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AXIOMATIZATION OF FRAGMENTS OF S5

THOMAS W. SCHARLE

The principal result of this paper* is that the well-formed formulas of
the system S5 of modal logic can be expressed in a kind of normal form
which is restricted in a certain way. That normal forms exist for S5 is
well known, but the results given here indicate that the normal forms can
be expressed largely—in a sense to be made clear later—using only
implication and necessity. From this result, it then follows that there is a
uniform pattern for axiomatizing those functionally incomplete parts of the
system S5 which contain at least implication and necessity. These
functionally incomplete parts are the ‘fragments’ of the title.

The principal result, in turn, follows from the discovery of a sequence
of expressions in S5, containing only implication and necessity, having
certain welcome properties. That such functors might exist was suggested
by the results of Canty and Scharle, and Massey, mentioned below. In order
to find the expressions, the next step was to use a digital computer to
search, in effect, all possibilities in hope of finding, in a reasonable amount
of time, a successful match. Fortunately, many matches were found. This
is one of the few published cases in which a digital computer has been used
to find a solution to a non-trivial problem in logic.

Having found a solution for the two-variable case this way (the case for
one variable is trivial), one sees that the next step is either to use the
computer again, or to proceed by more conventional methods. To use the
computer again, it turns out, would involve extremely long computation
times, so this was not attempted. But, as will be shown in this paper, an
analytical approach shows at least the existence of solutions in general.

*This paper is adapted from a thesis written under direction of Professor Bole-
staw Sobocifiski and submitted to the Graduate School of University of Notre Dame,
in partial fulfillment of the requirements for the degree of Doctor of Philosophy with
Philosophy as the major subject in August, 1973. I wish to thank Professor Bolestaw
Sobocifiski for his help and encouragement in the writing of this paper, the Computing
Center of West Virginia University for use of the computing facilities, and Mr. Addi-
son Fischer for programming assistance.
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And the methods used are always constructive (in the mathematical sense
of the term), although it may be practically impossible to follow through the
proofs to produce the expressions needed.

The axiomatization result parallels the well-known method of Henkin
for axiomatizing fragments of two-valued propositional calculus, but
because of the nature of S5 we do not have one general format for all cases,
but must construct a format depending upon the number of variables
involved, also, the expressions quickly become unmanageably long. And,
finally, we have the inelegance that we are restricted to those fragments
containing necessity as well as implication (Henkin managed, of course,
with implication only).

1 In this paper, we will use the following symbolism for propositional
functors: O for material implication, =3 for strict implication, = for
material equivalence, = for strict equivalence, & for conjunction, v for
(inclusive) alternation, ~ for negation, O for necessity, and < for possi-
bility.

1.1 Axiomatizations of S5 The axiomatization of S5 given below is due,
essentially, to G8del." As listed here, axiom GI is a single axiom for the
two-valued propositional calculus (due to Meredith),” but any complete
axiom set for two-valued logic serves in its place. Axioms:

Gl (p2 @ D(~7rD~s)) DM DHD((2Dp)D(s DY)
G2 0Op>p

G3 O@p>¢9>@p>0¢

G4 ~0O~0p>0p

The rules are substitution, material detachment and the Godel rule:
if a is a theorem, then Oa is also.
For later purposes, we will need these theorems of §5°%:

G5 OOp=9Cp

G6 O~Op=~SCp

G7 <Op=0p

G8 O~0Op=~0p

G9 OC& g =(Cp& 9
G10 C(Pp & ~Cqg) =(Cp & ~C9q)
G1l O(pvg) = (OpvOg)

1.2 Normal Forms for S5 The system S5 has the fortunate property of
having only a finite number of non-equivalent expressions containing a fixed
number of variables. This was apparently first established by Carnap, as

Godel [7].
Meredith [12].
See Feys [6].

sw N

See Feys [6].
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noted below. A peculiarity of the form of the expressions is that they are
simply related to two-valued propositional expressions for a larger number
of variables—this leads immediately to the kind of normal form for S5 in
which S5 expressions are standard substitutions in two-valued expressions,
as noted by Canty and Scharle. By way of the normal forms for two-valued
expressions, we have normal forms in a conjunctive-disjunctive form for
S5 expressions. As it turns out the simplest way of describing S5 functions
is by way of a sort of truth-table technique, first explicitly stated by
Massey, which we also will use below to aid in exploring these normal
forms for S5.

In the next section of this paper, these normal forms, and the
relationship with two-valued logic, will be investigated further to allow us
to axiomatize certain subsystems of the system S5.

Note that the strict equivalences G5 through G111 above allow us to
simplify the iterated modalities in S5. In any part of an expression which
is a sequence of negations, possibilities and necessities, replace that
sequence with one of the following expressions:

a null expression, in case that this sequence consists of an even
number of negations;

‘~’, in case that this sequence consists of an odd number of negations;

‘0’, in case that the first modality from the right in the sequence is a
¢0’, and there are an even number of negations to the right of the possi-
bility, and an even number to the left,

‘0’, in case that the first modality in the sequence is a ‘¢’, and there
are an odd number of negations to both the right and left of the necessity;

‘> ~7, in case that the first modality from the right is a possibility, and
there are an even number of negations to the left of this possibility and an
odd number of negations to the right of it, or in case that the first modality
is a necessity and there are an odd number of negations to the left of the
necessity and an even number of negations to the right of the necessity;

‘~<’, in case that the first modality from the right is a possibility, and
there are an odd number of negations to the left of the possibility and an
even number of negations to the right of the possibility, or in case that the
first modality is a necessity and there are an even number of negations to
the left of the necessity and an odd number of negations to the right of the
necessity;

‘~O~',in case that the first modality from the right is a possibility
and there are an odd number of negations both to the right and the left of
the possibility, or in case that the first modality is a necessity and there
are an even number of negations both to the right and to the left of the
necessity.

These rules change, for example:

Oo~000p to ~Op
~O~Op to Op
Op to ~Onp
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It is easily seen that there are only six different expressions which can be
formed with ‘p’, ‘~’, and ‘0’, namely

b 0P O~p
~p  ~Op  ~On~p

However, there are ten additional expressions which can be formed using
‘&’ (and ‘v’) also. These are displayed in Table 1.}

/

~Opvp

NPVP

TABLE 1

In Table I, arrows are drawn to indicate implications—for example,
there is an arrow connecting ‘p’ and ‘Cp’, indicating that <p O Op’ is valid
in S5. The sixteen expressions displayed in the table correspond, as will
be shown later, to the sixteen binary functors of two-valued propositional
calculus.

5. This table is derivative of the table described in Scharle [13].
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That all of these expressions are distinct in S5 can be shown by use of
the following matrices:

& 1 2 3 4 |~19
*1 1 2 3 4 |41
212 2 4 4 |3 1
313 4 3 4 |2 1
4 14 4 4 4 1 4

which assign all valid formulas in S5 the designated value of 1, and which
distinguish among all sixteen formulas displayed in the table. To show that
there are no other non-equivalent formulas in S5, we use the equivalences
G5 through GI1. Consider any expression in S5 constructed from one
variable, ‘&’, ‘~’, ‘v’ and ‘0’. We will show that the set of sixteen formulas
is closed under application of those functors, in the sense that for any a and
B-in the set, there are v, 5, €, and ¢ in the set such that

~aq is strictly equivalent to

a & B is strictly equivalent to 6
av B is strictly equivalent to e
Oa is strictly equivalent to ¢

In the case of negation, the negation of one of the sixteen expressions is
located in the display 180° away from the expression—see for example, the
locations of ‘p’ and ‘~p’, ‘Op’ and ‘~Op’. In the case of the conjunction of
two formulas, find the expression which is lowest in a chain of arrows
pointing to the two expressions. This expression will be equivalent to the
conjunction of the two expressions. For example:

the conjunction of O~p & (~Op vp) and p is equivalent to p & O~p
the conjunction of ~pv~O~p and p is equivalent to. ~O~p

In the case of the alternation of two expressions, find the expression in the
display which is the highest expression in a chain of arrows away from both
of the two expressions. For example:

the alternation of O~p & (~Opvp) and p is equivalent to ~Opvp
the alternation of ~pv~CO~p and p is equivalent to ~pvp

In the case of possibility, the following considerations work: for an
expression in quadrant I of Table I possibility of the expression is
equivalent to the expression itself (and likewise for quadrant III). In all
other cases, possibility for an expression is found in quadrant III, in the
position in that quadrant corresponding to the position the original
expression has in its quadrant. For example:

possibility of Op is equivalent to Op
possibility of O~p & (~Opvp) is equivalent to O~p
possibility of ~pvOp is equivalent to ~pvp
possibility of ~p & OP is equivalent to ~p & p
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In short, then, application of negation, conjunction, alternation, and
possibility cannot produce an expression distinct from all of these sixteen
expressions. A similar argument will show that there is a finite number of
distinct expressions for a given finite number of variables.

We claim that every expression of S5 is equivalent to an expression in
the following normal form®: a conjunction of alternations

TIVe e VTRV V.u VGV ~BIV. . v~
where each a and B is of the form
O &...&m)

where each 7 is one of the variables in the original expression or its
negation. To substantiate this claim, we first note that each variable,
considered as an expression, is in normal form. I we prove closure of the
set of normal forms (in the sense that the result of any operation is
strictly equivalent to a member of the set), we prove a fortiori that every
expression of S5 is equivalent to a normal form expression. That the set of
normal forms is closed under negation, conjunction, and alternation follows
by the laws for distributing conjunction and alternation and by DeMorgan’s
laws, for two-valued propositional calculus. In other words, this set is
closed for the same reason that the set of conjunctive-disjunctive normal
forms is closed for two-valued logic.

Suppose now that we prefix an expression in normal form with the
functor for possibility. By the use of the laws of distribution of conjunction
and alternation and of the laws GI10 and GI1, we can move the possibility
sign inside until the scope of all possibility operations is a conjunction of
variables and their negations:

transform O(a & (Bvy)) to O((a & B v(a & ¥))
transform <$(av p) to Cav<oB
transform O(a & OB)  to Ca & OB

Because of the equivalence
Cp=00 & PvO(P & ~q)

we can require that the normal forms have the expressions a, 8 to be of the
form

Olm & ...&m,)

where for each variable, either it or its negation appearsin7, & . . . & 7,.
Thus we have essentially the result that for any formula a in S5 with »
variables p, . . .p,, there is a non-modal formula B(p;, . . ., py), where
k= 2", such that

a=B(p1: o . -7pn)7 O(pl& L -&pn), o o ey O(Npl& e o o & "’P,,)

6. The following discussion is a presentation of results due to Carnap [5].
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As a corollary of this, we can represent each modal expression in S5 with a
truth~-table, where the following take the values Truth and Falsehood: each
of the variables which occur in the expression (7, & ... & 7,), where
‘m & ... &m, is a conjunction of the variables which are in the expres-
sion, or their negations. For examples, see the truth-tables presented in
Table II given on p. 52.

If we examine these truth-tables, it becomes obvious that there is a
redundancy. Because p 3 Op the rows in which ‘9’ is valued true and ‘Op’
is valued false have no significance, nor the rows in which ‘~p’ is valued
true and ‘O~p’ is valued false. A similar argument holds for the case of
more than one variable, to discard half of the rows. As there will be in the
unedited form 2 + 2" expressions valued true or false, there will be 272"
rows, and the editing will discard half of the rows, giving 22"*2"~ indepen-
dent possibilities of distinct assignments of truth values to expressions in
S5, which means that there are 22"*2""! different expressions, up to strict
equivalence, in S5.7 This truth-tabular method has been used by Massey® to
produce a truth-tabular decision procedure for S5.

Let us look at some of the truth-tables with one-variable expressions:

p |~ | ~0&OP | p&(~pv~O~p)
T| T T
F| F F F
T| T T F
Fl T F T

In Table III, see p. 53, are some truth-tables for two-variable expressions.
The tables are structured into two levels: first, there are sets of rows
(here separated by horizontal lines), and second, within each set are the
rows with assignments of T and F to each of the variables. Within a given
set of rows, the variables are assigned values from a non-empty subset of
all possible assignments of T and F. Non-modal operations are taken by
standard truth-table techniques—in a row in which the expression a is
valued T, the expression ~a is valued F, and is valued T otherwise, and if
a and B are both valued T in a given row, then a & 8 is valued T in that row,
and is valued F otherwise. Modal operations on expressions receive their
valuations from the values in all of the rows in a given set of rows—if a is
valued T in some row of a given set, then ¢a is valued T in all of the rows
of that set, and otherwise is valued F in all of the rows of the set. If ais
valued F in some row of a given set, then Oa is valued F in all rows of the
set, and is valued T otherwise.

The expression Op & (~pv~CO~p) is of particular interest as this
expression, when taken together with the éxpression p will uniquely

7. See Carnap [5].
8. Massey [11].
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Cp & q)

S

MAMTA I MAA | AHdAd | MAN M A|(Ad M| AA|(A4d A4 (A4 (0|4
<

MAAA | MM A | 1A A|AAdAAd M4 d || A 14| A| A d4 |70 4|4~
i B B B e T T e e e T e e R R B I R R R T BT R R R EE R IR IR W R
H4H4Ad4 | M |ddA A dAAA|({dAA A | A({AM|AA| A4 | A4 |||

TABLE III

characterize each row of a one-variable truth-table, in the sense that any
expression of S5 with one variable is strictly equivalent to a non-modal
function of p and the above-mentioned expression. Obviously, there are
such expressions for any number of variables—we need take only that
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expression which is valued T in half of the rows in which p is valued T and
q is valued T, then another expression which is true in half of the rows in
which p, g and the first expression are valued T, and a third expression
which is valued T in one half of the rows in which p, ¢, and the two previous
expressions are valued T, and similarly for other possible combinations of
truth values. This observation will show the truth of this theorem.®

Theorem 1 For all n theve exist expressions in S5,

al(pl, o o .,pn), o o ey ak(pls o o ey pn)

with k= 2" - 1, such that for any expression By, . . ., Pp), Of n variables in
S5, there exists precisely one non-modal function

')’(Pl’ L) pk)
such that

B(pl’ RS pn) = Y(al(ply .. ~;pn); ¢ e ey ak(ph o oy pﬂ))

One final normal form expression for S5 will make use of a convention
that the conjunction of zero propositions is the constant true proposition,
and the alternation of zero propositions is the constant false proposition.
In two-valued propositional calculus, each expression with » variables is
equivalent to a (possibly null) conjunction of wifs of the form

pl&...&piDqlv-..ti

where i, j=>0,i+j=mn,and p, . . . p; ¢, . . . g; ranges over permutations of
the set of » variables. In particular, the expression above will be a
conjunct of the normal form if and only if the original expression if valued
F in that row of a truth-table in which p,, ..., p; are all valued T and
q - - -, gj are all valued F.

Corresponding to this property, we have for S5 that every expression
is equivalent to a conjunction of expressions of the form

Pl&...&j),'&dl&. ..&ai%.qlv.. .quVBIV. ..VBI

where 4, j, k,120,i+ k=mn, j+ 1=2"=1, the p’s and ¢’s are the variables
in the original expression, and the a&’s and B’s are the expressions as
described above in Theorem 1.

2 Fragments of Propositional Calculi In this section we will survey the
results for two-valued propositional calculus, in axiomatizing fragments,
and see from the analysis of the method used how this method may also be
used for fragments of S5.

For the purposes of exposition, we will consider that a propositional
calculus consists of three sets:

a) a set of propositional functors, and the set of propositional variables
(which may be some fixed infinite set of letters, for example);

9. Canty and Scharle [4], and Massey [10].
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b) the set of well-formed formulas which can be constructed from these
sets of functors and variables;

c) the subset of the set of well-formed formulas which consists of all the
formulas which are valid under a given interpretation.

Given the interpretation and the set of functors, the other two sets are
fixed. For example, using the ordinary truth-table interpretation and the
set of all two-valued functors, the set (b) is the set of all expressions in
two-valued propositional logic, and the set (c) is the set of all tautologies.
This we will call the full two-valued propositional calculus. Or, given a
standard interpretation of S5 formulas, and the set of all functors of modal
logic, we obtain as (c) the set of all valid formulas in S5. (In the latter
case, the set of functors may be determined precisely, but we will not need
to express this precisely for our purposes.) This we will call the full S5.

A fragment of a propositional calculus is a propositional calculus
whose set of functors is a subset of the set of functors of the given
propositional calculus. Some examples of fragments of the full two-valued
propositional calculus are given by specifying these sets of functors:

Take the set consisting of Dand f. The fragment determined by these
functors is functionally complete, in the sense that we may give definitions
of all functors of two-valued logic using O and f only.

Take as the set of functors {D}. This determines a functionally
incomplete fragment of two-valued logic.

We are interested here in axiomatizing fragments of propositional
calculi, that is in giving rules and axioms which will yield as theorems all
of the formulas in set (¢), given the set (a) of functors.

2.1 Henkin’s Fragments of Propositional Calculus Henkin has investigated
the problem of axiomatizing a large class of fragments of the full two-
valued propositional calculus, namely those in which the set of functors (a)
contains O and one other functor. The problem of such a general method is
to find a way of using information from the truth-table for a given functor
to determine an axiom set specific to the functor.

We have seen above how a given row of a truth-table for a functor has a
correspondence to a normal form—suppose that we have a functor ¢ which
takes n arguments. Suppose that ¢p,...p;q,...q; (where i+j=mn) is
false when p,...p; are true and ¢,...¢; are false. This may be
characterized by either of the following properties:

In the normal form for ¢p, ... p;q. ... qj, which is a conjunction of
implications, the following implication is one of the conjuncts
pl&...&piDqlv.;.vq,’ (1)

or

the following is a tautology

Pr. . Dt G ED& ... &DIDQvV. ..V (2)
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In case that ¢p, . ..0;q, ... g; is true in that row of the truth-table in

which p, . .. p; are all true and q, . . . g; are false, then we have that (1) is
not a conjunct in the normal form for ¢p, . .. p;q, . . . g;, or, equivalently,
that the following is a tautology

D1r&...&pi2quv. . .vgivep,...Diqy. .. g; (3)

And we have similar statements for arbitrary permutations of the p’s and
¢’s (a more precise statement of the property will be deferred, as it is not
very enlightening at the present). If we reflect upon the expressions (1),
(2), and (3) above (and their permutations), we may note that:

a) The normal form of a given expression is uniquely determined by the
rows of the truth-table, that is, given the truth-table for a given functor,
we have established here rules for including or excluding (1) as a conjunct
of the normal form. The normal form may thus be considered to be a kind
of syntactic means of expressing all of the semantic information contained
in a truth-table. This is one essential part of the problem of completeness
of a formal system. It is strongly suggestive, then, that we can completely
axiomatize the functor ¢ by, say a rule of replacement for every occur-
rence of ¢ by its equivalent normal form.

b) We have a set of 2" tautologies containing ¢, which are distinctive for ¢. .
That is, each z-ary functor will have a distinct set of formulas (2) and (3),
chosen by the above process. This set of formulas is in some sense
characteristic of the functor ¢, and we may be lead to speculate that the
expressions (2) and (3) will constitute an axiom set for the functor ¢ (given,
of course, an adequate axiomatization of the remainder of the logic).

Unfortunately, in these forms, the results are not too interesting, if
they are true. First of all, we are here approaching an axiomatization of a
fragment of a propositional calculus which is functionally complete. We
obviously are using, in addition to the functor O, the functors & and v. But
also hidden here are the logical constants t and f, because of the possibility
of an empty conjunction or alternation: take the simple case in which the
functor is ~. If we follow the rules to get the normal form for ~p, we get a
conjunction of one formula

pD

or, in more conventional notation, using f for an empty alternation
pot

Or, to get the tautologies (2) and (3) for ~p, we get

~p&pOf 2"
tOpv~p (3"

(where we have introduced the constant t for the empty conjunction). These
are indeed correct, but uninteresting, as we know that negation can be
defined using D and f. It is an essentially trivial task to give an axiom set
for a given functor on the basis of a functionally complete system.
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What we will do is to make this into a non-trivial task by eliminating
all occurrences of functors in the expressions (2) and (3) except for O
and ¢.

First, each occurrence of the functor ‘v’ can be eliminated by use of
the identity

ve) =((p D9 Dq)

Then, as each occurrence of ‘&’ is on the left of an 1mp11cat10n it may be
removed by the equivalence

P &qgOd7r)=(pD(¢gD7)

We are able to remove the occurrences of null conjunctions on the left of
the implication by simply removing the implication in virtue of the
equivalence

top=p

Finally, we are able to remove the occurrence of null alternations on the
right of the implication by the device of introduction of a new variable.
Instead of having ‘p D f’, we have ‘p DO #’. In the form in which Henkin
states the axioms, we have for a given n-ary functor ¢, supposing that
$%,...x,1is false when p, ... p; are all true and ¢, . . . ¢; are all false,
and the x’s are a permutation of the p’s and ¢’s, the axiom:

PO OEGOND . DGO (2)

Suppose that ¢x, . . . ¥, is true under the same conditions, then we take as
an axiom the following:

PO DPO (G ON DGO NOGx . mO N O (3

As additional axioms, we take a complete axiom set for the pure implica-
tional fragment of two-valued logic (i.e., axioms and rules which yield all
tautologies expréssible with D only). Once these axioms have been
discovered it becomes a straightforward task to show the completeness and
consistency.

As a simple example of the system involved, consider the functor to be
D. From the truth-table for negation: ~p is false when p is true. Hence,
take the following axiom:

p2(~p>7) (2
Also, ~p is true when p is false, hence take the following axiom:
(627N D (~p2N 27 (3"

For the details of the proof and related results, refer to the papers of
Henkin [8] and Thomas [14].
We will now attempt to use a similar heuristic argument with S5.

2.2 Normal Forms for S5 That is, we will attempt to find axiom sets for
fragments of S5, by exploiting a correspondence between rows of a
truth-table and conjuncts of a normal form.
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Recall our Theorem 1 above. It is strongly suggestive of a cor-
respondence between, for example, all two-place functions of S5 and all
five-place functions of two-valued logic. If we can find the proper
expressions, X, Y, and Z, say, such that for any binary functor of S5 there
is a five-place non-modal functor, W, such that

¢ pq is strictly equivalent to WpqgXpqYpqZpq

then the above argument could be followed out for, at least, two-place
functors.

What was a major portion of our argument above was the elimination of
all functors other than implication. In the case of a modal logic, it seems a
little too severe a restriction, but we are able to find X, Y, and Z as
needed, which are definable with only implication and necessity. These will
be described shortly. But the importance of the existence of such a triple
of expressions in S5 is that we are then able to say that

1) For every two-place functor in S5, there is a conjunctive-disjunctive
normal form involving only implication and necessity;

2) We are able to construct from the truth-tables for any two-place functor
of S5 an axiom set of 2° axioms.

Let us first examine the properties that we need, for the elementary
case of one-place function is S5. We need that there is an expression in S5,
which is constructed using only the functors O, O, such that each row of a
truth-table is uniquely characterized by the values of ‘p’ and this expres-
sion. In particular, the expression O(p O Op) fulfills the need, as we can
see by examining the truth table for it.

p O(p>0p) -
T T
F T
T F
F F

With the case of two-variable expressions, there is still the possibility
of finding appropriate expressions. The task may be characterized as a
constructive one, as there are a finite number of rows in a truth-table, and
a finite number of non-equivalent containing two variables. But the number
of cases to be checked is very large. Note that the task involves finding
three expressions constructed from implication, necessity, and two vari-
ables such that each row in a truth-table is characterized by the values of
the three expressions and the two variables.

Fortunately, it is possible to have the task done by a computer
program, and then verify the results by conventional methods. The
program which does this was written in the programming language PL/1,
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and in the assembler language for the IBM System/360.'° In the System/
360, the standard amount of information which can easily be handled in
operations—which in technical language is called the ‘‘word’’—is 32 bits.
This size corresponds well with the size of two-variable truth-tables in
S5—32 cases. So we can represent the variables ‘p’ and ‘q’ as single words
in the computer, which is to say that the column of truth values under ‘p’ in
the truth-table is represented by a word having ‘1’ bits where ‘p’ is valued
‘T’, and ‘0’ bits where ‘p’ is valued ‘F’, and similarly for ‘¢q’. Then we
take all possible combinations of these computer words by applying
sequences of machine operations which correspond to the functors of
implication and necessity. In case that the resulting word has an equal
number of ‘1’ and ‘0’ bits, the sequence of operations (that is, equivalently,
the well-formed formula which has such a truth-table) and the word itself
(that is, the truth-table) are stored for later reference, for these are
possible X, Y, and Z functors. Below, labelled (A) through (H), are some of
the resulting expressions. Using one algorithm for generating these
expressions, in the first 3000 expressions considered, 143 satisfied this
first criterion.

After a large number of these words are generated, we cross-check
the words by triples for this property:

there are three expressions a, 3, and y such that as #» ranges between
0 and 31, the five bit pattern taken from the »’th position in the words for
b, q, a, B, and y assumes all possible combinations.

That is the computer checks (in the long run) all possible functions

definable by implication and necessity. There are, of course, a large
number of such functions, and without extensive computer use, all
possibilities cannot be checked. As a rough upper limit, using the Lemmas
1 and 2 below, we may estimate that there may be as many as 2%
non-equivalent expressions (that is, of the order of magnitude of one
billion) definable with implication and necessity. Thus, it is fortunate that
we are able in a fairly short time, to find triples which satisfy all the
conditions.
. First of all, let us give some of the expressions from which we may
select triples. The number of combinations of triples selected from these
is fairly large, and we will not describe all of them. Likewise, the
expressions, if written with implication and necessity alone, become quite
long, so we will first use these auxiliary definitions:

p#q is defined to be p =3 (q D Op)
»$q is definedtobe (p Dq)3(p3¢9)
pvq isdefinedtobe (pDgq) Dg

The following eight expressions are all definable by D and O, and are
valued T in half of the rows of the truth-table, and F in half of the rows of

10. See [1] and [2].
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the truth-table. In Table IV, see p. 61, is a complete truth-table worked
out for the first three of these expressions.

(A (»>(p#9)30) > ®$%4)
(B) (pv(g>(p#49)) > (g3D)
(c) (pv(ptq > 4q)>0(pva)
D) @>(v®#9)) > (p$49)
(E) (pvav(p#q)>DO(va)
(F) (pv(g> (g# ) 2 (¢$p)
(@ @2(vig#p)) D@39
(H (g2 (p#q) 29) D(q3p)

Now, if we examine the truth-tables for the expressions (A), (B), and
(C), and compare them with the truth-tables for p and ¢, it is easy to see
that each row of the truth-table is characterized by the values which (A),
(B), and (C) and p and g take. That is to say that for a given row of the
truth-table, we have assigned values to these five expressions—for
example, TTTTT in the first row of the truth-table, TTTTF in the ninth row
of the table—and this assignment occurs only in one row of the truth-table,
hence that there is a one-to-one correspondence between rows of the truth-
table and the values given to p, ¢, (A), (B), and (C). As there are five such
expressions, the total number of possible assignments of T and F to them
is 32—the number of rows of the truth-table, so that a corollary of this is
that given any assignment of truth-values to the expressions p, g, (A), (B),
and (C), there corresponds one (and only one) row of a truth-table, or,
equivalently, any non-modal combination of these expressions corresponds
to a unique row of the truth-table, or, equivalently, that the expressions (A),
(B) and (C) are an appropriate choice for the two-variable case of Theorem
1. And they are all expressed using implication and necessity.

Now, in order for formulas to satisfy these properties in triples, they
must have one property, namely that they take on the value T in precisely
one-half of the rows of the truth-table. Were this not the case with each of
the expressions it would obviously be impossible for them to assume all
possible truth assignments once and only once. That even expressions
exist which have this property, and are constructed with implication and
necessity, is not obvious, and is tedious to work out. The expressions (A)
through (H), as mentioned above, have this property, and are thus among
them possible candidates for the same joint property that (A), (B), and (C)
share. As a matter of fact, all of these expressions do enter into triples
(according to the results of the computer program) with this property. It is
a time-consuming task to verify that they do—and one quickly appreciates
the ability of the computer to take over this task when one goes through the
verification. But we have found one set of expressions with the desired
property, so there is no need to discover the other sets among (A)
through (H).

Although by using a computer we are able to find sets of expressions,
definable by implication and necessity, satisfying the conditions of Theorem
1, for the two-variable case, the task for more than two variables becomes
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p$q b

)
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TABLE IV

impossible practically. For example, with three variables, the truth-tables
will have 27 = 128 rows, and we will now have to search among 5-tuples of
the extremely large number of possible functions. At this point, we must
proceed theoretically, which will mean that we will not give explicit
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expressions for the formulas—although the method we will give is con-
structive, in the sense that in principle we can write out the expressions.

Therefore, at this point it is appropriate to make our language more
precise:

a means that a is valid in S5;

a = B means that the strict equivalence of a and B is valid in S5 (i.e.,
that a and S have the same truth-values);

the n-ary functor ¢ is definable by the set of functors I', means that
there is an expression a which is constructed only from the propositional
variables p,, . . . p, and functors from the set I', such that

Fa=0¢py...pD,

We will now prove, in two steps (namely, Lemma 1 and Lemma 2) that
for any #z, the desired expressions for Theorem 1 are definable by {2, O}.

Lemma 1 If+O(p, & ... & p,) D 6py. .. b, then ¢ is definable by {2, O0}.
Proof: Assume that
I—Dpi OB

We have the equivalence of p ® g and g = (~p D q) in two-valued logic,, so
the validity of the above entails that there exists a wff y of S5 such that

HB=(y > 0p;) (1)

We may assume that y contains only the functors O, &, ~, and O, and the
variables p,, . . . ,p,. We will now eliminate all occurrences of negation on
the right side of (1), by moving ‘~’ outside of the scope of functors by the
rules:

replace 86 D ~e by ~(56 &e¢€)

replace ~52€ by (6 De)De

replace 6 & ~e by ~(5 De)

replace ~6& e by ~(e DJ)

replace 0O~5 by ~((6 > 0O(56 2 06)) D O(6 D O95))

It is easy to verify that in each case the replacement may be done with
truth-values preserved, and note in particular that the last expression
above is equivalent to ~<{6.

Now we have an expression equivalent to 8 which contains only O, &,
and O (in particular, the last occurrence of negation, if any, would occur in
the right side of (1) only on the left of the implication, and could thus be
eliminated by the second replacement rule). We may now further transform
the right side of (1) by moving all occurrences of ‘&’ outside the scope of
other functors by the following replacement rules:

replace (6 &e)D¢ by 6D(e D¢)

replace 5§ D (e &) by (6 D€) & (62D¢)
replace 00(6 &e) Dby 06 & Oe
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Again, it is straightforward to verify that these replacements may be done
preserving truth-values in S5.

" we follow the replacement rules as indicated above, then the
expression on the right side of (1) will be transformed into an expression
which is strictly equivalent to it, and which contains only implication and
necessity. This proves the lemma.

Lemma 2 For every n: theve ave k (= 22""") n-ary functors 6; of S5,
definable by {0, D}, such that for every expression a in S5 containing the
variables p, . . . p, theve is a unique (k + n)-ary non-modal functor  such
that

"‘a‘:‘l/(pl, .. -,pn; el(ply o e ey pn)5 o ooy ek(ply o . ey pn))

Proof: This is essentially Theorem 1 with the restrictiori that the functors
be definable by {0, D}. The proof will be by induction on n. For n= 1, the
functor * defined by

F*(p) =0(p > 0Op)

serves as such a functor, as was shown above.

Suppose that for given =, the specified 6; exist. Then for all rows of
the truth-tables in which Op,,, is valued T, there are wffs 6;(p,, . . ., P,
which characterize the rows uniquely. That is to say, for each valuation of
0:(Pyy . D)y i=1,...,2"Vandof p, . . . p,, this is the correct valua-
tion of one and only one row in the truth-table in which O0p,,, is valued T.
Now we may choose expressions B; which are all valued T when O0p,,, is
valued T, such that the valuations of B;, pn, 6;(py, . . ., b,) uniquely char-
acterize all rows of the truth-table for the variables p,, .. ., py+;. By
Lemma 1, this means that the functors 6; (p1, - . -, Dnyy) which are defined by
Bj, are definable by the set {0, D}.

2.3 Axiomatization of the Fragments of S5 We are now prepared to use the
method of Henkin, applied to the normal form theorem represented in
Lemma 2, the generalized form of ‘Theorem 1. First, we must look at the
minimal fragment to be considered, that is, the fragment with implication
and necessity only.

The following axiomatization of the {2, O} fragment of S5 is due to Beth
and Nieland."

Al p>O(g>dD D)

A2 (pD(@>N) 229 D (D7)
A3 (p2@>p2p

A4 Op>Op

A5 0O(@p>g) >(Op>0g)

Aé¢ (@p>o0Og>0(Op>D4q

Rules for substitution and detachment for material implication, and the

11. Beth and Nieland [3].
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Godel-Aristotle rule that if a is a theorem, then Oa is a theorem. The
axioms Al, A2, and A3 constitute a complete axiomatization of the implica-
tional fragment of the two-valued propositional calculus,’® so we are
justified in using any of the usual theorems and rules of the two-valued
propositional logic which contain only implication. A5 immediately entails

A7 Op>0O0Op

The following may also be proved easily from the axioms A1-A45:

O@ > ¢) 2 (0p 2 q) (by A9)

O@(»>q) 2(@p > q) (Godel rule)

O(pDq)>0(@p D9 (by A5)

A8 O(p>q) D (Op>0g) (by A5)

Conversely, the set A1, A2, A3, A4, A7, A8 entail AI-A5, as may be seen
by this simple deduction:

O(p > 4q) 2 (0p>0g) (A8)
O(0p 2 ¢) © (0Op © Og) (by AS8)
DO0Op > Og 2 (Op D Og) (by A7)
0(Op © ¢) © (Op D Og) (by A1-A3)

As this latter set is the axiom set of Gddel for S4, less axioms for
negation, it is plausible that this constitutes a complete axiom set for the
{>, O} fragment of S4 (as is proved by Beth and Nieland)—at least it
contains at most S4. The axiom A6 may be seen to be equivalent to the
necessary addition for S5 provided we take the following definition by
possibility.

Op=0(pp>0p) Dp
Then from A1-A6 follow:

<o0Op > O(O(@p > OOp) > Op) (by A6)

0(0O(Op > 00Op) > Op) D OO(Op D OOp) D OOp (by A8)

(O(O@p > OOp) 2 Op) > OOp) (by A7)

A9 oOp>0Op (by A5)

We will now sketch a completeness proof of this fragment of S5. The
notion of validity has above been characterized by truth-tables. Here, we
will use the semantic tableau method of Beth, which verifies the same wffs
as the truth-tables.

Suppose that we are given a well-formed formula. We may test its
validity with truth-tables either by exhausting all rows of the truth-table,
or by attempting to find at least one row in which the formula is valued
false. This latter procedure may be described systematically by the

12. Due to Tarski and Bernays. See [9].
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semantic tableau method. We begin with one main tableau—which may he
visualized thus:

True False

The formulas which we will put on the right side of the vertical line are
those which are determined to be false, those on the left side, those which
are determined to be true. We begin with the assumption that the given
formula is false, and attempt to show that this is impossible or to find at
least one case in which the formula is false. In case that we have the
situation

T| F
IKEE

because we know that a O B can be false only if a is true and 3 is false, we
may extend this tableau thus:

T | F
a>p
a B
In case that we have
a>p

Then we know that @ O 8 is true, hence that either « is false or that 8 is
true. In this case, we construct two sub-tableaux, representing each of the
possibilities:

a>fB

“Telel

In case that we have

Oa

Oa is false provided that there is some portion of the truth-table in which a
is false, which is represented here by beginning a new alternative tableau:

Finally, in case that we have
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Oa

This case, the case that Oa is true, entails that in all portions of the
truth-tables, a is true—or here, that in every alternative tableau created by
the above case, that a is true:

The formula in question may thus be mechanically reduced to atomic
formulas, where we may readily test the possibilities: A tableau is closed
(that is, not possible) provided that the same variable appears both in the
True column and the False column. If a tableau has sub-tableaux, then the
tableau is closed if and only if all of its sub-tableaux are closed. If a
tableau has alternative tableaux, then the tableau is closed if and only if one
of the alternative tableaux is closed. The closure of the tableau obviously
corresponds to the impossibility of finding a falsifying instance of the
formula, hence of the validity of the formula. On the other hand, if the
tableau is not closed, then we are guaranteed by the exhaustive nature of
the search that the formula has a falsifying instance.

Now we are prepared to apply the semantic tableau method to the
{2, O} fragment of S5. For a fragment of S5 containing O, O and any n-ary
functor ¢, we can establish rules for the semantic tableau by means of
Lemma 2. Suppose that we have in a tableau an occurrence of ¢ in the truth
column, for example

oa; ... 0
By Lemma 2, there are expressions 6, ..., 6 such that the truth of
¢a; . ..a, is equivalent to the alternation of conjunctions of 6; and the

negations of 6;. That is, to speak in terms of truth-tables, ¢a, . .. a,is
true in a certain number of rows of the truth-table, for example in the row
in which 6;, 6, . . . are all true and 6, 6,, . . . are all false. Therefore, we
have this principle for the semantic tableau:

¢a; ... ap

6; 6; e e 6 6;

That is, we generate one sub-tableau for each row of the truth-table in
which ¢, . .. @, is true, and in a given sub-tableau place 6; as true or
false according as it is true or false in the given row of the truth-table.
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Likewise, in case that ¢a, . .. a, is false, we have a similar alterna-
tion of rows of a truth-table. Hence, there is a principle for the semantic
tableau of this form:

day ... ay

6; 0; Oy 6,

For axioms for this fragment of S5, we will take the axiom set for the
{>, O} fragment of S5, its rules, and axioms of the following forms:

$12...2¢;24,5...2¢2@,28)2...2@#FDs)D(a,08) ...
D(a,25s) D> ((ppy. .. 38)38) (1)
4:2...2¢i2;,0... 2,27 D8)D... D Ds)D(a,28) .
D(ag28) D2 (dpr...pn28) (2)
where:

i) a’s are expressions of the form 6(p, . . . p,), for 6 chosen as in Lemma
2;

ii) the variables q, . . . q; ¥y ...7; are a permutation of p, . . . p,;

iii) form (1) is chosen when the row of the truth-table in which q; . . . g;
a;...a are all true and 7, ...7%; @;;...0a; are all false is a row in
which ¢p, . . . p, is true;

iv) form (2) is chosen when the row of the truth-table in whichgq, . . . g;
@ ...a; are all true and ¥, ...7%; Qy; ... a, are all false is a row in

which ¢p, . . . p, is false.
Theorem 2 The above axiom set is complete for the O, O, ¢ fragment of S5.
Proof: We will establish the truth of this in three stages:

It is an inductive proof, to show that every formula which has a closed
semantic tableau is provable from the axioms. The induction is on the
number of lines in a closed semantic tableau. By considering the rows
generated for elimination of the three functors independently, we have the
three stages, corresponding to the completeness of A1-A3 for two-valued
propositional calculus, of A1-A5 for the implication-necessity fragment of
S5, and finally for the completeness of the {2, O, ¢} axiom set.

Corresponding to a construction of a semantic tableau which is closed,
there is a deduction of the formula through a series of steps, each step
being related to a given application of a reduction principle for semantic
tableaux, with the steps proceeding in the reverse order as the application
of the reduction principles.

Thus, at the bottom of the semantic tableau we have the closure
property because the same formula appears in both the True and the False
column., This situation corresponds to the provable formulas p O p,
pD(q@>p), g2 (pOp), ... For in general, each row of a tableau
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corresponds to an expression in which the formulas on the True column
imply the alternation of the formulas in the False column.

We may call stage one of the process the elimination of the rules for
implication. Corresponding to the rule

a>p
6|l
We have this rule of two-valued propositional calculus

BOy
dDOa
6D ((@>B) D)

As the axioms A1-A3 are in fact a complete axiom set for the implicational
fragment of two-valued logic, this rule may be used. For the other rule for
implication, i.e.,

—

a>f

this is trivially eliminable.

Stage two is the corresponding elimination of the rules for necessity.
For necessity on the True column, this may be done in virtue of the axiom
A5, on the False column, in virtue of the axiom A4 and the rule: if @ then
Oa. See Beth and Nieland [3].

Stage three is the corresponding elimination for. the functor ¢. In this
case, the rules for the semantic tableau and the axioms for ¢ are clearly
designed to make this stage simple. Suppose that we have this tableau:

oa;...a,

6; 0; 6, 6,

In such a case, our principles for introduction of axioms for ¢ state that
‘there is an axiom which eliminates this rule. That is, that there is an
axiom, which has a substitution instance of the form

((6;27)D(6;27) 26,26, D(¢a; . ..a,27))

whereby the rule is eliminable. Similarly for occasions in which ¢ occurs
in the False column.

Hence, by induction, corresponding to every closed semantic tableau
there is an inference from our axiom set which results in the formula at
the top of the tableau. Therefore, the axiom set is complete.

Now, as mentioned, this axiomatization of the fragments of S5 is
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constructive, although it is not easy to display the axioms in any but fairly
simple cases. The method is also restricted more than, say, Henkin’s
axiomatization in that Henkin assumed that the fragment contained the
functor for implication, while we need also that the fragment contains
necessity. The method used here in fact does not seem to admit of
generalization in that direction. Of course, it is more general in the sense
in which the system S5 can be considered as a generalization of two-valued
logic.
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