tn+1), for every veF.
We wish to choose υ = m(n + 1) in such a way that for all {t0, . . ., tn+1),

(13) (to, . . ., tn+1) e Fn+2 & tn+1 ΦO=^ΔV> q(n) + 1.

For a specific ordered (n + 2)-tuple satisfying the hypothesis of (13), each
of the following two conditions will guarantee that the conclusions of (13) be
true:

(14) S i & H ) > q(n) + 1 , f o r s o m e i^n + 1,

(15) h g tim(i) +F tn+1v\ > q(n) + 1.

We call an ordered (n + 2)-tuple (t0, . . ., tn+1) with tn+1 Φ 0, bad, if it does
not satisfy (14); let B denote the set of all bad (n + 2)-tuples. If B is empty,
Av > q(n) + 1, for every υ, hence x > q(n) for every choice of m(n + 1); then
we define m(n + 1) = 1F. From now on we assume that B is nonempty. B is
finite, since for every i^ n + 1, there are only finitely many elements t{\
such that Si^W^ q(n) + 1. Let cαrd(£) = w + 1, then w can be computed and
B can be effectively generated in a finite sequence /30, . . ., βw. With every
u^ w we wish to associate a field element r(^) such that for all υ eF,

(16) φ(v) > φr(u) =Φ Δv> q(n) + 1.
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Such an element r(u) exists, for if we put

n

a = Σ/ titn(i)9 b = tn+1 ,
i=0

then a and b are constants (depending on u) and Δ^is of the form h[a @£w],
a one-to-one function of v. From α and b we can compute the set

δu = {veF\h[a @ bv] ^ q(n) + 1},

i.e., find out whether it is empty and determine its elements and cardinality
if it is nonempty. Put

!

0F, if δu is empty,

y, if δu is nonempty and φ(y) = max φ(δu).

It follows that (a and δ being defined in terms of u> i.e., in terms of βu), we
have for all υeF,

φ(v) > φr(u)==>v jέδu =ΦΉ[a +F bv] > q(n) + 1.

The set (r(0), . . ., r(w)) of field elements can be computed from B, hence
from ra(0), . . ., m(n). Thus the element ceF such that

φ(c) = 1 + mαχ(0r(O), . . ., φr(w))

can be computed. Then we have for all υeF,
w

φ{v) > φ(c) =ΪV£ U δu =Φh[a +p bυ] > q(n) + 1,

and this holds for every βueB. Thus h[a +p be] > q(n) + 1 and (12) will be
true if we take v = c. We therefore define m(n + 1) = c. Then all elements
of Dn+ι - Dn exceed q(n) by (11); in particular, qn+1 > qn. This completes the
proof.

Proposition E For every infinite field F there is a decidable, but not
recursive space.

Proof: Suppose sn is a one-to-one recursive function ranging over a subset
of (Pi, p2, . .). Let m(n) be a recursive function from ε into F such that
the r.e. space D defined by (7) is decidable. Then eofίD and

(18) 3 Θ l(e0) = l(e0, so, s', . . .).

In fact, (e0, SQ, SΪ, . . .) is the perfect basis of D ® L(e0). We now choose
sn in such a way that the r.e. set ps is not recursive; then the perfect basis
of D Θ L(e0) is not recursive, hence D Θ L(e0) is not decidable. If, however,
D were a recursive space, D ® L(£o) would be recursive by (b) and
decidable by Proposition A. We conclude that the space D is not recursive.

Remark. This proof implies that for every infinite field F there is a r.e.
space V and an element p e εF such that

(19) F decidable & p e V & V θ L (p) not decidable,

in striking contrast with (b).
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