
137
Notre Dame Journal of Formal Logic
Volume XVI, Number 1, January 1975
NDJFAM

TWO IDENTITIES FOR LATTICES, DISTRIBUTIVE LATTICES
AND MODULAR LATTICES WITH A CONSTANT

SABURO TAMURA

In his paper [3] J. A. Kalman has defined lattices using two identities
and six variables. We shall define lattices using two identities and five
variables in Theorem 1. In Theorem 2 we shall give an axiom system for
lattices with 0 consisting of two identities. J. Sholander's axiom system
for distributive lattices with 0 contains three identities (c/. ,[5]), but our
axiom system in Theorem 3 consists of two identities. In Theorem 4 we
shall give a definition for distributive lattices with 1 in the Croisot-
Sobociήski style (c/., [ l ] and [7]). Finally, as axiom system for modular
lattices with 0 shall be given in Theorem 5. In the remarks, axiom
systems for lattices, distributive lattices and modular lattices with two
constants are given by three identities.

Theorem 1. Any algebraic system (A; •; +) with two binary operations and
+, which satisfies the following two identities

LI. a = ba +a
L2. \(ab)c + d) + e = ((bc)a + e) + (b + d)d

is a lattice

Proof: We can prove it as Kalman has shown in [3] (c/., Theorem 2 in this
paper).

Theorem 2. Any algebraic system (A; •; +, 0) with two binary operations .
and +, and with a constant 0, which satisfies the following two identities

LI. a = ba + a

L2\ (((0 + a)b)c + d) + e = ((bc)a + e) + (b + d)d

is a lattice with 0.

Proof:

3. c + a = (((0 + a)b)c + c) + a = ((bc)a + a) + (b + c)c = a + (b + c)c
[LI, L2\ LI]

4. c + a = a + (be + c)c = a + cc [3, Ll]
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5. a=aa+a=a + (aa)(aa) = (aa)(aa) +aa = aa [LI, 4, 4, LI]
6. c+a=a+cc=a+c [4,5]
7. a+a=aa+a=a [5, Li]
8. (b + c)c = (b + c)c + (b + c)c = c + (b + c)c = (b + c)c + c = c

[7, 3, 6, Li]
9. (((0 + a)b)c + d) + e = ((bc)a + e) + (b + d)d = ((δc)« + e) + d

[L2', 8]
10. (d + α) + e = (a + d) + e = (αα + d) + £ = (((0 + a)ά)a + d) + e

= ((aa)a + e) + d = (a + e) + d = d + (a + e)
[6, 5, 8, 9, 5, 6]

11. 0 + a = 0 + ((a + a) + a) = ((0 + a) + a) + a
= (((0 + a)(0 + a))(0 + a) + a) + a
= (((0 +a)(0 +a))a +a)+a=a+a=a [7, 10, 5, 9, Li, 7]

12. «0= (0 +α)0 = (a +0)0 = 0 [11,6,8]
13. ((ab)c + d) + e = (((0 + a)b)c + d) + e = ((bc)a + e) + (6 + d)e

[11, Li?']

We can prove the remaining part of this proof as Kalman has shown
in [3].

Remark 1. We define lattices with 1 as the dual of postulates in Theorem 2.

L*l. a = (6 +a)a

L*2r. (((la + b) + c)d)e = (((b + c) + ά)e)(bd + d)

Remark 2. If the system (A; •; +; 0; 1) satisfies LI, L2r, and

L3. a\ = α,

then it is a lattice with 0 and 1 (cf., [5]).

Theorem 3. Any algebraic system (A; •; +; 0) with two binary operations
and +, and with a constant 0, which satisfies the following two identities

PI. a =a(a + b)
P2\ a(b + c) = c(a + 0) + b(a + 0)

is a distributive lattice with 0.

Proof:

3. a = a(a + a) = α(α + 0) + a(a + 0) = α + a [PI, P2*, Pi]
4. a = α(α + α) = αα [Pi, 3]
5. ab = α(δ + b) = δ(α + 0) + δ(α + 0) = b(a + 0) [3, P2\ 3]
6. α = α(α + 0) = (a + 0)(a + 0) = a + 0 [Pi, 5, 4]
7. α(δ + c) = c(tf + 0) + b(a +0) = ca + ba [P2', 6]
8. aθ = aO + 0 = aO + 00 = 0(0 + a) = 0 [6, 4, 7, P i ]

We can prove the remaining part of this proof as Sholander has shown
in [5].

Remark 3. We define distributive lattices with 1 as the dual of postulates
in Theorem 3:
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P*l. a = a+ab

P*2'. a + bc = (c + al)(b + a\)

Remark 4. If the system (A; .; +; 0, 1) satisfies PI, P21, and

P3. a\ = a,

then it is a distributive lattice with 0 and 1 (cf., [5]).
Theorem 4. Any algebraic system (A; •; +; 1) with two binary operations
and +, am? wtt'fft a constant 1, which satisfies the following two identities

DΓ. a = a(b + 11)

Zλ2'. α(6δ + cl) = ca + ba

is a distributive lattice with 1.

Proof:
3. a = a(bb + 11) = la + ba [DV, D2']
4. 1 = 1 1 + 6 1 [3]
5. a\ = α(ll + 11) =a [4, ZλZf]
6. 1 = 11 +61 = 1 +b [4, 5]
7. α + i = (a + i)φb + 11) = l(a + 1) + b(a + 1) = l(α + 11) + b(a + 11)

= 1 + 6 = 1 [Dl\ D2r, 5, i)i f , 6]
8. 0(66 + c) = α(66 + cl) = ca + ba [5, Z>2']

We can prove the remaining part of this proof as Sobociήski has shown
in [7].

Remark 5. We define distributive lattices with 0 as the dual of postulates
in Theorem 4.

D*Γ. a = a +6(0+0)
D*2r. a + (6 + b)(c + 0) = (c + a)(b + a)
Remark 6. If the system (A; •; +; 0; 1) satisfies DV, Zλ2f, and

Zλ3. a + 0 = α,

then it is a distributive lattice with 0 and 1 {cf., [6]).

Theorem 5. Any algebraic system (A; •; +; 0) with two binary operations
and +, <md mίλ a constant 0, which satisfies the following two identities

Ml. (a + bb)b = b
M2\ ((0 + a)b)c +ad= (da + c6)α

zs α modular lattice with 0.

Proo/:
3. a = (da + αa)α = ((0 + α)α)α + ad [Ml, M2']
4. aa = (((0+a)a)a+aa)a = a [3, Ml]
5. (a + 6)6 = (a + 66)6 = 6 [4, M i ]
6. β = ((0 + a)a)a + ad = aa +ad = a + ad [3, 5, 4]
7. a + a = a + aa = a [4, 6]
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8. ad = ad + ad = ((0 + a)a)d + ad = (da + da)a = (da)a [7, 5, M2r, 7]

9. a(a + b) = ((a + b)a)a = ((aa + bb)a)\a = (((0 + a)b)b + aa)a = a

[S,4,M2f, Ml]

10. (a + b)a = (a{a + b))(a + b) = a(a + b) = a [8, 9, 9]

11. (0 + a) + a = ((0 + α)(0 + α))(0 + α) +aa = (αα + (0 + α)(0 + α))α

= (« + (0 + α))α = a [4, M2 f, 4, 10]

12. 0 + α = ( 0 + α ) + (0+α)α.= ( 0 + α ) + β = α [6,5,11]
13. 0α = 0(0+α) = 0 [12,9]

14. (ab)c +ad= ((0 + a)b)c + ad = (da + cb)a [12, M2r]

We can prove the remaining part of this proof as Kolibiar has shown

in [4].

Remark 7. We define modular lattices with 1 as the dual of postulates in

Theorem 5:

M*l. a(b+b)+b = b

M*2r. ((la + b) + c)(a + d) = (d + a)(c + b) + a

Remark 8. If the system (A; .; +; 0; 1) satisfies Ml, M2r, and

M3. a\ = a,

then it is a modular lattice with 0 and 1.
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