TWO IDENTITIES FOR LATTICES, DISTRIBUTIVE LATTICES AND MODULAR LATTICES WITH A CONSTANT

SABURO TAMURA

In his paper [3] J. A. Kalman has defined lattices using two identities and six variables. We shall define lattices using two identities and five variables in Theorem 1. In Theorem 2 we shall give an axiom system for lattices with 0 consisting of two identities. J. Sholander's axiom system for distributive lattices with 0 contains three identities (cf., [5]), but our axiom system in Theorem 3 consists of two identities. In Theorem 4 we shall give a definition for distributive lattices with 1 in the Croisot-Sobociński style (cf., [1] and [7]). Finally, as axiom system for modular lattices with 0 shall be given in Theorem 5. In the remarks, axiom systems for lattices, distributive lattices and modular lattices with two constants are given by three identities.

Theorem 1. Any algebraic system $\langle A; \cdot; + \rangle$ with two binary operations \cdot and +, which satisfies the following two identities

L1. a = ba + aL2. ((ab)c + d) + e = ((bc)a + e) + (b + d)d

is a lattice

Proof: We can prove it as Kalman has shown in [3] (*cf.*, Theorem 2 in this paper).

Theorem 2. Any algebraic system $\langle A; \cdot; +, 0 \rangle$ with two binary operations \cdot and +, and with a constant 0, which satisfies the following two identities

L1. a = ba + aL2'. (((0 + a)b)c + d) + e = ((bc)a + e) + (b + d)d

is a lattice with 0.

 Proof:

 3.
 c + a = (((0 + a)b)c + c) + a = ((bc)a + a) + (b + c)c = a + (b + c)c

 [L1, L2', L1]

 4.
 c + a = a + (bc + c)c = a + cc

 [3, L1]

Received May 24, 1974

SABURO TAMURA

5.
$$a = aa + a = a + (aa)(aa) = (aa)(aa) + aa = aa$$
 [L1, 4, 4, L1]
6. $c + a = a + cc = a + c$ [4, 5]
7. $a + a = aa + a = a$ [5, L1]
8. $(b + c)c = (b + c)c + (b + c)c = c + (b + c)c = (b + c)c + c = c$ [7, 3, 6, L1]
9. $(((0 + a)b)c + d) + e = ((bc)a + e) + (b + d)d = ((bc)a + e) + d$ [L2', 8]
10. $(d + a) + e = (a + d) + e = (aa + d) + e = (((0 + a)a)a + d) + e$ [6, 5, 8, 9, 5, 6]
11. $0 + a = 0 + ((a + a) + a) = ((0 + a) + a) + a$ [6, 5, 8, 9, 5, 6]
11. $0 + a = 0 + ((a + a) + a) = ((0 + a) + a) + a$ [6, 5, 8, 9, 5, 6]
11. $0 + a = 0 + ((a + a) + a) = ((0 + a) + a) + a$ [11, 6, 8]
12. $a = (((0 + a)(0 + a))(0 + a) + a) + a = a + a = a$ [7, 10, 5, 9, L1, 7]
13. $((ab)c + d) + e = ((((0 + a)b)c + d) + e = ((bc)a + e) + (b + d)e$ [11, L2']

We can prove the remaining part of this proof as Kalman has shown in [3].

Remark 1. We define lattices with 1 as the dual of postulates in Theorem 2.

 $L*1. \quad a = (b + a)a$ L*2'. (((1a + b) + c)d)e = (((b + c) + a)e)(bd + d)

Remark 2. If the system $\langle A; \cdot; +; 0; 1 \rangle$ satisfies L1, L2', and

L3. a1 = a,

then it is a lattice with 0 and 1 (cf., [5]).

Theorem 3. Any algebraic system $\langle A; \cdot; +; 0 \rangle$ with two binary operations and +, and with a constant 0, which satisfies the following two identities

P1. a = a(a + b)P2'. a(b + c) = c(a + 0) + b(a + 0)

is a distributive lattice with 0.

Proof:

3.	a = a(a + a) = a(a + 0) + a(a + 0) = a + a	[<i>P1, P2</i> *, <i>P1</i>]
4.	a = a(a + a) = aa	[<i>P1</i> , 3]
5.	ab = a(b + b) = b(a + 0) + b(a + 0) = b(a + 0)	[3, <i>P2</i> ′, 3]
6.	a = a(a + 0) = (a + 0)(a + 0) = a + 0	[P1, 5, 4]
7.	a(b + c) = c(a + 0) + b(a + 0) = ca + ba	[<i>P2'</i> , 6]
8.	a0 = a0 + 0 = a0 + 00 = 0(0 + a) = 0	[6, 4, 7, <i>P1</i>]

We can prove the remaining part of this proof as Sholander has shown in [5].

Remark 3. We define distributive lattices with 1 as the dual of postulates in Theorem 3:

 $P*1. \quad a = a + ab$ $P*2'. \quad a + bc = (c + a1)(b + a1)$

Remark 4. If the system $\langle A; \cdot; +; 0, 1 \rangle$ satisfies P1, P2', and

P3. a1 = a,

then it is a distributive lattice with 0 and 1 (cf., [5]).

Theorem 4. Any algebraic system $\langle A; \cdot; +; 1 \rangle$ with two binary operations \cdot and +, and with a constant 1, which satisfies the following two identities

D1'. a = a(b + 11)D2'. a(bb + c1) = ca + ba

is a distributive lattice with 1.

Proof: [D1', D2']3. a = a(bb + 11) = 1a + ba4. 1 = 11 + b1[3] [4, D1']5. a1 = a(11 + 11) = a[4, 5]6. 1 = 11 + b1 = 1 + b7. a + 1 = (a + 1)(bb + 11) = 1(a + 1) + b(a + 1) = 1(a + 11) + b(a + 11)= 1 + b = 1[D1', D2', 5, D1', 6]8. a(bb + c) = a(bb + c1) = ca + ba[5, D2']

We can prove the remaining part of this proof as Sobociński has shown in [7].

Remark 5. We define distributive lattices with 0 as the dual of postulates in Theorem 4.

D*1'. a = a + b(0 + 0)D*2'. a + (b + b)(c + 0) = (c + a)(b + a)Remark 6. If the system $\langle A; \cdot; +; 0; 1 \rangle$ satisfies D1', D2', and

 $D3. \qquad a+0=a,$

then it is a distributive lattice with 0 and 1 (cf., [6]).

Theorem 5. Any algebraic system $\langle A; \cdot; +; 0 \rangle$ with two binary operations \cdot and +, and with a constant 0, which satisfies the following two identities

M1. (a + bb)b = bM2'. ((0 + a)b)c + ad = (da + cb)a

is a modular lattice with 0.

Proof:

3.	a = (da + aa)a = ((0 + a)a)a + ad	[M1, M2']
4.	aa = (((0 + a)a)a + aa)a = a	[3, M1]
5.	(a+b)b = (a+bb)b = b	[4, M1]
6.	a = ((0 + a)a)a + ad = aa + ad = a + ad	[3, 5, 4]
7.	a + a = a + aa = a	[4, 6]

SABURO TAMURA

8. ad = ad + ad = ((0 + a)a)d + ad = (da + da)a = (da)a[7, 5, *M2*', 7] 9. a(a + b) = ((a + b)a)a = ((aa + bb)a)a = (((0 + a)b)b + aa)a = a[8, 4, M2', M1][8, 9, 9] 10. (a + b)a = (a(a + b))(a + b) = a(a + b) = a(0 + a) + a = ((0 + a)(0 + a))(0 + a) + aa = (aa + (0 + a)(0 + a))a11. [4, M2', 4, 10]= (a + (0 + a))a = a12. 0 + a = (0 + a) + (0 + a)a = (0 + a) + a = a[6, 5, 11]13. 0a = 0(0 + a) = 0[12, 9]14. (ab)c + ad = ((0 + a)b)c + ad = (da + cb)a[12, M2']

We can prove the remaining part of this proof as Kolibiar has shown in [4].

Remark 7. We define modular lattices with 1 as the dual of postulates in Theorem 5:

 $M*1. \quad a(b+b) + b = b$ M*2'. ((1a+b) + c)(a+d) = (d+a)(c+b) + a

Remark 8. If the system $\langle A; \cdot; +; 0; 1 \rangle$ satisfies M1, M2', and

M3.
$$a1 = a$$
,

then it is a modular lattice with 0 and 1.

REFERENCES

- Croisot, R., "Axiomatique des lattices distributives," Canadian Journal of Mathematics, vol. 3 (1951), pp. 24-27.
- [2] Grätzer, G., Lattice Theory, W. H. Freeman, San Francisco (1971).
- [3] Kalman, J. A., "Two axiom definition for lattices," Revue Roumaine de Mathématiques Pures et Appliquées, vol. 13 (1968), pp. 669-670.
- [4] Kolibiar, M., "On the axiomatic of modular lattices," (in Russian), Czechoslovak Mathematical Journal, vol. 6 (1956), pp. 381-386.
- [5] Sholander, J., "Postulates for distributive lattices," Canadian Journal of Mathématics, vol. 3 (1951), pp. 28-30.
- [6] Sobociński, B., "Certain sets of postulates for distributive lattices with constant elements," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 119-123.
- [7] Sobociński, B., "An abbreviation of Croisot's axiom-system for distributive lattices with 1," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 139-141.

Yamaguchi University Yamaguchi, Japan

140