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A THEOREM CONCERNING A RESTRICTED RULE OF
SUBSTITUTION IN THE FIELD OF
PROPOSITIONAL CALCULI. I

BOLESEAW SOBOCINSKI

In this paper the rule of simultaneous substitution ordinarily used in
the field of propositional calculi will be called restricted if, in the
formalization of the given system, its applications are limited to the
axioms of that system. So far as I know, A. Lindenbaum was the first who
investigated an instance of this rule. Namely, around 1934 he informed me
casually that there are some systems whose axiomatizations have a special
structure of the bi-valued propositional calculus in which a replacement of
the rule of simultaneous substitution by the restricted one does not affect
the strength of these systems. Since Lindenbaum never published his
research concerning this and related results, I have no idea exactly how his
theorem was formulated and how it was proved. Much later, in [1],
pp. 148-151, section 27 (see especially p. 150), A. Church sketches a proof
of a theorem which states that any system of the classical propositional
calculus or any partial system of that calculus whose only rules of
procedure are: detachment for implication and substitution (not necessarily
simultaneous) may be reformulated into a system which has the same
theorem as the original one and whose single rule of procedure is
detachment. An inspection of Church’s proof of this theorem shows that it
holds simply through replacing each axiom of a system under consideration
by the corresponding axiom schema. Since, certainly, Lindenbaum did not
intend to reject the rule of substitution totally in formulating his theorem
and, probably, he did not use the axiom schemata in the deductions which
were needed for a proof of the theorem, the theorems discussed above are
rather distinctly different.

In this note we will prove the following theorem concerning the
restricted rule of simultaneous substitution:

Theorem A If (i) T is an arbitvary, consistent propositional system whose
formalization satisfies the conditions:

(a) The set of primitive notions of T contains at least the proposition
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forming functor fov two propositional avguments C which does not
necessarily coincide with the classical implication;

(b) The set of the vules of procedure of T contains at least the following two
rules:

R1  The vule of simultaneous substitution whilh is ordinarily used in the
field of propositional calculi, but heve is adjusted to the primitive notions
of system T,

and

R2 The vule of detachment in vegavd to functov C: If the formulas a and

CafB ave the theses of T, then formula B can be added to T, as its new
thesis;

(c) System T is axiomatizable and its complete axiom set W, which can be
finite or infinite, does not contain the axiom schemata,

(ii) Sequence A ={a,, ..., au}, 1 <m < =, is an avbitrary, unempty, finite
subset which can be propev ov unproper of the axiom set N,

(iii) Formula b which is a well-formed formula in the field of system T and
is not equiform with any tevm of sequence A,

and
(iv) Rule R1* is the vestricted vule R1,

then in T: Formula b is provable in the field of A by the applications of the
rvules Rl and R2, if and only if, formula b is provable in the field of A by
the applications of the rules R1* and R2.

Obviously, Theorem A is a very strong generalization of Lindenbaum’s
theorem mentioned above. It should be noted that the axioms of T are
entirely undefined (clearly, we know only that at least one of the axioms
belonging to sequence A must have a form Cap), and it is self-evident that
Theorem A holds only for the rule of simultaneous substitution.

Proof:

1 In order to prove Theorem A in the most compact way I shall use, in the
reasonings presented below, the following abbreviations:

(a) The abbreviations “a ~ 8,”” “Alza,” and ‘“{a}tzyB’’ will mean ‘‘formula
a is equiform with formula B,”” ““in the field of sequence A formula a is
provable by R1’’ and ‘‘B is a consequence of a by R1’’ respectively. The
analogous and obvious meanings will have the following abbreviations:
“Afﬁa,” ;:Ama’” “Aiﬁmd,” “{d}'iwﬁ,” u{a, B}'Fi‘}’,” and “A}WV,”
and so forth. The last abbreviation given above means ‘‘in the field of A
the set (the sequence) of the formulas V is provable by R1*,”

and the following tacit assumptions:

(b) In any sequence which will be considered below each of its terms
occurs without repetition.
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(c) If the sequence Z considered below contains three terms 7;, 7;, and 7/,
i <j <f, such that in Z {7;}kg77; and {7}k 7/, then tacitly Z is substituted
by a sequence which possesses exactly the same terms and ordering, but in
which {7;}z77/. It is similar if instead of Rl we have R1*. Clearly, we can
do it, since our rules of substitution are simultaneous.

(d) If a subsequence V of the given sequence Z is such that it contains all
such and only such terms of Z that satisfy all conditions of the given
property ¢ and a subsequence W = Z - V, then we assume tacitly that these
two subsequences are ordered according to the order in which their terms
occur in the sequence Z. Moreover, we assume that in Z its terms are
automatically rearranged in such a way that each term of V precedes every
term of W. Thus, in such a case we have: Z ={V;W}. Obviously, we can
do this only under conditions where the subsequences V and W are disjoint
and ¢ is suitably defined.

(e) If a subsequence V = {0y, . . ., Onf, 0 < m < =, of the given sequence Z
is such that it contains all such and only such terms of Z which satisfy all
conditions of the given property ¢, and formula 7 also satisfies these
conditions, but it is not a term of Z, then the sequence V¥ ={o,, .. ., op,
O‘,,H_l}, 0 <m + 1< e, in which 0,,, =7, is called an augmentation of V.
And, if in Z we replace V by V*, then this new sequence will be indicated by
Z*. Moreover, we tacitly assume that the augmentation of Z is always done
in such a way that, if p is the last term of Z, then it is also the last term of
Z*. Thus, e.g., if Z = {V; W}, then Z* = {V*; W}. It is self-evident that if,
in the proof given below, it will be established that the given sequence
P = {Q; R} possesses a certain required property ¢ and its subsequence Q
is augmented to Q* by a formula which does not contradict iy, then
P* = {Q*; R} also satisfies .

2 Now, let us assume the antecedent of Theorem A. Since R1* is a
restriction of R1, we know at once that it is sufficient to prove: In T, if
Algimb, then Alg=gmb. Hence, assume that in 7' Algrgzb. Then it follows
from this assumption and the standard definition of a proof that there exists
an unempty, finite sequence of the formulas:

D={ay, ... 0 b, ..., b} 1<2< o
constructed in accordance with the points (b) and (c) of 1 and such that:

(1) The terms a,, . . ., d, of D are the axioms of T which belong to A;
(2) The terms of subsequence B ={b,,;, ..., b,} of ® are such that if
b;,, m +1 <! < z,is a term of B, then either

(a) there is a term ¢ of ® which precedes b, and {O‘}}Hbt,

or

(B) there are the terms o and 7 of ® which precede b, and {0, T}z b,;
(3) The last term of @, viz. b,, is such that b, = b.

2.1 Since it will be more convenient for our further reasoning, I
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renumerate the terms of B, as follows: B ={B,, . .., b} =1{bs, . . ., b},
1 <w<z, by=b. Moreover, since it follows from points (ii) and (iii) of
the antecedent of Theorem A that both subsequences A and B of ® are
unempty and since, according to the definition of ®, they are disjoint, we
have: ® ={A; B}, ¢f., 1 (d).

3 The subsequences of B which will be defined below and which, eventually,
can be empty, will be analyzed and used in our proof.

3.1 Let V,={a;,...,,}, 0<n<w,bea subsequence of B containing all
such and only such terms of B that for every a;, 1 <j < w, o; is a term of
V, if and only if @; is a term of ® and in A thereisaterma;, 1 <1< m,
such that {a;}z7 ;.

3.1.1 If V; is unempty, then since all terms of V,; are generated by the
application of R1 to the axioms of T belonging to A, it is self-evident that
Alz:V,. Therefore, if B = Vi, then, since B is not empty, cf., 2.1, we have,
obviously, V, = {b}, i.e., that Aksb. And, in such a case Theorem A is
proved. On the other hand, if B # V,, then for C = B - V, we have, cf., 1(c),
B = {V,; C}, i.e., ® = {A; V,; C}, where V; can be empty.

3.2 If C is unempty, let V, = {8y, . . ., B}, 1 < p < w, be a subsequence of C
containing all such and only such elements of C that for everyB;, 1 < k < w,
Bris a term of V, if and only if 8, is a term of ® and in ® there are two
terms o and 7 which precede the first term of C and such that 7 = CoB and

{o, T}hzBs.

3.2.1 If V,=C, then ® = {A; V,; V,}. Therefore, in such a case if V, is
empty, then Alg;V,, i.e., obviously, cf., 3.2, Algb, and if V,; is unempty,
then, cf., 3.1.1, AV, i.e., clearly, Akygb. Thus, if ® = {A; Vy; Vs,
then Theorem A is proved. On the other hand, if V, # C, we have for
D=C -V, cf., 1(d), C={V,; D}, i.e., ®={A; Vy; Vo; D}. In such a case,
since D is unempty, its first term, d,, neither

(a) can be such that Akg7d,, since otherwise it would be a term of V,, cf.,
3.1, or for the same reason, c¢f., 1(c), such that V,lzd,,

nor

(b) can be such that it would be a consequence by R2 of two terms belonging
to ® which precede the first term of V,, since otherwise it would be a term
of V,, cf., 3.2.

Hence, if D is unempty, and d, is its first term, then either in V, there
is a term ¢ such that {o}l57d, or in ® there are two terms ¢ and 7 such that
they precede d,, at least one of them is a term of V., 7 =Cod; and
{0, 7}Iz3d;. Therefore, if in ® its subsequence D is not empty, then also V,
is unempty.

3.3 If D is unempty, let E = {y,, . . ., y,}, 1 < ¢ < w, be a subsequence of D
containing all such and only such terms of D that for every y,, 1 < 2 < w, Y
is a term of E if and only if y, is a term of ® and in V; there is a term o
such that {o}fz7y4.
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34 1f D#E, let F=D-E. Hence, if E is unempty, D ={E; F}, i.e.,
®={A; V,; V,; E; F}. It follows at once from the definitions of D and E
cf., 3.2.1, and 3.3, that if F is not empty, then its first term, say f,, is such
that in ® there are two terms ¢ and 7 such that they precede f;, 7 = Cof; and
{o, 7}kzf.. Moreover, clearly, cf., 3.2.1., at least one of these terms must
be either a term of V, or aterm of E, since otherwise f, would be a term
of V,.

4 In this section it will be shown that if subsequence E of D is unempty,
then we are always able to replace ® by its augmentation constructed
effectively:

o = {A; V¥ VS5 F}

in which its subsequences A and F are exactly the same as in ® and the
subsequences V¥ and VF are such augmentations of V, and V, that each
formula which in ® is a term of E occurs in ®*, as a term of V}.

4.1 Let us assume that in ® its subsequence E is not empty and, moreover,
that y,, 1 <k <g¢q, is an arbitrary term of E. Then, according to the
definition of E, ¢f., 3.3, in V, which is not empty, cf., 3.2.1, there is a term
Br, 1 < h < p, such that {8}lz7y,. Since B is a term of V,, in D, cf., 3.2,
there are two such terms o and 7 that precede the first term of V,, such
that 7 ~ CoBy, and {o, T}z7B;. Hence, in accordance with the definition of
V,, there are four possibilities: either both ¢ and 7 are the terms of A, or
cisaterm of A and 7 is a term of V,, or o is a term of V, and 7 is a term
of A, or both o and 7 are the terms of V,. Consequently, we have to analyze
the four possible cases:

Case 1. Both o and 7 are the terms of A, 7~ CoBy, {0, 7tkz8; and
{Bi}tz7ys- Since both rules of substitution mentioned in the formulation of
Theorem A are simultaneous, it follows at once from our present
assumptions and the definition of V,, c¢f., 3.1, and 3.1.1, that

(1) there must exist a formula y such that {7}z and u = Cpy,,
and that

(2) either o = p or olgp.

Hence, we have to investigate the four obvious subcases:

Subcase la. o =p and u is a term of ®. Whence, if follows from point (1)
and the definition of V, that y is a term of V,. However, such a case is
impossible, since otherwise, cf., point (1) and the definition of V,, 3, would
be a term of V,.

Subcase 1b. o = p and p is not a term of ®. Hence, also u is not a term of
V,. Now, define:

(a) V*l = {VI’ “} {a17 c ey Oy, an+1}} l<n+ 1 Apyy = IJ~
(b) {Vz’ Yk} {Bu ) Bpr Bp+1}, 1sp+1, Bp+1 =
(c) Eo {')’1: c o s Y15 Yhls « = +5 Vql> lsksgqg
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Now, we replace in ® its subsequences V;, V,, and E by V¥, V¥! and E°
respectively obtaining in such a way a new sequence D*!={A; V¥; V¥
E® F}. Since, by assumptions, both ¢ and 7 are the terms of A, {r}kgu,
p = Cpy, and o =~ p, we have p =~ Coy, and, therefore, {0, u}lzzy,. Hence,
since in V¥ its last term a,,, = u = Cpy, = Coy, and in V¥ its last term
Bpi1 ® vy In DX Alirzsy, While in D = Algrmsy,. Thus, it is self-evident that
if this subcase of Case 1 holds for y,, then we can always solve it accepting
instead of ® its augmentation ®** as a proof sequence of b.

Subcase lc. olgpp and in ® y is a term of V,. The case that p is a term of
P, i.e., p is a term of V, is impossible, since otherwise y, would be a term
of V,. Therefore, p is not a term of ®. Hence, define:

(d) Vikz = {Vl; p} = {ala e e ey Oy an+l}; lsn+ 1) Aniy = P.

Then, using V* and E° as defined in points (b) and (c) above, we replace
D by its augmentation ®*2 = {A; V¥?; V¥'; E% F}. Since 7 is a term of A and
{T}gru, in D*2 Algrmy,. Hence, if this subcase of Case 1 holds for y,, then
we can always solve it accepting instead of ® its augmentation ®*2 as a
proof sequence of b.

Subcase 1d. {o}lmp and u is not a term of ®. Whence, pu is also not a term
of V;. On the other hand, since either p is a term of ® or p is not a term of
®, each of these two possibilities must be assumed and investigated
separately. Wherefore:

Subcase 1d,. {o}ksp; p is a term of ® and y is not a term of V,. Since o is
a term of A, {o}lp and p is a term of D, it follows from the definition of
Vi, ¢f., 3.1 and 3.1.1, that p is a term of V,. Hence, define:

(e) V;!:3= {vl) H}= {al’ LS am an+1}7 1 sn+ 1, an+1 = M.

Then, we replace ® by its augmentation D*3 = {A; V¥3; V3'; E% F}l.
Since both terms o and 7 are the terms of A, {o}lmp, {THzmu, p is a term
of Vy, i.e., clearly, p is a term of V¥3, and, moreover, y is a term of V}¥3,
in ®*° A+7v.- Therefore, if subcase 1d, holds for y,, then we can always
solve it ac'cepting instead of ® its augmentation D*3 as a proof sequence
of b.

Subcase 1d,. {o}gp, p is not a term of ® and y is not a term of V,. Hence,
p is not a term of V,. Now, if in A o precedes 7, we define

(f) \/31"‘l = {vl, o, ,Ll} = {al’ oy Oy Qpyg, an+2}, 1<sn+1,a,, =pand Qp2=p.
On the other hand, if in A 7 precedes o, then we define V¥* as follows:
(g) Vglk‘l = {VU M, p} = {ab T an+1, an+2}s 1s n + 1> an+1 :‘ﬂ and an+2 zp.

Remark I: Clearly, each of the sequences which are defined in points (f)
and (g) above can be used in order to obtain a solution of subcase 1d,.
Since the obtained solution must be unique, it must be uniquely determined
which of the sequences presented above should be accepted in regard to the
term vy, under consideration. Since the assumptions concerning y, inform
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only that both ¢ and 7 are the terms of A, {o}lzsp, {THg#u, both p and y are
not the terms of V, and {o, u}ttzzy,, the order of o and 7in A is only one
possible determinent which uniquely selects a proper sequence in regard to
Yke

Then, we replace ® by its augmentation ®*¢ = {A; V¥*; V¥*; E% F} in
which V¥* is defined either as in (f) or as in (g) according to Remark I.
Since both o and 7 are terms of A, {o}lksp and {r}zHu, in D* both p and p
are the terms of V¥*. Whence, in ®** A7y, Therefore, if subcase 1d,
holds for y,, then we can always solve it accepting instead of D its
augmentation ®*¢ as a proof sequence of b.

Thus, subcase 1d is solved because it is established above that for
each its possible instances, i.e., subcases 1d; and 1d,, cf., also Remark I,
we are able to construct in an effective way such unique augmentation of ®,
viz. ¥4, that D 4 is a proof sequence of b and that in D¥ Almys- Since
subcases 1d, and 1d, are disjoint, for the term 7, under consideration there
is only one solution. Namely, if the given subcase (1d, or 1d,) holds for y,,
then instead of ® such form of ¥4 should be accepted as a proof sequence
of b which corresponds to that subcase.

4.1.1 Consequently, since it is established in 4.1 that for each possible
subcase of Case 1, we are able to construct in an effective way such
unique augmentation of ®, viz. D&, such that DY, is a proof sequence of b
and that in ¢, Al 7., then Case 1 is solved. Moreover, since subcases
a-d of Case 1 are obviously mutually disjoint, we can conclude that for the
term y, under consideration there is only one solution of Case 1.

4.2 There are three remaining cases, c¢f., 4.1, which we have to investi-
gate. Namely:

Case 2. o isaterm of A, 7 is a term of V,, T~CoBy, {0, T}l 81 and {81} 77
Case 3. o is a term of V,, 7 is a term of A, 7 = CoB;, {o, T}z B and

Bttt -
Case 4. Both o and 7 are terms of V,, T = CoBy, {0, T}zz8s and {8y} 5 va-

Remark II: It is obvious, that if one of the cases 1 or 3 holds for y,, then
in ® there must be two distinct terms such that each of them is a term of A
and y, is a consequence of them by Rl and R2. On the other hand, if one of
the cases 2 or 4 holds for v,, then it follows from the definitions of these
cases that in ® there can be only one term such that it is a term of A and
v, is a consequence of it by R1 and R2. Hence, in our proof it is not
excluded as a possibility that A = {a,}.

Using reasonings entirely analogous to these which are presented
above we can prove without any difficulty that the cases 2, 3, and 4 can be
solved always in a similar way as Case 1. Namely, if one of these cases
holds for y,, then we are able to construct in an effective way the unique
augmentation of ® such that this augmentation is a proof sequence of b in
which Algwrzy,. Therefore, since the cases 1-4 are mutually disjoint and
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only one of them holds for y, under consideration, we can conclude that if
in ® its subsequence E is not empty and y,, 1 <k < ¢, is an arbitrary term
of E, then there is the unique augmentation of ® such that this augmentation
which can be constructed in an effective way is a proof sequence of b in
which ARrwRev,.

4.3 Since in sections 4.1 and 4.2 it is assumed that 4,, 1 Sk < ¢, is an
arbitrary term of E, it is self-evident that if we shall apply the methods of
a proof which was presented in those sections consecutively to each term of
E, then finally we shall obtain in an effective way the unique augmentation
of ® such that this augmentation will be a proof sequence of b in which
Al E. More precisely:

4.3.1 Let us assume that E is not empty. Since, ¢f., 3.3, E ={y1, . . ., 'yq},
1 sg<w< o, E is a finite sequence. Then, define
Df.1 Foranyn=1,2,3,...,q:
E. - Ey, = {yes -+ - yq}, i.e., E, is E from which y, is' removed,
"\ Eyp= {¥mins -+ o> vgh io€., E S E,,., from which y,, is removed.

Since g is finite, it follows at once from Df.1 that Eyq7 is the empty
sequence.

Now, in the same manner as in 4.1 and 4.2 we construct in an effective
way the unique augmentation of ® in regard to the first term of E, viz. y,.
Let us indicate this augmentation by: ®}, = {A; V¥, ;; V&, ; E,; F} where V¥,
and szl are respectively V, and V, augmented in regard to y,, E, n=
{'yz, Ce 'yq} Thus, @Y, is a proof sequence of b in which AlgFgzy,. Since
le is a proof sequence of b, we can obtain its augmentation in regard to y,,
viz. D}, = {A; VI,,; V3,,; C,,; Fl. Clearly, ®, is a proof sequence of b in
which Akwrs{yi, 7.). Applying consecutlvely the preceding method to all
the terms of E according to their order we obtain a finite sequence

= {®; le, R @%} containing ¢ + 1 terms and such that its first term is
@ and if 0,, 2 <% <g¢ + 1, is a term of @, then 0, is an augmentation of the
term o,_, such that o, is a proof sequence of b in which A gFm{y1, - - -» Va-1)-
Obviously, the last term of @, i.e., D}, = {A; Vly ; sz ; Eygs F1, is a proof
sequence of b in which Eyq is empty, and in which each term of E is a term
of V¥, ,and AvmE.

Thus, it has been proved in this section that if ® = {A; V,; V,; E; F}is
a proof sequence of b, and in @ its subsequence E is not empty, then there
is the unique augmentation of D, viz. Dy , such that D} 1s a proof sequence
of b in which ARFRE.

4.4 Since in @yq Ey, is empty, DY, = {A; nyq, sz, F}. And, in order to
simplify this rather cumbersome notation, instead of @y ) V1 , and Vg
shall use ®,, Vg, and Vg, respectlvely Thus, ®, = {A VlE, V:g; F} ‘{mll
mean the same as qu {A; Vlyq, szq, F}.

5 Now, let us assume that in ® its subsequence D, cf., 3.2.1, is not empty.
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Whence, D = {E; F}, ¢f., 3.3 and 3.4, and, therefore, ® = {A; V;; V,; E; F}in
which at least one of the subsequences, E or F, must be unempty. Hence, if
F is empty, then ® = {A; V;; V,; E}. In such a case, cf., 4, we are always
able to replace ® by its augmentation ®, = {A; V,g; Voe} such that ®, is a
proof sequence of b in which Amb. Thus, if in ® its subsequence F is
empty, Theorem A is proved.

5.1 Therefore, let us assume that in ® its subsequence F is not empty.
Then, if in ®, E is empty, ® = {A; V; V,; F}. On the other hand, if in ®, E
is not empty, then ® ={A; Vy; V,; E; F} and, therefore, c¢f., 4, we are
always able to replace ® by its augmentation ®, = {A; Vig; Vag; F} such that
D, is a proof sequence of b in which A WE. Since it is self-evident that
9D, in which E is empty but F is not empty, is a particular instance of ®,, in
the future only @, will be investigated.

Remark III: In order to avoid misunderstanding and confusion it should be
noted that if ®* is an arbitrary augmentation of ® such that ®* is a proof
sequence of b, then the subsequences V§ and V¥ of @* are always defined in
exactly the same way as V, and V,, c¢f., 3.1 and 3.2, but, obviously, their
definitions are automatically adjusted to @*. Hence, e.g., in®, A m{vlg;
VzE}~

5.2 Assume that in ®,
F={f,...  f,,1si<w,f =b.

Since in ®,, E is empty, it follows from the definition of F, cf., 3.4,
that in ®, there are two terms k and A such that both x and X precede f,,
i.e., the first term of F, and at least one of them must be a term of V,g and
{k, \}lzzf,. Whence, clearly, if F = {f,}, then f, ~ b and, therefore, in ®,,
Algzb. Since in such a case Theorem A is proved, let us assume that
F # {f,}. Consequently, cf., 3.4, if in D,f;, 2 < k < ¢, is a term of F, then
either

(1) in F there is a term X such that X precedes f, and {\}Iz7fs,
or

(2) in®, there are two terms p and v such that both y and v precede fz, and
at least one of them is either a term of V,g or a term of F, and {u, v}z .

5.3 Now, we introduce the following two definitions:
Df. 2 Foranyn=1,2,3,...<

F, = F from which its first term f, and every other term, if any,
which is a consequence of f, by R1 are removed.

Fon= F, = Fpu-1 from which its first term and every other term, if any,
which is a consequence of this first term by Rl are removed.
Df. 3 Foranyn=1,2,3,...<

_ $1=F‘F1.
3n = {s,,,= Fr1 - Fo.
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Thus, for any k, 1 < k< n, since F, and S are disjoint, F,_; = {S;; Fi}
where F, can be empty. And, if Fj is unempty, then Fu, = {Sp; Spi1; Frat
and so forth. In order to have a convenient notation in the future we use for
an arbitrary k, 1 s k< n, S;={s%, ..., s¥}, 1 < x < ¢, assuming that if for
j,1<j<n,S;+S$, then §; and S, can have different numbers of terms.
This convention will not lead to any misunderstanding in our further
deductions.

Remark IV: It follows at once from our assumption concerning the
structures of the sequences under investigation, cf., point (c), in section 1,
that if sf, 2 <j <x, isaterm of Sy, 1 < k < n, then in $;{s¥} ks sf.

5.4 Let us assume that for the given %, 1 < 2 < #n, it was already proved
that in @, its subsequence F = {S; . . .; S4_,; S;; F.} and, moreover, suppose
that in F its subsequence F,is not empty. Then, the first term of F, say
sf“, cannot be a consequence by Rl of any term of ®, which precedes it,
since otherwise sf” would be a term of one of the subsequences Vg, VsE,
Sy, ..., Sp_1, Sk, contrary to the definition of Fp, cf., Remark IV, 3.1, 3.2,
3.3, 4.4, Remark III, 5.1 and 5.3. Hence in ®, there must be two terms
p and v such that both y and v precede s¥*! and {u, v}lz3s¥**. Therefore,
in accordance with definitions Df. 2 and Df. 3 in Fp, sf“ generates a new
subsequence, viz., Sg,;. And, since by assumption F, is unempty, F, =
{Ski1, Fri1}. Therefore, we proved that: For an arbitrary k, 1 < k< n,if
Do = {A; Vie; Vag; S5 - - o5 Sp; Fif, then Do ={A; Vig; Vag; Si; -+ o5 Sis Sk
Fk+1}. This statement, together with the facts that ®, is finite and that in
D, S, is not empty, cf., 5.2 and Df. 3, allows us to conclude by an ele-

mentary induction that for a certain finite », 1 <y < ¢,
Do = {A; ViE; VzE; Si, v Sy}; S;’ ~b
where for an arbitrary Sg, 1 < k2 <y, S; is not empty.

5.5 It follows from the definitions of F and S, and the fact, c¢f., 5.4, that in

D F={S;;...;S8} 1<y <t that for S, 1 Sk <y, in D, there must be
two terms ¢ and 7 such that both o and 7 precede sf, i.e., the first term of
S, and {0, T}hsk Since @, = {A; Vig; Vag; Su5 - - - S,}, ®, is a sequence of

9y + 3 mutually disjoint subsequences. Hence, since o and 7 can be the
terms of the arbitrary subsequences of ®, which precede S, and they can
even belong to two different subsequences, in ®, there are many possible
combinations such that each of them can be eventually the actual instance
which satisfies {o, T}i‘ﬁ s%. In the future we shall call such possibilities in
regard to S, the generic cases of S;. Since for our further deductions it is
important to know the exact number of the generic cases for each §,
1 </ <y, this problem will be investigated below.

5.5.1 Clearly, for an arbitrary S;, 1 < 2 <y, if in ®, there are two terms
o and 7 such that both ¢ and 7 precede s{‘, i.e., the first term of §; and
{o, ‘r}hﬁs{‘, then the following generic cases (@) both ¢ and 7 are the terms
of A; (B) ois a term of A and 7 is a term of Vig; (y) ¢ is a term of Vg and
7 is a term of A; and (5) both o and T are the terms of V,g; are impossible,
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since otherwise s would be a term of V,g, cf., 3.2. Therefore, at least one
of the terms, o or 7, must be a term of V,g or a term of §;, 1 <f<h.
Thus, if 2 =1, i.e., S, =S,, and {0, T}lzgz 51, there are five and only five
generic cases of §;, namely:

(a) ois a term of A and 7 is a term of V,g,
(b) o is a term of V;g and 7 is a term of V,g,
(c) ois a term of V,g and 7 is a term of A,
(d) o is a term of Vg and 7 is a term of Vg,
(e) Both ¢ and 7 are the terms of V,g.

5.5.2 1t is self-evident that these five generic cases of S, are also the
generic cases of any S;, 1<% <y. But, since in ®, the number of
subsequences which precede such §; is bigger than the number of sub-
sequences which precede S,, there are additional generic cases of S;. Thus,
for example, if 2= 2, i.e., S = S,, then since in ®D,, S, is preceded by A,
Vg, V2, and S,, there are seven new generic cases of S,, viz. (@) o is a
term of A, or of Vg, or of Vg and 7 is a term of S;; (B) o is a term of S,
and 7 is a term of A, or of Vg, or of V,g; (y) both o and 7 are the terms of
S,;; such that in S, {0, 7}}z5s,. Thus, there are 12 generic cases of S,.
Similarly, there are 21 generic cases of S;, 32 of S,, 45 of S; and so forth.

5.5.3 The discussion presented above enables us to establish the following
formula:

Formula@ Forany h,1 < h <y, if S} is a subsequence of ®,, then theve
are h® + 4h genevic cases of S,

We prove Formula @ as follows:

(1) If for the given m, 1 < m< y,S,,,, is a subsequence of D, then in D,
there are 3 + m subsequences which precede S,,,. Hence, it is self-evident
that the number of all new generic cases of S,,,, is:

((B+m)-1)y+((3+m)-1)+1=2m+5.
Using the formula obtained above we define the following function:
Df. 4 Foranyn=20,1,2,3,...

_ | o= 5.

n (pm:(ﬂm-1+2~

Clearly, the value of ¢, is the number of generic cases of S; and the
values of ¢, @,, @5, . . . are respectively the numbers of the new generic
cases of S,, S5, 84, . . . .

(2) It follows from 5.5.1, 5.5.2, and point (1) that for any fandg,1 <<
g < m, all generic cases of §; are also the generic cases of §;, but besides
them there are 2(g - 1) + 5 new generic cases of S;. Then, the function
defined in (1) allows us to calculate, for the given finite m, the number of
all generic cases of S, as a finite series of ¢, containing m components.
Namely:
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On=@o+ @1+ P+ Q3+ ...+ @y o+ Py

=5+T7+9+11+...+20m-2)+5)+(2m-1)+05)
=bm+2+4+6+...+20m-2)+2m-1)
=6m+2(1 +2+3+...+(m-2)+(m-1))

=5m+2(@1——21ﬂ>=5m+(m2-m)=m2+4m.

Thus, for the given finite m Formula & is established.

(3) It remains to prove by induction that for every S;, 1 < 2 <y, Formula &
holds. Since we have

(a) Formula & holds for S,.

(b) Assume that for the given %, 1 < 2 <y, Formula @ holds for S;. Hence,
¢f., point (1), the number of all generic cases of S;,, is: (#* + 4k) + (2% + 5) =
(B* + 2k + 1) + (42 +4) = (¢ + 1)* + 4(k + 1). Therefore, Formula & holds for

5k+1-

The proof of Formula & is complete.
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