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CREATIVE DEFINITIONS IN PROPOSITIONAL CALCULI

V. FREDERICK RICKEY

Lesniewski felt that definitions were most naturally stated as equiva-
lences in the object language and as such a rule of procedure governing
their introduction is necessary. This view will be accepted here in our
investigation of the role played by definitions in propositional calculi. In
this paper* we construct propositional calculi wherein some of the defini-
tions play a creative role; i.e., they do not function as mere abbreviations
and are not, even theoretically, superfluous.

A definition will be said to be creative for a thesis T in a given
presentation of a deductive theory iff T does not contain the defined term
(nor any defined via it) and is provable using the definition, but not
without it.

The usual approach to definitions is to attempt to prescribe conditions
which prevent the creativity of definitions. In trying to understand the role
that definitions play in deductive theories we approach the subject from the
opposite direction and attempt to construct systems which contain creative
definitions. In 3 we give axiomatizations of propositional calculi which
contain a single creative definition, a finite number of creative definitions,
and also examples which contain an unlimited number of creative defini-
tions .

In 1 the history of the problem is presented as best it is known,
including a review of the literature. The rules of procedure for proposi-
tional calculi and especially the rule of definition are presented informally
in 2 and precisely in the appendix. Several metalogical remarks are
presented in 4 including our proof of a hitherto unpublished theorem of A.
Lindenbaum which shows that if Cpp is a thesis of a propositional calculus,
then that calculus contains no creative definitions.

1 History. Lesniewski recognized that definitions can be creative and, as
far as is known, was the first to do so. He also defined this concept and
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introduced the term. Les*niewski discussed creative definitions in his
lectures, but he never published his views on this matter. Indeed, there is
no mention of creative definitions in his published works, even in his paper
[1] which concerns definitions in the propositional calculus. Creative
definitions are used frequently in Lesniewski's systems of Protothetic,
Ontology, and Mereology.

The first mention of creative definitions in the literature seems to be
in a summary of a lecture of Lukasiewicz given February 18, 1928 [3].
Mention is made of several definitions which are creative in certain
systems, but no details are given in the summary. At this lecture
Lesniewski affirmed his belief in creative definitions and stated that
creative definitions should be used as often as possible. Lukasiewicz also
mentioned creative definitions in his lecture of March 24, 1928 [4] and
referred to them as "hidden axioms."

Lukasiewicz defined what is meant by a creative definition in his 1929
monograph [5] (p. 32 of the English edition). That this is not his concept
can be inferred from the preface since it is not listed among the new
results he claims.

The first published example of a creative definition is in the paper of
Lukasiewicz [6] which was to appear in 1939 in the new journal Collecteana
Logica. Due to the war this journal never appeared and so the article could
be known only thru a review of Heinrich Scholtz [16] until its recent
publication in Polish [8] and English [9], [10].

There are scattered references in the literature to creative definitions
in the Lesniewskian systems. See for example Slupecki [17], [18]. A
detailed study of definitions in these systems is yet to be made. Myhill
[13] gives a system of number theory containing infinitely many creative
definitions. Popper [14] gives examples of creative definitions in a system
of probability, but does so by ignoring a widely accepted rule of definition.
Except for occasional remarks this seems to be a complete review of the
literature.

2 The Rules of Procedure for Propositional Calculi. We shall be con-
sidering two kinds of propositional calculi; those with rules of substitution
and detachment and those which have, besides these two, a rule of
definition. To specify a propositional calculus is to state its primitive
terms, axioms, and rules. Implication (C) or implication and negation (N)
will be taken as primitive in the systems we consider although our results
hold for other primitives. Axioms must be stated in primitive notation (see
4 for the reason) and are chosen from the (2-valued) tautologies.

If the only rules are substitution and detachment, it is easy to define
the set of well formed formulas (wffs) in advance and so the statement of
the rule of substitution for propositional variables presents no difficulties.
In this case we can think of a propositional calculus as a set of tautologies
closed under substitution and detachment. When we speak of, say, The
Implicational Calculus we speak in this sense. This plays down the role of
the axioms, which is sometimes convenient, but it can also lead to
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misunderstandings, for many times in the sequel the particular axiomatiza-
tion is important.

The situation becomes more complicated when we have definitions in
the system. It is no longer possible to specify the wffs in advance
(technically we could, but only in an ad hoc and unesthetic way) for there is
no way of knowing what definitions might be introduced. Consequently,
when we have definitions, the calculus must be viewed, not as a set of
theses, but as an axiomatic system which develops step by step. So there
is a definite order to the theses.

The rules of substitution and detachment are well known and will not be
stated here. The rules for propositional calculi with definitions have been
stated precisely by Lesniewski [1] and a simplified version of them is
presented in the appendix to this paper. We shall now paraphrase the rule
of definition for a propositional calculus which includes equivalence (E) as
primitive. The rule of definition allows, but does not force us, to add
equivalential theses, called definitions, to the system which are of the form

(1) Eφ{pl9 . . ., pr)Όp1 . . . pn

provided that the following conditions are met:

a) The functor D being defined is a new symbol, i.e., it is not equiform to
any symbol occurring previously in the system, be it primitive or defined
term or variable. (As we are using Lukasiewicz's notation there is no
concern about parentheses.)
b) The definiens φ(pl9 . . ., pn) is a wff containing, besides variables, only
primitive and previously defined terms. (We could define by primitive
terms alone but this is inconvenient.)
c) Pi, P2, -,Pn are non-equiform (distinct) variables, where by variable
we mean any symbol except the primitive and defined terms (functors).
d) Every variable occurring in the definiens φ(pu . . ., pn) occurs in the
definiendum Dpλ . . . pn (freely of course).
e) Every variable in the definiendum occurs also in the definiens.

The most crucial thing to keep in mind here is that the addition of a
definition expands the system in two ways; 1) a new symbol is introduced
into the vocabulary of the system and hence the stock of well formed
formulas is greatly increased, and 2) a new thesis is added to the system
and it is eligible to be used in further deductions just like any other thesis
of the system.

It is important also to note that the rule of the system adjusts to the
last thesis of the system. That is, after a definition has been added to the
system, the defined term is eligible for use in further definitions and also
well formed formulas involving this term can be substituted for variables
in any thesis of the system. Hence when there are definitions in the system
the rule of substitution must be formulated in such a way that it permits the
use of defined terms in substitutions. Accordingly the statement of the rule
of substitution must be altered when the system contains definitions. (See
the appendix for details.) This interdependence of statement does not imply
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that one of the rules could be relegated to the status of a derived rule; they
remain independent in the usual sense that rules are independent.

Because of this dependence, we shall speak of the rule of procedure of
the system. This rule consists of three parts which we shall loosely call
the rules of detachment, substitution and definition. The rule must adjust
to the last thesis of the system since it is not possible to foresee all of the
definitions that one might wish to add to the system. Thus the addition of
theses to the system according to the rule not only increases the stock of
theses but also strengthens the rule. The invention of such self-adjusting
rules is due to Lesniewski.

If there is a rule of definition in a system but the rule of substitution is
not altered, then it is restricted so that one can only substitute wffs which
involve only primitive terms. If this is done then every theorem of the
system is of one of the following forms: 1) it is a consequence of the
axioms by detachment and restricted substitution, 2) it is a restricted
substitution instance of a definition, 3) it is a restricted substitution
instance of a definiendum, but only when the same restricted substitution
instance of the definiens is of type 1). It should be observed that when
restricted substitution is used no thesis contains more than one defined
term and at most one occurrence of it. Thus restricted substitution is
completely unacceptable.

When equivalence is not a primitive term of the system it is impos-
sible to state definitions in the form (1). All of the systems we shall
consider will have implication as primitive and hence we shall state
definitions as pairs of equivalences

(2) Cφ(pl9 . . ., pάDpi . . Pn

CΏp^ . . .pnψiPu . , A )

where the definiens φ(ply . . ., pn) and definiendum Dpλ . . . pn satisfy the
same conditions as definitions of type (1). This definitional frame was
suggested by Tarski, see [3], and within the full propositional calculus (1)
and (2) are equivalent.

Lesniewski would object to this definitional frame as he felt that a
definition should be a single statement. When implication is primitive and
one wants definitions to be single theses then either the definitional frame
of Lesniewski [1] or Lejewski [2] may be used. In this paper we shall only
use definitions of type (2). The choice of definitional frame does however
affect some of our results (cf. the end of 4).

3 Construction of Propositional Calculi Containing Creative Definitions.
As a prototype example consider the C-N propositional calculus whose sole
axiom is

(1) CCCNuυwCCCCCpqCNrNsrtCCtpCsp

If detachment and substitution are the only rules of procedure, then the only
consequences of (1) are those obtainable by substitution, i.e., the rule of
detachment is dead. For if any detachment is to be made then we need
substitution instances of (1) of the form α and Caβ:
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(2) a = CCCNu'υ'w'M'
(3) Caβ = CCCNu"vrtw"Mn

where the equality sign means that the inscriptions it connects are
equiform and M is the conclusion of (1), i.e., CCCCCpqCNrNsrtCCtpCsp.
The primes are used to denote substitution instances; for example, M' and
M" are substitution instances of M. (2) and the antecedent of (3) both
represent a and so must be equiform, i.e.,

CCCNu'υ'w'M' = CCNu"υ"w"

Comparing the antecedents we get

CCNu'v'w' = CNu"υ"

and then

CNu'v' = Nu"

This is impossible since no inscription can begin with both C and N. Thus
there are no substitution instances of the axiom (1) such that one can be
detached from the other, i.e., the rule of detachment cannot be used at all.
This shows that the only consequences of (1) are those obtainable by
substitution. In particular, we cannot derive the full C-N calculus from (1)
using only the rules of substitution and detachment.

If we consider now the propositional calculus with axiom (1) and rules
of substitution, detachment and definition then we can use the rule of
definition to introduce the definition of alternation into the system:

(4) CCNuvAuυ
(5) CAuυCNuv

Since Auυ is now a meaningful expression in our system we may substitute
it for w in (1) to obtain

(6) CCCNuvAuvCCCCCpqCNrNsrtCCtpCsp

From this we may detach the first half of the definition (4) to obtain

(7) CCCCCpqCNrNsrtCCtpCsp

which is Meredith's [11] axiom for the full C-N calculus, i.e., from (7) we
can deduce all C-N tautologies by substitution and detachment.

Since the full C-N calculus can be deduced from (1) by using the rules
of substitution, detachment and definition but not by use of substitution and
detachment alone, we conclude that the definition of alternation (4)-(5) is
creative in the propositional calculus whose sole axiom is (1).

Observe that (4)-(5) is not the only definition which could be used to
obtain (7). Any definition with definiens of the form CNγδ would suffice.
However, it follows from later results that only one such definition can be
creative in this system.

Observe also that no thesis which begins CC . . . CN is self-
detachable.
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This example shows that the full propositional calculus is axiomatiz-
able with creative definitions, i.e., there is an axiom system in which the
use of creative definitions allows us to deduce the full propositional
calculus. The set of axioms U is an axiomatization with creative definitions
of the propositional calculus .£ (and here we think of ^ as a set of
theorems) iff 1) by using the rules of substitution, detachment and definition
we can derive precisely the theses of ^_ from the axioms 21, but 2) this
cannot be done by using only the rules of substitution and detachment. In
particular, 1) implies that each axiom of $1 is a thesis of -£.

This example makes it clear that we can prove

Theorem 1. Any propositional calculus -£_ with C and N among its primi-
tives and containing the thesis CpCqp is axiomatizable with creative
definitions.

Proof: Let Al9 A2, . . .be axioms for .£. Since simplification is a thesis,
each of

(Si) CCCNpqrAi i = 1, 2, . . .

is provable in -£. With these as new axioms then the definition (4)-(5) of
alternation is creative.

Since each axiom begins CCCN no substitution instance of axiom (8̂ )
can be detached from a substitution instance of axiom (Sj). Thus we cannot
derive the axioms At of £ from these new axioms.

If a rule of definition is available then we can introduce the definition
(4)-(5) of alternation and then substitute Apq for r in (Si) to obtain

(9i) CCCNpqApqAi % = 1, 2, . . .

Here we tacitly assumed that r does not occur in any Λf . Then detach (4)
from (9i) to obtain A{. Thus the definition of alternation is creative and the
axiom system (Si) provides a creative axiomatization of .£. This completes
the proof.

The annoying hypothesis that simplification be a thesis of -^ guarantees
that the new axioms (Si) be theses of .£. It can be weakened, say, to the
thesis CsCCNpqrs or even to the corresponding rule, but little generality is
gained by doing this.

It might be suspected that the first N in axioms (1) and (Si) is crucial
to showing that the axioms are non-detachable without the use of a creative
definition. That this is not so is shown by the following creative axiom-
atization of the full implicational calculus:

(10) CCuCttCCCpqrCCrpCsp

To show this implicational thesis is non-detachable assume we have as
substitution instances of (10)

(11) a = CCu'Ct't'CCCp'q'r'CCr'p'Cs'p'
(12) Caβ = CCu"Ct"t"CCCpttqrtr"CCrttp"Cs"p"
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To detach the antecedent of (12) must be equiform to (11):

Cu"Ct"tfr = CCu'Ct't'CCCp'q'r'CCr'p'Cs'p'

Comparing consequences we get

t" = CCp'q'r'
t" = CCrtprCsfpt

and thus

Cp'q' = Cr'pr

rr = Cs'pr

Finally we have both pr = rr and rr = Cs'p' which is impossible. Thus the
only substitution-detachment consequences of (10) are obtainable by sub-
stitution only.

If we have a rule of definition then we can add the definition of verum

(13) CCttVvt
(14) CVrtCtt.

By substituting Vrt for u in (10) we can detach (14) to obtain

(15) CCpqrCCrpCsp

which is Lukasiewicz's axiom [7] for the implicational calculus.
For the implicational calculus the creativity is associated with the

second half (14) of the definition. If we try to make (13) the creative part it
is natural to take

CCCttuCCCpqrCCrpCsp

as an axiom. But this is self-detachable and immediately yields (15).
Analogously the positive implicational fragment is creatively axiom-

atizable by

CCuCvvCCCpqrCsCCqCrtCqt

where verum (13)-(14) is again the creative definition. There is nothing
special about the antecedent CuCυv which precedes Meredith's axiom [12]
for the positive implicational calculus. Any antecedent of the form Cua or
Can which would make the sentence non-detachable (and where a does not
contain u) would make the definition

CaDp1 .../>„

CDpx . . .pna

creative (where pl9 . . ., pn are all of the variables in a). The reader should
by now suspect

Theorem 2. Any propositional calculus with C among its primitives and
containing the thesis CpCqp is axiomatizable with creative definitions.

Proof: Let AUA2, . . ., none of which contain por q, be an axiomatization
of the calculus. As new axioms take the theses
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(16n) CCCCpppqAn w= 1, 2, . . .

To show no detachment can be made suppose we have

a = CCCCp'p'p'q'A'n
Caβ = CCCCp"prp"q"Arή

We must then have

CCCCp'p'p'q'A'n = CCCp"p"p"q"

and then

CCCp'p'p'q' - CCp"p"p"

so

CCp'p'p' = Cp"p"

finally

Cp'p' = p"
p ' = p "

which is impossible.
Adding the definition of assertium

(17) CCCpppAsp
(18) CAspCCppp

we can detach (17) from (16w) to obtain An. Thus this definition is creative.

Again there is nothing unique about the antecedent CCCpppq of (16ra).
If B is any implicational wff not containing q such that CB'q' Φ B" for all
substitution instances B', B" of B then the axioms CCCBqAn will do as well
as those of the theorem.

All calculi constructed so far have contained only a single creative
definition. The following theorem shows how to construct calculi with an
arbitrary but finite number of creative definitions.

Theorem 3. Consider the proposίtional calculus whose sole axiom is

(19) CCNnCppqnCCNn~1Cppqn.1 . . . CCNCppqxA

where A is any tautology and Nk represents a sequence of k N's. Then the
n definitions

(2O.fe) CNkCppBkp
(21Jfe) CBkpNkCpp * - i , * , . . . , w

are all creative.

Proof: The axiom is not self-detachable. If we add the definition of Bn,
i.e., (20.n) and (21.n) to the system then Bnp can be substituted for #win the
axiom and (20.w) can be detached to obtain

(22) CCN^Cppqn-! . . . CCNCppq±A,

thereby showing that the definition of Bn is creative.
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The system now contains four theses: The axiom (19), the theorem (22)
and the definition of Bn: (20.n)-{21.fi). We cannot detach from the definition
since no thesis begins with N or Bn. Neither can we detach from (22) since
no thesis begins CN^C. (If this last C were not there then (20.n) could be
detached again.) Thus no detachment can be made. If we now add the
definition of Bn^1 it will be creative. Induction completes the proof.

Realize that in this theorem the definitions are creative in a certain
order. Since we view propositional calculi as systems which develop there
is always an order imposed on the theses. Here there is more than that.
Regardless of the order in which the definitions (2O.&)-(21.&), k = 1, 2, . . .,
n, are added to the systems the definitions are creative in the order
k = n, . . ., 2, 1.

The next theorem removes this order and also shows that there are
propositional calculi which contain an unlimited number of creative
definitions. One is tempted to say "infinitely many" but this is an abuse of
language.

Theorem 4. Let Au A2, . . . be any sequence of distinct tautologies
beginning with C and not containing q. Then in the propositional calculus
whose axioms are

(23n) CCN2n+1CppqN2nAn , n = 1, 2, . . .

the definitions

(24n) CN2n+1CppDnp _

(25/z) CDnpN2n+1Cpp " ' ' * * *

are all creative.

Proof: If we add the definitions (24n;)~(25^ ), i = 1, 2, . . . , I of Dni, Ώn^ ...,
ΌH to the system we can detach (24n* ) from (23rc* ) to obtain

(26»f ) N2niAni i = 1, 2, . . ., I

To see that no other detachments can be made one need only examine all
the possible cases:

a) To detach from an axiom we need a thesis beginning CN2m+1C and the
only such theses are the I definitions already introduced into the system.
The corresponding detachments have already been made so no more
detachments can be made from the axioms.
b) Nothing can be detached from any of the definitions already in the
system. To detach from the first part of a definition we need a thesis
beginning with an odd number of iV's. The only theses beginning with JVare
the (26WJ) and they all begin with an even number of N's. We cannot detach
from the second part of a definition as no thesis begins with a defined term.

c) Nothing can be detached from the theses (26n/) as they do not begin
with C.

Now if we add the definition of Dm, m Φ nl9 n2, . . ., nι, then we can
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deduce the new thesis N2mAm and so this definition is creative. Thus each
of the definitions is creative. Observe that the order in which these
definitions are added to the system is immaterial; they are creative in any
order.

In a similar way we can prove:

Theorem 5. Let Al9A2, . . .be an infinite independent axiomatization of a
propositional calculus containing the thesis CpCqp and such that each Ai
begins with C and does not contain q. Then this system can be creatively
axiomatized using the axioms

CCNkCppqAk k = 1, 2, . . .

where each of the definitions

CNkCppFkp _

CFkpNkCpp

is creative.

All examples presented so far have been such that the rule of detach-
ment is rendered useless by the structure of the axioms. Even when this is
not the case the system can still contain creative definitions. As an
example, take the system with single axiom

CCuvCCvutλ

An unlimited number of detachments can be made but still the definition

CuAsu
CAsuu

of assertium is creative.
We have constructed propositional calculi that contain 1, n and an

unlimited number of creative definitions, but to obtain an unbounded number
of creative definitions we have always used an infinite axiom system. This
leaves the interesting

Open Question: Is there a finitely axiomatized propositional calculus
containing an unlimited number of (''infinitely many") creative definitions?

4 Metalogical Considerations. The following theorem gives a condition
sufficient to guarantee that a propositional calculus contains no creative
definitions. It was recollected by Sobociήski and he attributes it to
A. Lindenbaum. We know of no reference to it in the literature. The proof
is mine.

Theorem 6. (A. Lindenbaum). Let -C be a propositional calculus with C
among its primitives and having as rules substitution, detachment and
definition {stated as pairs of implications). Also let Cpp be provable using
only substitution and detachment. Then no definition is creative in this
system.
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Proof: Let T be a theorem of ^ which does not contain the term D defined

by

(1) Cφ{pl9 PtbDpi -Pn
( 2 ) CDPX . . . pnψ(pl, -,Pn)

Let Al9 A2, . . ., Am be a proof of T. This means that Am is T and that each

step A; of the proof has one of the following justifications:

a) Ai is an axiom of -£.

b) Ai results from Ak = CAjAi by detaching Aj, where k, j < i.

c) Ai results from substitution in Ay, where j < z.

d) Ai is one half of a definition.

To say that the definition of D is not creative for T means that there is a

proof of T no line of which contains the defined term D. This means that

not only is reason d) never used, but also substitutions are restricted to

those which do not involve D or terms defined using D. To obtain such a

proof replace the defined terms in the proof Al9 A29 . . ., Am by their

definiens and preface the whole by (a proof of) Cpp to obtain

AI (= Cpp or a proof of it), A'u Ai, . . ., A'm

To be precise we define Ar inductively as follows:

(i) if A is a variable then Ar = A

(ii) if A = Caβ then Ar = Ca'β'

(iii) if A = Na then Ar = Nar

(iv) if A = Dαii . . . an then Ar = φ(a'l9 . . ., cθ

(If .£ contains other primitives besides C and JV, or does not contain N9 or

the proof uses several definitions, the changes needed in this proof are

easy.) Observe that Ar is uniquely determined for every A.

We now show that A'o, A[9 Aί, . . ., Ar

m is a proof of T which does not

involve the defined term D

a) If A is an axiom of 4_ then Ai is expressed in primitive notation and so

Aί = Ai.

b) If Ai results from A^ - CAjAi by detaching Aj where k, j < i then A\

results from A'k = CA)A\ by detaching A\.

c) Let Ai result from Aj(j < i) by substitution. More precisely let

Ai = Aj(p1/a1, . . ., pt/ai)

where pl9p2, - - ., Pi are the variables of Aj.

By a straightforward induction one can prove

A\ = A)(pJa[, . . .,Pι/aί)

i.e., A'i results from Aj by substitution.

d) If Ai is one half of the definition of D then Ai is

(3) Cφ(pu . . . ,Pn)φ(Pu . . .,/>«)
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and this results from Cpp (i.e., Aό) by substituting φ(pu . . .,pn), which
does not contain D, for p. Thus line A\ of the proof is justified.

Hence Aό, Aτ

ί9...,Am is a proof of T which uses only the rules of
substitution and detachment. Hence the definition of D is not creative in the
proof of thesis T.

Examination of the proof indicates that the hypothesis that Cpp is
provable is too strong. We can easily prove

Corollary 7. Let Jibe a propositίonal calculus with C among its primi-
tives. Then the definition (l)-(2) is not creative in this propositional
calculus if we can prove (3) by using only the rules of substitution and
detachment.

There are calculi which contain no substitution instance of Cpp and
which still have no creative definitions, for example, the propositional
calculus with sole axiom NNA, A a tautology.

Theorem 8. Let JL be a propositional calculus. Then JL is consistent if the
rules are substitution and detachment. Moreover, if we add a rule of
definition then the system is still consistent.

Proof: The usual truth tables give a consistency proof for JL when the
rules are substitution and detachment since, by convention, all axioms of -£
are classical tautologies. Since the rule of definition allows us to add
definitions only one at a time it suffices to show that the addition of a single
definition preserves the consistency of JL. Let the definition be

Cφ(pl9 . . ., pn)Dp1 . . .pn

CDp, . . .pnφ(Pu . .,pn)

then construct a truth table for D by setting Dp1 .../>» = true iff φ(pl9 . . .,
pn) = true. Clearly both halves of the definition of D are verified under this
interpretation. The validity of the other rules is not effected by this
interpretation of D.

Our notion of a propositional calculus makes this theorem trivial.
When we allow arbitrary wffs as axioms this theorem can be improved to

Theorem 9. Consider the system with C among its primitives, any set of
wffs as axioms, and rules of substitution and detachment. If this system is
consistent with Cpp then the system obtained by adding a rule of definition
is also consistent.

The assumption that the system be consistent with Cpp is necessary
for consider the system whose axioms are NCpp and CCpqCCqrCpr. This
system is consistent but a rule of definition allows us to derive Cpp by
using the definition of assertium. Thus the addition of definitions makes the
system negation inconsistent, although it is still absolutely consistent.

It is sometimes felt that the Lesniewskian style definitions serve as
additional axioms. Whether or not this view is adopted, it is meaningful to
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consider the independence of the definitions from the axioms of the theory.
To do this, however, we consider the system not as containing a rule of
definition, but rather as a propositional calculus with an additional
primitive term and two new axioms. With this view we state

Theorem 10. Let -£. be a propositional calculus with any set of C-N
tautologies as axioms. Moreover let D be another primitive term of ^ and
let

(4) Cφ(ply . . .,p«)Dpi . . .pn

(5) CDp1 . . . pnψ(Pu ...,/>„)

be additional axioms which satisfy the conditions imposed on definitions.
Let substitution and detachment to be the only rules and suppose that under
the usual interpretation of the system φ(Xu . . ., Xn) = 1 and φ(X[9 •>
Xn) = 0 where 1 and 0 are the designated and undesignated values respec-
tively and Xl9 . . ., Xn, X[9 . . ., X'n are some fixed elements of the interpre-
tion. Then the axioms (4) and (5) are independent.

Proof: Assign Xl9 . . ., Xn to pl9 . . .,pn respectively and interpret D as
falsum. Then

CDX1 . . . Xn<p(X» . . .,Xn) = C01 = 1

while

Cφ(Xu . . .,Xn)DXι . . . Xn = CIO = 0

and all of the other axioms, being tautologies, are verified. Thus (4) is
independent. The independence of (5) is obtained by assigning X[9 . . ., Xή
to pl9 . . ., pn and interpreting D as verum.

This is as good a theorem as we can get, for if φ(pι, . . .,/>»)
[Nφ(pχ9 . . , pn)] is a tautology then (5) [(4)] may be provable, depending on
what axioms -£ has. In no case however can both (4) and (5) be dependent.
This shows that the creativity of a definition has nothing to do with its
independence.

Lukasiewicz insisted that the axioms of a propositional calculus be
stated in primitive terms. This was done for "not only esthetic, but also
theoretical" reasons [19]. We conjecture that one reason that this condition
is imposed on axiom systems is to avoid some creative definitions.
Consider the following example: Take C and N as primitive and let M be
Meredith's axiom. Before stating any axioms define alternation by

(6) CCNpqApq

(7) CApqNpq

and then give the single axiom

(8) CCCNpqApqtλ

By detaching (6) from (8) we get M and hence the full C-N calculus.
However when we "eliminate" the defined term from (8) we get
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CCCNpqCNpqbA

which is non-detachable. So in this system the definition plays a creative
role. We know of no such calculi which have been inadvertently published
but suspect there are some.

Throughout this paper, pairs of implications have been used as the
definitional frame. This form of writing definitions would be unacceptable
to Lesniewski who felt that definitions should be single expressions. In his
paper [l] he stated definitions in the form

(9) NCCaβNCβa

where a was the definiendum and β the definiens. This is a legitimate form
of writing definitions since it is equivalent to Eβa in the full propositional
calculus. Moreover it is the shortest definitional frame for the C-N
calculus where definitions are expressed as single theses.

If definitions are written in this way then the propositional calculus
with axiom

(10) CNCCpqNCqpA

contains creative definitions. In fact the first definition added to the system
is creative regardless of what it is. Thus any definition, written in
Lesniewski's definitional frame, can be creative.

It is important to realize that the results of this paper are dependent
on the definitional frame used. In substance they remain correct but many
details must be altered if a different definitional frame is used. For
example, if in the propositional calculus with axiom (10), we add Cpp as
another axiom, then there are still creative definitions. Thus Lindenbaum's
theorem is dependent on the definitional frame used. If form (9) is used
then the Cpp of Lindenbaum's theorem must be replaced by NCCppNCpp.

Tarski suggested the definitional frame

CCCaβCCβarr

Negation is not used here and one can get Caβ and Cβa by using simplifica-
tion alone. This still admits creative definitions, for if we take the axiom

CCCCpqCCqprrA

then the first definition, written in Tarski's frame, is creative. In fact
every definitional frame we know admits creative definitions.

5 Conclusion. Ever since Russell wrote in Principia Mathematίca that
definitions are 'theoretically superfluous" it has been widely held that
definitions are never creative. Although our view of definitions is different
than RusselΓs the results of this paper should provide ample warning that
more care is needed when definitions are used.

In a certain sense it is not surprising that definitions can be creative
for: (1) Whenever a definition is added to a system, not only is a new
symbol introduced but also new theses are introduced. Thus the expressive
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strength of the language is increased and the stock of theorems available for
use in later proofs is increased. (2) The system contains an additional rule,
so it is natural that it enables us to derive new theses. It is only slightly
surprising that we are able to derive new theses involving only primitive
terms.

APPENDIX

A FORMALIZATION OF THE RULES OF PROCEDURE FOR PROPOSI-
TIONAL CALCULI.

We intend to state—in the most precise way that we know—the deduc-
tive rules for a C-N calculus when the rules of the system are

(A) Substitution and Detachment.
(B) Substitution, Detachment and Definition.

We do both of these to show that the formulation of the rules of substitution
and definition are interconnected. When going from (A) to (B), the
formulation of the rule of substitution must be adjusted.

The rules are formulated using (an extension of) the inscriptional
syntax M developed in [15] which is based on Lesniewski's Ontology. An
acquaintance with [15] is assumed. Before formulating rules (A) and (B) we
give a series of Terminological Explanations (T.E.'s) which define the
terms used in the statement of the rules. The following is a dictionary of
terms which we shall use from M:

At a A is an a (ε is the primitive of Ontology)
a °° b a is equinumerous with b
a c b a is contained in b
A ε N (b) A is not b
Aεvrb(B) A is a word of B
A ε cnf(B) A is equiform with B
Aεexpr A is an expression
A ε \ngr(B) A is an ingredient of B
Aε1vrb(£) A is the first word of B (similarly for 2vrb(B), . . .)
A εCmpl(α) A is the complex of the α's
AεConcot(BC) A is the concatenation of B and C (similarly for

ConccΛ(BCD))
Aεscά(B) A follows B
A ε prcd(B) A precedes B

We shall also use two new primitive terms which pertain to the proposi-
tional calculus in question:

A εvar(B) A is a variable in expression B
Aεth(B) A is a thesis of the system occurring before B (or

equal to B)

The first of these terms allows us to define a variable by

[A] :A εvαr.=. [3J5].A εvαr(£)
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The rules shall be formulated for a propositional calculus whose sole
axiom is the following axiom of Meredith [11].

«S CCCCCpqCNrNsrtCCtpCsp

In the T.E.'s below we shall explicitly refer to this inscription by its name
21 j . The quantifiers below range over names of inscriptions.

TE1 [AB]:AεNeg(B).=.
AεConcαt(lvrb(A),£).
1vrb(Λ)εcnf (9vrb(«ϊ))

A is the negation of B.

A will be the negation of B if it consists of a negation symbol (N)
followed by B, i.e.,

A: i\Γ~

B

Such diagrams and the informal explanations which are given are intended
to aid the reader and are not to be considered part of the formulation of the
rule.

TE2 [ABC]: A ε Imp(-BC) .=.
AεConcαt(1vrb(A), B, C).
1vrb(A)εcnf(1vrb(Hϊ))

A is B implies C.

B C

TE3 [ABODE]: A εcnόeϊ(BCDE) .=.
Bε\mp(DE) .
Cεcnf(D).
Aεcni(E)

C" ~

B: C~ j
/cnf

A:

TE4 [ABC]:Aεcnόet(BC) .=. [3DE] .A εcnόet(BCDE)

A is a consequence of B by detaching C.
Regardless of what other rules we might have in the system the rule of

detachment can always be /orra^αfed independently of the others.
The crucial step in formulating a rule of substitution is to specify what

the well formed formulas are. We do this now when C and JV are the only
functors, i.e., when there are no definitions.
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TE5 [Aα]:: A εwff(«).=:.
[B]:Bεvar(A) .=>. JB ε« : A εA :
[BC]:BεHeg(C) .Bεlngr(A) .Cεa . 3 . Bεa:
[BCD]:Bε\mp(CD) .J9εingr(A) .Cεa.Dεa .^. Bεa:
[c]:Cεa .=>. C ε ingr(A).
[3C].Cεvαr(A)

7Έ6 [A]:.Aεwff .=:
A ε expr:
[a] :A ε wff(α) .=). Aεα

A is a well formed formula of the C-N calculus.

In TE5 a is a (name of a distributive) collection of expressions in A
which contains all the variables of A (TE5.1) of which there is at least one
(TE5.5) and which is closed under the formation of negations (TE5.2) and
implications (TE5.3). TE6 says that A is well formed if it is in the
intersection of all such α's. This is the classical Frege technique for
converting recursive definitions to explicit ones. The clause TE5.4 is
added so that the number of possible α's is at most 2w(w+1)/2 where n is the
number of words in A. This guarantees that the intersection in TE6 is
finite and so wff is "primitive recursive" not just "recursive."

TE7 [ABa]: :Aεsub(Ba) .=::
vrb(B) °° a.
AεCmpl(α):
[c]:Cεa .=>. Cεwff:.
[CD]:. Cεvrb(B) .Dεa.(aΠ prcό(D)) °° (vrb(-B) n prcd(C))

.=> C εvαr(B) .v. C εcnf(D):.
[CDEF]: C ε v r b ( B ) . D ε v r b ( B ) . C ε c n f ( i ) ) . E ε a . F ε a . ( a f ) prcά(E))

00 (vrb(-B) Π prcd(C)). (α n ρrcd(F)) °° (vrb(JB) Π prcd(D))
.=). Eεcnf(F)

TE5 [AB] :Aεsub(B) .=. [3a] .A εsub(Ba)

A is a substitution instance of B.

Lesniewski cleverly solves the problem of formulating the rule of
substitution by not saying what is substituted. Instead, A (the result of the
substitution) is decomposed into parts (the same number as there are
words in B) in such a way that 1) functors in B correspond to equiform
functors in A, and such that 2) variables in B correspond to expressions in
A. For example

B: C p C q p
4 • 4 4 4
1 2 1 2 2
\ 1 \ \ 3L

A: C Np C q Np

TE7.3 dictates that we can only substitute wffs, TE7.4 that we can only
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substitute for variables, and TE7.5 that we must substitute the same wff for
every instance of a variable.

We are now in a position to state

(A) The rule of procedure for a propositional calculus with substitution and
detachment.

If B is the last thesis of the propositional calculus with U% as single
axiom then we can add inscription A as a new thesis only if at least one of
the following conditions is satisfied:

1. [3C].Aεsub(C).Cεth(£)
2. [3CD] .A εcndet(CZ)) . C ε MB) . D ε MB) .

Now we shall indicate what changes are to be made in the T.E.'s if a
rule of definition is included in the system. We add primes to the T.E.'s to
distinguish them. TE1'-TE4' are the same as TE1-TE4.

In describing well formed formulas we need closure not just under
implication and negation but also under every functor which is introduced
into the system by definition. We do not have a list of the possible defined
functors (and even if we did it would be infinite) and so we cannot just tack
individual clauses onto the old TE5. Instead we must refer each defined
functor back to its definition to see if it has the appropriate number of
arguments. This is the purpose of

TE4A' [CDEb] ::D εsub(EδC) .=:.

Z)εConcαt(1vrb(Z>), Cmpl(δ)).
1vrb(£)εcnf(£).
b «> (vrb(C) Π scά(E)).
£εvrb(C).
EtN {yoiy:
[F]:Ftvrb(C) .Fεscd(E) .=>. Fεvar;
[FG]:Fεvrb(G) .GεMC) .=>. FεN[cnf(£)]

In discussing this T.E. we refer to the following diagram:

E

C: C φ(pl9 . . .,pn) F p,p2 . . .pu

,ll:::l
V

E is a word of thesis C (TE4AΆ) which is not a variable (TE4Ar.5) and is
thus a functor which has never occurred in the system before (TE4A'.7).
Since E is followed by a string of variables (TE4Ar.6) thesis C is the first
half of the definition which introduces the functor "F" in the diagram.
Once functor E is in the system all expressions D consisting of a symbol
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equiform to E (TE4Ar.2) and containing the appropriate number of well
formed formulas as arguments (TE4A1.3) should also be well formed
formulas. This is guaranteed by TEδ'Λ below

TE5' [ABa ] : : A ε wffd {aB) .=:.
[C]:C εvαr(A) .=>. C εa :A εA :
[CD]: C ε Neg(Z>). C ε ingr(Λ).D εa .=>. C εa :
[c]:Cεa .=>. Cεingr(A):
[C££δ]:Cεth(5).Z>εingr(A).δ c α .Dεsub(EbC) .=>. Dεα

Γ£6' [AB]:.yUwffd(JB).=:
A ε expr:
[α]:Λεwffd(«JB) .D.Aεα

A is a well formed formula with respect to the last thesis B of a
system which contains definitions. We cannot define a well formed formula
without reference to the last thesis B of the system since as definitions are
added to the system the stock of well formed formulas increases.

In TE5r flisa collection of expressions in A (TE5r.3) containing all the
variables of A (TE5f.1) and closed under the formation of negations
(TE5'.2). It is not necessary to say that a is closed under the formation of
implications (c/., TE5.3) since the axiom ends ((Csp" and hence 2Ij serves
as the introductory thesis (the C of TE4A' and TEδ'Λ) for implication.

TE5' contains no clause analogous to TE5.5 since one can obtain

[AB]:AεwffdCB) .=>. [3C]. C εvαr(A)

from the lemmas

[DEC].~(Dεsub(EAC))

[AB]:AεA.~([3C].Cεvar(A)) -^ ~Uεwffd(Λ£))

where Λ is the empty name.

As in TE5, TE5'.3 is superfluous (but desirable). To see this let
wtfd*(aB) be defined as in TE51 except that TE5\3 is deleted. Thus

[ABa] :AεwHό(aB) =.A εwffd*(αJB) .α c \ngr(A)

Using this and

[ABa]: A ε wffd*(<*£) .=>. A ε wffd(α Π ingr(A), 5)

one can prove

[AB] :A ε.wffdCB) ΛAεwffd*(#)

where wffd*(jB) is defined like wffd(£) except that wffd*(«jB) is used instead
of wffd(αJ3).

TE7'[TE8r] is just like TE7[TE8] except that wffd(£) [subd(^β)] is used
instead of wff[sub(£α)]. Call this subd(.Ba) [subd(£)].

TE9r [ABC] Λ A εdef(C^) .=:
Cεwffd(^):AεA:
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1vrb(A) εΛ/^vαr^:
[DE]:EεMB).Dtvrb(E) .=>. 1vrb(A) ε/vCcnf(£)] :
[D]:Dεvar(C) .=>. [BE] .Eεvrb(A). Dεcnf(E):
|>]:Fεvrb(A).Fεscd(1vrb(A)) ,D. [3£] .£εcnf(F) .£εvαr(C):
[l>£]:I>εvrb(A) ,£εvrb(A).Z>εcnf(£) .3.2) =5

A is eligible as a definiendum with definiens C with respect to the last
thesis B of the system.

A must be of the shape

Fpx... Pn

where "F" is a new symbol (TE9'.3) which is not a variable (TE9\2). The
variables />x, . . ., £w are all distinct (TE9'.6) and are precisely those
variables which occur in the definiens C(TE9'.4,5) which is a well formed
formula with respect to B(TE9'.l). We can now state

(B) The rule of procedure for a propositional calculus with substitution,
detachment and definition.

If B is the last thesis of the propositional calculus with axiom 21$ then
we can add new theses to the system only under one of the following
conditions:

1. We can add a new thesis A by substitution if

[3C].Aεsubd(C).Cεth(£)

2. We can add a new thesis A by detachment if

[BCD] .A εcndet( CD) . Cε th(£) . Dε\h(B)

3. We can add new theses A and Ar as a definition (of the first word of C) if

[3CDCfD']. C εdefφJB) .A εlmp(Z>C) .A' εlmp(C'D') .A εprcd(A') .
C'εcn1(C).D'εa\1(D)

A definition has the form

D C

A: Cφ(pl9 . . ., pn) Fpγ . . . pn

C Dr

A': CFpί . . .pn φ(pl9 . . .,/>„)

It is important that A precede A' for if it did not then TE4Ar would not
serve its proper function. In particular TE4A\6 and 7 would fail.

The rules (A) and (B) refer explicitly to the axiom a? of Meredith. If
the system to be described contains different axioms or primitive terms
certain canonical changes need to be made: If there are different axioms
TE1.2 must be change to 1vrb(A) εcnfpΓ) where X is the name of an "N" in
one of the axioms. TE2.2 must be changed if no axiom begins with " C " .
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TE5T needs modification if no axiom ends "Cpq". If the calculus is
implicational delete, TEl(l') and TE5.2 (5r.2). If there are other primi-
tives, TE5 and TE5! need additional clauses to guarantee that a is closed
under these functors.

The Terminological Explanations given here are adoptions and simpli-
fications of those given by Lesniewski [1]. Moreover, we have presented
them using system M of [15], whereas he used ordinary language.

Throughout this appendix our informal comments have resorted, in the
interest of perspicuousness, to the usual platonistic language and use-
mention ambiguities. The Terminological Explanations themselves however
are stated in an inscriptional syntax so as to satisfy the most demanding
nominalist.
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