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A THEOREM CONCERNING A RESTRICTED RULE OF
SUBSTITUTION IN THE FIELD OF

PROPOSITIONAL CALCULI. I

BOLES LAW SOBOCINSKI

In this paper the rule of simultaneous substitution ordinarily used in
the field of propositional calculi will be called restricted if, in the
formalization of the given system, its applications are limited to the
axioms of that system. So far as I know, A. Lindenbaum was the first who
investigated an instance of this rule. Namely, around 1934 he informed me
casually that there are some systems whose axiomatizations have a special
structure of the bi-valued propositional calculus in which a replacement of
the rule of simultaneous substitution by the restricted one does not affect
the strength of these systems. Since Lindenbaum never published his
research concerning this and related results, I have no idea exactly how his
theorem was formulated and how it was proved. Much later, in [1],
pp. 148-151, section 27 (see especially p. 150), A. Church sketches a proof
of a theorem which states that any system of the classical propositional
calculus or any partial system of that calculus whose only rules of
procedure are: detachment for implication and substitution (not necessarily
simultaneous) may be reformulated into a system which has the same
theorem as the original one and whose single rule of procedure is
detachment. An inspection of Church's proof of this theorem shows that it
holds simply through replacing each axiom of a system under consideration
by the corresponding axiom schema. Since, certainly, Lindenbaum did not
intend to reject the rule of substitution totally in formulating his theorem
and, probably, he did not use the axiom schemata in the deductions which
were needed for a proof of the theorem, the theorems discussed above are
rather distinctly different.

In this note we will prove the following theorem concerning the
restricted rule of simultaneous substitution:

Theorem A If (i) T is an arbitrary, consistent propositional system whose
formalization satisfies the conditions:

(a) The set of primitive notions of T contains at least the proposition
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forming functor for two propositίonal arguments C which does not
necessarily coincide with the classical implication;
(b) The set of the rules of procedure of T contains at least the following two
rules:

Rl The rule of simultaneous substitution which is ordinarily used in the
field of propositional calculi, but here is adjusted to the primitive notions
of system T,

and

R2 The rule of detachment in regard to functor C: If the formulas a and
Caβ are the theses of T, then formula β can be added to T, as its new
thesis;

(c) System T is axiomatizable and its complete axiom set %, which can be
finite or infinite, does not contain the axiom schemata,

(ii) Sequence A = {α1? . . ., αw}, 1 < m < °°, is an arbitrary, unempty, finite
subset which can be proper or unproper of the axiom set%,

(iii) Formula b which is a well-formed formula in the field of system T and
is not equiform with any term of sequence A,

and

(iv) Rule Rl * is the restricted rule Rl,

then in T: Formula b is provable in the field of A by the applications of the
rules Rl and R2, if and only if, formula b is provable in the field of A by
the applications of the rules Rl * and R2.

Obviously, Theorem A is a very strong generalization of Lindenbaum's
theorem mentioned above. It should be noted that the axioms of T are
entirely undefined (clearly, we know only that at least one of the axioms
belonging to sequence A must have a form Caβ), and it is self-evident that
Theorem A holds only for the rule of simultaneous substitution.

Proof:

1 In order to prove Theorem A in the most compact way I shall use, in the
reasonings presented below, the following abbreviations:

(a) The abbreviations "a « β," " A ^ α , " and (i{a}\^β'9 will mean "formula
a is equiform with formula β," "in the field of sequence A formula a is
provable by Rl" and "β is a consequence of a by Rl" respectively. The
analogous and obvious meanings will have the following abbreviations:
"Al^α," " A ^ α , " " A ^ α , " " { β f e β , " "{«, β f e r , " and "Af^Γ,"
and so forth. The last abbreviation given above means "in the field of A
the set (the sequence) of the formulas V is provable by Rl *,"

and the following tacit assumptions:

(b) In any sequence which will be considered below each of its terms
occurs without repetition.
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(c) If the sequence Z considered below contains three terms τ t , τ ; , and 77,
1 <j </, such that in Z {T JI^J-T/ and {τy}l̂ γτ/, then tacitly Z is substituted
by a sequence which possesses exactly the same terms and ordering, but in
which {τi}\-RϊTf. It is similar if instead of Rl we have Rl*. Clearly, we can
do it, since our rules of substitution are simultaneous.
(d) If a subsequence V of the given sequence Z is such that it contains all
such and only such terms of Z that satisfy all conditions of the given
property φ and a subsequence W = Z - V, then we assume tacitly that these
two subsequences are ordered according to the order in which their terms
occur in the sequence Z. Moreover, we assume that in Z its terms are
automatically rearranged in such a way that each term of V precedes every
term of W. Thus, in such a case we have: Z = {V; A/V}. Obviously, we can
do this only under conditions where the subsequences V and W are disjoint
and 0 is suitably defined.
(e) If a subsequence V = {σί9 . . ., σm}, 0 < m < °°, of the given sequence Z
is such that it contains all such and only such terms of Z which satisfy all
conditions of the given property φ, and formula r also satisfies these
conditions, but it is not a term of Z, then the sequence V* = {σ1? . . ., σm,
Vm+i}, 0 < m + 1 < °°, in which σmvι ~ r, is called an augmentation of V.
And, if in Z we replace V by V*, then this new sequence will be indicated by
Z*. Moreover, we tacitly assume that the augmentation of Z is always done
in such a way that, if p is the last term of Z, then it is also the last term of
Z*. Thus, e.g., if Z = {V; W}, then Z* = {V*; W}. It is self-evident that if,
in the proof given below, it will be established that the given sequence
P = {Q; R} possesses a certain required property ψ and its subsequence Q
is augmented to Q* by a formula which does not contradict ψ, then
P* = {Q*; R} also satisfies ψ.

2 Now, let us assume the antecedent of Theorem A. Since Rl * is a
restriction of Rl , we know at once that it is sufficient to prove: In T, if
Al^ϊ^b, then A IRΊ* R2̂ - Hence, assume that in T At̂ η ̂ b . Then it follows
from this assumption and the standard definition of a proof that there exists
an unempty, finite sequence of the formulas:

Φ = {cu, . . . αw, bm{1, . . ., bz}, 1< z < <*>,

constructed in accordance with the points (b) and (c) of 1 and such that:

(1) The terms α1? . . ., am of Φ are the axioms of T which belong to A;
(2) The terms of subsequence B = {bm+1, . . ., bz} of φ are such that if
bt, m + 1 ^ t ^ z, is a term of B, then either

(a) there is a term σ of φ which precedes b, and {σ}|̂ γb/,

or

(|3) there are the terms σ and r of φ which precede b, and {σ, r}^b/;

(3) The last term of Φ, viz. bz, is such that bz ~ b.

2.1 Since it will be more convenient for our further reasoning, I
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remunerate the terms of B, as follows: B = {Bm+1, . . ., bz} = {bί9 . . ., b^},
1 ^ w< z, bw ~ b. Moreover, since it follows from points (ii) and (iii) of
the antecedent of Theorem A that both subsequences A and B of Φ are
unempty and since, according to the definition of φ, they are disjoint, we
have: Φ = {A; B}, cf, 1 (d).

3 The subsequences of B which will be defined below and which, eventually,
can be empty, will be analyzed and used in our proof.

3.1 Let Vi = {aί9 . . ., aw}> 0 ^ n ^ w9 be a subsequence of B containing all
such and only such terms of B that for every α?7 , 1 < j ^ w, oij is a term of
Vi if and only if α; is a term of φ and in A there is a term αf , 1 < i < m,
such that {θi}\^aj.

3.1.1 If Vi is unempty, then since all terms of \fx are generated by the
application of Rl to the axioms of T belonging to A, it is self-evident that
A[R7*VI. Therefore, if B = Vi, then, since B is not empty, cf., 2.1, we have,
obviously, Vi = {b}, i.e., that Af^b. And, in such a case Theorem A is
proved. On the other hand, if B Φ \ίl9 then for C = B - \ίx we have, cf, 1 (c),
B = {Vx; C}, i.e., φ = {.A; Vx; C}, where Vi can be empty.

3.2 If C is unempty, let V2 = {βl9 . . ., βp\, 1 < P < w, be a subsequence of C
containing all such and only such elements of C that for every βk, 1 ^ k < w,
βk is a term of V2 if and only if βk is a term of φ and in Φ there are two
terms σ and r which precede the first term of C and such that r ~ Cσβk and
{σ, τ}\^βk.

3.2.1 If V2 = C, then Φ = {A; Vx; V2}. Therefore, in such a case if Vx is
empty, then A^N^, i.e., obviously, c/., 3.2, Ahĵ b, and if Vx is unempty,
then, cf., 3.1.1, A^ΓR-2V2, i.e., clearly, Af^r^b. Thus, if φ = {A; Vi; V2},
then Theorem A is proved. On the other hand, if V2 Φ C, we have for
D = C - V2, c/., 1 (d), C = {V2; D}, i.e., Φ = {A; Vx; V2; D}. In such a case,
since D is unempty, its first term, d1? neither

(a) can be such that Aĥ -dx, since otherwise it would be a term of Vi, cf.,
3.1, or for the same reason, cf., 1 (c), such that Vil^fdi,

nor

(b) can be such that it would be a consequence by R2 of two terms belonging
to φ which precede the first term of V2, since otherwise it would be a term
of V2, cf, 3.2.

Hence, if D is unempty, and d1 is its first term, then either in V2 there
is a term σ such that {σ}^dχ or in φ there are two terms σ and τ such that
they precede d1? at least one of them is a term of V2, r ~ Cσάλ and
{σ, τ}^di. Therefore, if in φ its subsequence D is not empty, then also V2

is unempty.

3.3 If D is unempty, let E = {γl9 . . ., y j , 1 < q < wy be a subsequence of D
containing all such and only such terms of D that for every γk9 1 < k < w, γk

is a term of E if and only if γk is a term of Φ and in V2 there is a term σ
such that {σ}\^γγk.
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3.4 If D * E , let F = D - E. Hence, if E is unempty, D={E;F}, i.e.,
Φ = {A; Vi; V2; E; F}. It follows at once from the definitions of D and E
cf., 3.2.1, and 3.3, that if F is not empty, then its first term, say f1? is such
that in Φ there are two terms σ and T such that they precede f ί9 τ ~ Cσ1l and
{σ, rjl^fi. Moreover, clearly, cf., 3.2.1., at least one of these terms must
be either a term of V2 or a term of E, since otherwise fx would be a term
of V2.

4 In this section it will be shown that if subsequence E of D is unempty,
then we are always able to replace Φ by its augmentation constructed
effectively:

Φ* = {A;V1*;V?; F}

in which its subsequences A and F are exactly the same as in φ and the
subsequences V? and V* are such augmentations of Vi and V2 that each
formula which in Φ is a term of E occurs in Φ*, as a term of V*.

4.1 Let us assume that in Φ its subsequence E is not empty and, moreover,
that γk, 1 < k ^ q, is an arbitrary term of E. Then, according to the
definition of E, cf., 3.3, in V2 which is not empty, cf., 3.2.1, there is a term
βh, 1 < h < p, such that fejf^n. Since βh is a term of V2, inΦ, cf., 3.2,
there are two such terms σ and r that precede the first term of V2, such
that T ~ Cσβh, and {σ, τ}l^βλ. Hence, in accordance with the definition of
V2, there are four possibilities: either both σ and τ are the terms of A, or
σ is a term of A and τ is a term of Vi, or σ is a term of Vi and τ is a term
of A, or both σ and r are the terms of Vlβ Consequently, we have to analyze
the four possible cases:

Case 1. Both σ and τ are the terms of A, τ ~ Cσβ^, {σ, r]\^βh and
{βh}^RϊΎk' Since both rules of substitution mentioned in the formulation of
Theorem A are simultaneous, it follows at once from our present
assumptions and the definition of V1? cf., 3.1, and 3.1.1, that

(1) there must exist a formula μ such that {τ}l^pμ and μ ~ Cpγk,

and that

(2) either σ ~ p or σ\^τρ.

Hence, we have to investigate the four obvious subcases:

Subcase la. σ ~ p and μ is a term of Φ. Whence, if follows from point (1)
and the definition of Vx that μ is a term of Vi However, such a case is
impossible, since otherwise, cf., point (1) and the definition of V2, y& would
be a term of V2.

Subcase lb. σ ~ p and μ is not a term of Φ. Hence, also μ is not a term of

Vχ Now, define:

(a) V?1 = {Vx; μ} = {al9 . . ., an, an+1}, 1 *s n + 1, an+ί « μ.

(b) V*1 = {V2; Ύk} = {βt, . . ., βp, βp+1}, Kp + 1, βp+1 - γk.
(c) E° = {γl9 . . ., yΛ_i, γk+1, . . ., γq}, 1 < k < q.
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Now, we replace in Φ its subsequences Vl9 V2, and E by V*1, Vf1, and E°
respectively obtaining in such a way a new sequence Φ * 1 = {A; Vf1; V?1;
E°; F}. Since, by assumptions, both σ and τ are the terms of A, {τj^μ,
μ ~ Cpγk and σ ~ p , we have μ « Cσy^ and, therefore, {σ, μ^V^γk- Hence,
since in Vf1 its last term an+1 ~ μ ~ Cpγk ~ Cσyfe and in VJ1 its last term
βpu ~ y&> in Φ* 1 AlR1*R2y& while in Φ ~ Δ\RT^-2Ύk Thus, it is self-evident that
if this subcase of Case 1 holds for γk, then we can always solve it accepting
instead of Φ its augmentation Φ* 1 as a proof sequence of b.

Subcase lc . σ ^ p and in Φ μ is a term of V^ The case that p is a term of
Φ, i.e., p is a term of Vi is impossible, since otherwise γk would be a term
of V2. Therefore, p is not a term of Φ. Hence, define:

(d) Vf2 = {Vx; p} = {<*!,..., an9 an+1}, 1 < n + 1, an+1 « p.

Then, using V* and E° as defined in points (b) and (c) above, we replace
Φ by its augmentation Φ* 2 = {A; V?2; V?1; E°; F}. Since r is a term of A and
W R T M J i n Φ * 2 AfRvrR2yJfe. Hence, if this subcase of Case 1 holds for γk, then
we can always solve it accepting instead of Φ its augmentation φ * 2 as a
proof sequence of b.

Subcase Id. {CΓ}(RΓP and μ is not a term of Φ. Whence, μ is also not a term
of Vi. On the other hand, since either p is a term of Φ or p is not a term of
Φ, each of these two possibilities must be assumed and investigated
separately. Wherefore:

Subcase ld^ {crjl^p; p is a term of φ and μ is not a term of Vi. Since σ is
a term of A, {^f^p and p is a term of Φ, it follows from the definition of
V1? cf., 3.1 and 3.1.1, that p is a term of Vi. Hence, define:

(e) V*3 = {Vi, μ} = {al9 . . . , < * „ , αn+1}, 1 < n + 1, an+ι « μ.

Then, we replace Φ by its augmentation Φ * 3 = {A; Vf3; Vf1; E°; F}.
Since both terms σ and r are the terms of A, {σ j^p, {TJl^pμ, p is a term
of Vi, i.e., clearly, p is a term of V*3, and, moreover, μ is a term of V*3,
in Φ* 3 A1RΊ* R2yfe. Therefore, if subcase ldL holds for γk, then we can always
solve it accepting instead of φ its augmentation Φ * 3 as a proof sequence
of b.

Subcase ld2. {V}\RT*P, P is not a term of Φ and μ is not a term of Vl4 Hence,
p is not a term of Vχ Now, if in A σ precedes r, we define

(f) Vf4 = {Vu p, μ} = {<*!, . . ., an, an+ι, an+2}, 1 < n + 1, an+1 « p and an+2« μ.

On the other hand, if in A r precedes σ, then we define V*4 as follows:

(g) Vf4 = {Vx, μ, p} = {au . . ., an9 an+1, an+2}, 1 < n + 1, an+ί « μ and an+2 « p.

Remark I: Clearly, each of the sequences which are defined in points (f)
and (g) above can be used in order to obtain a solution of subcase ld2.
Since the obtained solution must be unique, it must be uniquely determined
which of the sequences presented above should be accepted in regard to the
term γk under consideration. Since the assumptions concerning γk inform
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only that both σ and r are the terms of A, {crj^p, {τ}l^μ, both p and μ are
not the terms of Vx and {p, μ}\^2γk, the order of σ and τ in A is only one
possible determinent which uniquely selects a proper sequence in regard to

Ύk-

Then, we replace Φ by its augmentation Φ*4 = {A; V?4; V^1; E°; F} in
which V*4 is defined either as in (f) or as in (g) according to Remark I.
Since both σ and r are terms of A, {σ}l̂ pp and {TJi^u, in Φ*4 both p and μ
are the terms of V?4. Whence, in Φ*4 AlR1*R2y&. Therefore, if subcase ld2

holds for γk, then we can always solve it accepting instead of Φ its
augmentation φ* 4 as a proof sequence of b.

Thus, subcase Id is solved because it is established above that for
each its possible instances, i.e., subcases ldx and ld2, cf., also Remark I,
we are able to construct in an effective way such unique augmentation of φ,
viz. Φ*id> that ^sid is a proof sequence of b and that in Φ | l d Al^yr^n- Since
subcases ldχ and ld2 are disjoint, for the term γk under consideration there
is only one solution. Namely, if the given subcase (ldx or ld2) holds for γk,
then instead of Φ such form of Φ*id should be accepted as a proof sequence
of b which corresponds to that subcase.

4.1.1 Consequently, since it is established in 4.1 that for each possible
subcase of Case 1, we are able to construct in an effective way such
unique augmentation of Φ, viz. Φ* 1 ? such that Φ*χ is a proof sequence of b
and that in φ£x AIRΪT^T^, then Case 1 is solved. Moreover, since subcases
a-d of Case 1 are obviously mutually disjoint, we can conclude that for the
term γk under consideration there is only one solution of Case 1.

4.2 There are three remaining cases, cf., 4.1, which we have to investi-
gate. Namely:

Case 2. σ is a term of A, r is a term of Vx, τ~Cσ/3/,,{σ, T } ^ β ^ and {βhϊ^RϊΎk-
Case 3. σ is a term of Vi, T is a term of A, τ ~ Cσβh, {σ, T } ^ / ^ and

{βh}^Ύk
Case 4. Both σ and τ are terms of V1? τ ~ Cσβy {σ, r } ^ / ^ and {βhϊ^Ύk-

Remark II: It is obvious, that if one of the cases 1 or 3 holds for γk, then
in Φ there must be two distinct terms such that each of them is a term of A
and γk is a consequence of them by Rl and R2. On the other hand, if one of
the cases 2 or 4 holds for γk, then it follows from the definitions of these
cases that in Φ there can be only one term such that it is a term of A and
γk is a consequence of it by Rl and R2. Hence, in our proof it is not
excluded as a possibility that A = {θi}.

Using reasonings entirely analogous to these which are presented
above we can prove without any difficulty that the cases 2,3, and 4 can be
solved always in a similar way as Case 1. Namely, if one of these cases
holds for γk, then we are able to construct in an effective way the unique
augmentation of Φ such that this augmentation is a proof sequence of b in
which AlRi*/R27V Therefore, since the cases 1-4 are mutually disjoint and
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only one of them holds for γk under consideration, we can conclude that if

in Φ its subsequence E is not empty and γk, 1 ̂  k ^ q, is an arbitrary term

of E, then there is the unique augmentation of Φ such that this augmentation

which can be constructed in an effective way is a proof sequence of b in

which Δ^vj2Ύk'

4.3 Since in sections 4.1 and 4.2 it is assumed that γk, 1 < k < q, is an
arbitrary term of E, it is self-evident that if we shall apply the methods of
a proof which was presented in those sections consecutively to each term of
E, then finally we shall obtain in an effective way the unique augmentation
of Φ such that this augmentation will be a proof sequence of b in which
AlR1*R2'E. More precisely:

4.3.1 Let us assume that E is not empty. Since, cf., 3.3, E = {γl9 . . ., γq}9

I ^ q <w < °°, E i s a finite sequence. Then, define

Df.l For any n = 1, 2, 3, . . ., q:

c ί Έ Ύi ~ {yz> - - •> V?}» * e > Eyx *
s E ̂ o m which γx is' removed,

Yn " I Eγm

= bmM, •> Ύq}, i.e., Eym is E y m - 1 from which Ύm is removed.

Since q is finite, it follows at once from Df.l that Eγ is the empty
sequence.

Now, in the same manner as in 4.1 and 4.2 we construct in an effective
way the unique augmentation of Φ in regard to the first term of E, viz. γx.
Let us indicate this augmentation by: Φ y i = {A; V?yi; V*yi; E y i ; F} where V*yi

and V*yi are respectively Vi and V2 augmented in regard to γu E y i =
{y2> J Ύq}- Thus, Φ*χ is a proof sequence of b in which AlR1*R2y1. Since
Φ y i is a proof sequence of b, we can obtain its augmentation in regard to γ2,
viz. φ* 2 = {A; Vfy2; V£y2; C y 2 ; F}. Clearly, Φ*2 is a proof sequence of b in
which AlRi*R2{yi, γ2} Applying consecutively the preceding method to all
the terms of E according to their order we obtain a finite sequence
(£ = {φ; Φ* . . .; ΦyL} containing q + 1 terms and such that its first term is
Φ and if σn, 2 ̂  n ^ q + 1, is a term of ($, then σn is an augmentation of the
term σn_λ such that σn is a proof sequence of b in which A IR1*/R2{yi, . . ., γn-i}'
Obviously, the last term of <£, i.e., φ£ ? = {A; Vfγq; V?y EYq; F}, is a proof
sequence of b in which Ey^ is empty, and in which each term of E is a term
of V?y ?and A I R I ^ E -

Thus, it has been proved in this section that if Φ = {A; Vx; V2; E; F} is
a proof sequence of b, and in Φ its subsequence E is not empty, then there
is the unique augmentation of D, viz. D* , such that Dί is a proof sequence
of b in which A fR"vrR2 E.

4.4 Since in φ ^ EYq is empty, Φ*^= {A; VΪγq; V?^; F}. And, in order to
simplify this rather cumbersome notation, instead of φ * , Vfy , and V*y we
shall use Φ o , NΛE, and V 2 E, respectively. Thus, Φ o = {A; VIE; V 2 E; F} will
mean the same as Φ* ? = {A; VΪYq; V*y F}.

5 Now, let us assume that in φ its subsequence D, cf., 3.2.1, is not empty.
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Whence, D = {E; F}, c/., 3.3 and 3.4, and, therefore, Φ = {A; Vx; V2; E; F} in
which at least one of the subsequences, E or F, must be unempty. Hence, if
F is empty, then φ = {A; Vx; V2; E}. In such a case, c/.,4, we are always
able to replace Φ by its augmentation Φo = {A; ViE; V2E} such that φ 0 is a
proof sequence of b in which AIRΊ*R2b. Thus, if in φ its subsequence F is
empty, Theorem A is proved.

5.1 Therefore, let us assume that in φ its subsequence F is not empty.
Then, if in Φ, E is empty, φ = {A; Vx; V2; F}. On the other hand, if in φ, E
is not empty, then Φ = {A; Vx; V2; E; F} and, therefore, c/., 4, we are
always able to replace φ by its augmentation Φo = {A; VXE; V2E; F} such that
φ 0 is a proof sequence of b in which A IR1*>R2E. Since it is self-evident that
Φ, in which E is empty but F is not empty, is a particular instance of φ 0 , in
the future only Φo will be investigated.

Remark III: In order to avoid misunderstanding and confusion it should be
noted that if Φ* is an arbitrary augmentation of φ such that φ * is a proof
sequence of b, then the subsequences V* and V* of Φ* are always defined in
exactly the same way as Vi and V2, c/., 3.1 and 3.2, but, obviously, their
definitions are automatically adjusted to φ*. Hence, e.g., i n φ 0 A ^ " ^ { V I E ;

v 2 E } .

5.2 Assume that i n φ o

F = {fx, . . . , f , } , Kt<w,1t*b.

Since in φ 0 , E is empty, it follows from the definition of F, cf., 3.4,
that in φ 0 there are two terms K and λ such that both K and λ precede f 1}

i.e., the first term of F, and at least one of them must be a term of V2E and
{K, λ}^fi. Whence, clearly, if F = {fj, then 11 ~ b and, therefore, in φ 0 ,
AlRΐ*R2b. Since in such a case Theorem A is proved, let us assume that
F Φ {fi}. Consequently, cf., .3.4, if in Φof*, 2 ^ k ^ t, is a term of F, then
either

(1) in F there is a term λ such that λ precedes ίk and { A } ^ f&,

or

(2) i n φ o there are two terms μ and v such that both μ and v precede f&, and
at least one of them is either a term of V2E or a term of F, and {μ, vW^h-

5.3 Now, we introduce the following two definitions:

Df. 2 For any n = 1, 2, 3, . . . < °°:

Fi = F from which its first term iλ and every other term, if any,
which is a consequence of ίλ by Rl are removed.

n Fm = Fm_i from which its first term and every other term, if any,
which is a consequence of this first term by Rl are removed.

Df. 3 For any n = 1, 2, 3, . . . < °°:
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Thus, for any k, 1 < k < n, since Fk and S& are disjoint, FA - 1 = {Sk; F̂ }
where Fk can be empty. And, if F*> is unempty, then Fk-! = {Sk; Sk+1; Fk+1}
and so forth. In order to have a convenient notation in the future we use for
an arbitrary k, 1 ^ k ^ n, Sk= {sf, . . ., s*}, 1 ^ x ^ t, assuming that if for
j , 1 ** j ^ n, Sj\ Φ Sfe, then S7 and S*. can have different numbers of terms.
This convention will not lead to any misunderstanding in our further
deductions.

Remark IV: It follows at once from our assumption concerning the
structures of the sequences under investigation, cf., point (c), in section 1,
that if s*, 2 ^ j < x, is a term of Sk, 1 < k < n, then in Sfc{s?}^γS*.

5.4 Let us assume that for the given k, 1 < k < n, it was already proved
that i n φ o its subsequence F = {Sx; . . .; S -̂i; Sk; Fjand, moreover, suppose
that in F its subsequence Fk is not empty. Then, the first term of F, say
sί+1, cannot be a consequence by Rl of any term of Φo which precedes it,
since otherwise sf+1 would be a term of one of the subsequences ViE, V2E,
SI, . ., Sfc_l7 Sfc, contrary to the definition of F&, cf, Remark IV, 3.1, 3.2,
3.3, 4.4, Remark III, 5.1 and 5.3. Hence in φ 0 there must be two terms
μ and v such that both μ and v precede Sχ+1 and{μ, ^}[R2SI+1. Therefore,
in accordance with definitions Df. 2 and Df. 3 in Fk, sί+ 1 generates a new
subsequence, viz., S^+1. And, since by assumption F& is unempty, F^ =
{SJHI, F^41}. Therefore, we proved that: For an arbitrary k, 1 < k < n, if
Φo = {A; VlE; V2E; Sx; . . .; Sk; Fk}, then φ 0 = {A; VlE; V2E; S^ . . .; S*; Sk+1;
F^+i}. This statement, together with the facts that Φo is finite and that in
Φo S1 is not empty, cf., 5.2 and Df. 3, allows us to conclude by an ele-
mentary induction that for a certain finite >', 1 ^ y < t,

Φo = {A; VlE; V.E S ^ . . .,Sy}, s^-b

where for an arbitrary S&, 1 ^ k < y, S& is not empty.

5.5 It follows from the definitions of F and Sn and the fact, cf., 5.4, that in
$>o F = {Si; . . .; Sy}, 1 < y < t, that for Sk, 1 ^ k ^ y, in φ 0 there must be
two terms σ and r such that both σ and r precede sf, i.e., the first term of
Sk and {σ, τ}^sf. Since φ 0 = {A; ViE; V2E; Sx; . . .; Sy}, Φo

 i s a sequence of
y + 3 mutually disjoint subsequences. Hence, since σ and r can be the
terms of the arbitrary subsequences of φ 0 which precede Sk and they can
even belong to two different subsequences, in Φo there are many possible
combinations such that each of them can be eventually the actual instance
which satisfies {σ, r ^ s f . In the future we shall call such possibilities in
regard to Ŝ  the generic cases of S&. Since for our further deductions it is
important to know the exact number of the generic cases for each Ŝ ,
1 < h < y, this problem will be investigated below.

5.5.1 Clearly, for an arbitrary Ŝ , 1 < h ^ y, if in φ 0 there are two terms
σ and τ such that both σ and r precede sf, i.e., the first term of Ŝ  and
{σ, TJl^sί, then the following generic cases (a) both σ and τ are the terms
of A; (0) σ is a term of A and r is a term of ViE; (γ) σ is a term of ViE and
r is a term of A; and (δ) both σ and τ are the terms of ViE; are impossible,
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since otherwise sf would be a term of V2E> <?/•> 3.2. Therefore, at least one
of the terms, σ or τ, must be a term of V2E

 o r a term of S/, 1 < / < h.
Thus, if h = 1, i.e., Sλ = S1? and {σ, τ}|^s}, there are five and only five
generic cases of Si, namely:

(a) σ is a term of A and r is a term of V2E>

(b) σ is a term of VIE and r is a term of V2E>

(c) σ is a term of V2E and r is a term of A,
(d) σ is a term of V2E and r is a term of VIE,
(e) Both σ and r are the terms of V2E

5.5.2 It is self-evident that these five generic cases of Si are also the
generic cases of any SA, 1 < h ^ y. But, since in Φo the number of
subsequences which precede such SA is bigger than the number of sub-
sequences which precede Si, there are additional generic cases of SA Thus,
for example, if h- 2, i.e., SA = S2, then since in φ 0 , S2 is preceded by A,
ViE> V2EJ and S l5 there are seven new generic cases of S2, viz. (a) σ is a
term of A, or of VIE, or of V2E and r is a term of Si; (β) σ is a term of Si
and r is a term of A, or of VIE, or of V2E; (y) both σ and r are the terms of
Si; such that in S2 {σ, TJ-^ SI. Thus, there are 12 generic cases of S2.
Similarly, there are 21 generic cases of S3, 32 of S4, 45 of S5 and so forth.

5.5.3 The discussion presented above enables us to establish the following
formula:

Formula <δ For any h, 1 < h ^ y, if SA is a subsequence o/φ 0 , then there
are h2 + Ah generic cases O/SA

We prove Formula^ as follows:

(1) If for the given m, 1 < m < y, Sm+1 is a subsequence of Φo> then i n φ o

there are 3 + m subsequences which precede Sm+1. Hence, it is self-evident
that the number of all new generic cases of Sw + i is:

((3 + m) - 1) + ((3 + m) - 1) + 1 = 2m + 5.

Using the formula obtained above we define the following function:

Df. 4 For any n = 0, 1, 2, 3, . . .

= ί ψo= 5*
\<Pm = <Pm-l + 2.

Clearly, the value of φ0 is the number of generic cases of Si and the
values of φu φ2i φ3i . . . are respectively the numbers of the new generic
cases of S2, S3, S4, . . . .

(2) It follows from 5.5.1, 5.5.2, and point (1) that for any / and g, 1 < / <
g < n, all generic cases of S/ are also the generic cases of Sg, but besides
them there are 2(g - 1) + 5 new generic cases of Sg. Then, the function
defined in (1) allows us to calculate, for the given finite m, the number of
all generic cases of Sm as a finite series of φn containing m components.
Namely:
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n-m-i

Σv Ψn = Ψo + Ψi + ψ2 + <?3 + + <?m-2 + ΨmΊ
n-0

= 5 + 7 + 9 + 11 + . . . + (2(m - 2) + 5) + (2(m - 1) + 5)
= 5 m + 2 + 4 + 6 + . . . + 2(m - 2) + 2(m - 1)
= 5m + 2(1 + 2 + 3 + . . . + (m - 2) + (m - 1))

ft / ( ^ ~ l ) m \ c / 2 x 2= 5m + 2 I- jr1—J = 5m + (m - m) = m + 4m.

Thus, for the given finite m Formula Φ is established.

(3) It remains to prove by induction that for every SA> 1 ^ ^ ^ y, F o r m u l a e
holds. Since we have

(a) Formula Θ holds for Si.
(b) Assume that for the given k, 1 < k < y, Formula <Sholds for S .̂ Hence,
c/., point (1), the number of all generic cases of S&+1 is: (k2 + 4^) +(2^ + 5) =
(k2 + 2k + 1) + (4k + 4) = (k + I) 2 + 4(& + 1). Therefore, Formula β holds for

s* + 1 .
The proof of Formulae is complete.
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