Notre Dame Journal of Formal Logic Volume XV, Number 3, July 1974 NDJFAM

GENERALIZATIONS OF THE DISTRIBUTIVE AND ASSOCIATIVE LAWS

ALAN C. WILDE

1 Introduction Let $x \triangle y$ and $x \bigcirc y$ denote two truth-value functions: $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, where 1 and 0 denote "true" and "false" respectively. The two functions "and" and "or" satisfy the law

(*)
$$x \bigtriangleup (y \odot z) = (x \bigtriangleup y) \odot (x \bigtriangleup z)$$

in either order. We would like to weaken (*) so that more functions satisfy the relationship. To do so, we use

(**)
$$x \bigtriangleup (y \odot z) = (x \bigtriangleup y) \odot (x \bigtriangleup z) \odot (x \bigtriangleup I)$$

where I is the identity of $x \bigcirc y$. (**) is a generalization of (*) for the reason that all functions $x \bigcirc y$ that have identities and all $x \bigtriangleup y$ that together satisfy (*) also satisfy (**), but not conversely. This is shown in Theorem 1.

"And" and "or" satisfy the associative law

 $x \bigtriangleup (y \bigtriangleup z) = (x \bigtriangleup y) \bigtriangleup z$,

and so does "equivalence" and "exclusive or." However, we shall demonstrate that for all truth-functions $x \triangle y$, the truth-values of $x \triangle (x \triangle z) \equiv (x \triangle y) \triangle z$ and $x \triangle (y \triangle z) \lor (x \triangle y) \triangle z$ are independent of y.

2 The Generalized Distributive Law We wish to prove the following:

Theorem 1 (**) holds

(a) for all $x \triangle y$ if $x \bigcirc y$ is either $x \equiv y$ or $x \lor y$;

and

(b) for all $x \triangle y$ such that $y \leq z$ implies $x \triangle y \leq x \triangle z$ if $x \bigcirc y$ is $x \lor y$ or $x \land y$.

Proof: Note that $x \land y$, $x \lor y$, $x \equiv y$, and $x \lor y$ are the only functions that have identities, so Theorem 1 has all the possible combinations. All four of them happen to be commutative and associative. For part (a), let us show

Received September 18, 1972

$$x \bigtriangleup (y \equiv z) = (x \bigtriangleup y) \equiv (x \bigtriangleup z) \equiv (x \bigtriangleup 1).$$

If z = 1, this becomes $x \triangle y = (x \triangle y) \equiv (x \triangle 1) \equiv (x \triangle 1)$ which is clearly true. Thus it holds for z = 1 along with y = 0 and y = 1; by symmetry, the equation holds for y = 1 and z = 0. Finally, if y = z = 0, then we get

$$x \bigtriangleup 1 = (x \bigtriangleup 0) \equiv (x \bigtriangleup 0) \equiv (x \bigtriangleup 1),$$

which also simplifies. Since $x \equiv y$ and $x \leq y$ are De Morgan complements, the other case of part (a) follows. As for part (b), let us take $x \bigcirc y$ to be $x \land y$ and assume $x \bigtriangleup (y \land z) = (x \bigtriangleup y) \land (x \bigtriangleup z) \land (x \bigtriangleup 1)$. If $y \leq z$, this reduces to $x \bigtriangleup y = (x \bigtriangleup y) \land (x \bigtriangleup z) \land (x \bigtriangleup 1)$. Since $y \leq z$ if and only if $(y \land z) = y$, it follows that $x \bigtriangleup y \leq x \bigtriangleup z$. Assume now that $y \leq z$ implies $x \bigtriangleup y \leq x \bigtriangleup z$. Then it is true that $y \leq z$ implies $x \bigtriangleup (y \land z) \leq (x \bigtriangleup y) \land (x \bigtriangleup z) \land (x \bigtriangleup 1)$. By substituting truth-values, we can show that only equality holds. If z = 1, then we have

$$x \bigtriangleup y = (x \bigtriangleup y) \land (x \bigtriangleup 1) \land (x \bigtriangleup 1) = x \bigtriangleup y.$$

Thus it holds for z = 1 along with y = 0 and y = 1. Substituting y = z = 0 results in

$$x \bigtriangleup 0 = (x \bigtriangleup 0) \land (x \bigtriangleup 0) \land (x \bigtriangleup 1) = x \bigtriangleup 0.$$

The rest of part (b) follows by a similar argument.

In (**), $x \triangle I$ is an "error term" independent of y and z, which means that the distributive law "almost" holds. If $x \triangle I = I$ for all x, then (**) is (*); whereas if $x \triangle y$ is either $x \equiv y$ or $x \lor y$ and if $x \triangle I = \overline{I}$ for all x, then (**) is

$$x \bigtriangleup (y \odot z) = -[(x \bigtriangleup y) \odot (x \bigtriangleup z)].$$

Schröder expressed all truth-functions in the form

$$x \bigtriangleup y = \varphi_{11}xy + \varphi_{10}x\overline{y} + \varphi_{01}\overline{x}y + \varphi_{00}\overline{x}y$$

where "x + y" is "or," "xy" is "and," " \overline{x} " is "not x," and φ_{ij} is either 1 or 0 depending on which truth-function we are considering. Note that the error term is either

$$x \bigtriangleup 1 = \varphi_{11}x + \varphi_{01}\overline{x} \text{ or } x \bigtriangleup 0 = \varphi_{10}x + \varphi_{00}\overline{x}.$$

3 The Generalized Associative Law As a generalization of the associative law, we have:

Theorem 2 For all truth-functions $x \triangle y$, the truth-values of the expressions $x \triangle (y \triangle z) \equiv (x \triangle y) \triangle z$ and $x \triangle (y \triangle z) \underline{\vee} (x \triangle y) \triangle z$ are independent of y.

Proof: One method of proof is to substitute functions into the first expression for $x \triangle y$ in the form: $xy, x\overline{y}, \overline{xy}, \overline{xy}, x + y, x + \overline{y}, \overline{x} + y, \overline{x} + \overline{y}, x = y, x \underline{\vee} y, x, y, \overline{x}, \overline{y}, 1$, and 0, and test each case with truth-values. Since $x \underline{\vee} y = -(x \equiv y)$, the other expression is also independent of y.

4 Conclusion The two laws demonstrate relationships between more truth-functions than "and" and "or." However, they are derived from and do not replace the basic axioms of propositional logic.

REFERENCE

[1] Schröder, Ernst, Vorlesungen über die Algebra der Logik, B. I-III, second printing, Chelsea Publishing Co., Bronx, New York (1966).

The University of Michigan Ann Arbor, Michigan