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TRANSLATION OF THE SIMPLE THEORY OF TYPES
INTO A FIRST ORDER LANGUAGE

H. JULIAN WADLEIGH

1 Introduction In this paper we formulate (1) a simple theory of types,
Sω, (2) a first order language with postulates, 8(£), and (3) a set of rules
for translating δω into %(t). We prove that a wff of δω is a theorem of δω
if and only if its translation is a theorem of δ(ί).

The set of postulates of %(t) is a modification of the set of formulas
D n-D 9 in Hintikka's [4],1 the main difference being that Hintikka's D8, which
contains a quantified predicate, is replaced by a series of postulates
without quantified predicates. Thus we reduce type theory to a first order
language where Hintikka's reduction was to a second order language. There
is also a difference in approach, this paper being concerned exclusively
with syntax, while Hintikka gives considerable attention to model theory.

%(t) can be used to talk about the individuals and predicates of type
theory in much the same way as we talk about sets in axiomatic set theory.
The postulates of δ(ί), which in their intended interpretation assert the
existence of the individuals and predicates of δω and describe their
relations to each other, are roughly analogous to the axioms of set theory.
We do not suggest that δ(ί) be used to prove results that can be proved in
type theory. In doing so one would lose the simplicity and directness of
type theory and its capacity to reproduce the structure of intuitive
mathematical thinking—a virtue not possessed by any of the popular brands
of axiomatic set theory. More promising is the use of δ(ί) to talk about the
symbols and syntax of δω. For this purpose one could extend δ(ί) by intro-
ducing predicate variables (including those of higher types) and applying
quantifiers to such variables. Such an extension of δ(ί) would be a formal-
ized metalanguage of type theory. But this is beyond the scope of the pres-
ent paper, which is to exhibit a reduction of type theory to a first order
language.

1. [4], p. 84.
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2 A simple theory of types The system δω discussed here is essentially
the same as the δω of [5]. Considerations of convenience, however, have
led to some changes in the notation and in the way the primitive basis is
presented. The logical constants of the system are Sheffer's stroke, I, and
the universal quantifier, V. Formulas containing other logical constants
are to be regarded as abbreviations. For certain metatheoretical deduc-
tions it is convenient to assume that all wffs are written in unabbreviated
form. Scopes of logical constants are shown by dots.

Variables of δω are of the form a, where the superscript ί is a
syntactical expression that stands for a type symbol. The type symbols are
composed of iotas and parentheses, where the iota i denotes the type of
individuals and all other type symbols are constructed from the iota by one
or more applications of the rule: if tl9 . . ., tn are type symbols, then
(tt . . . tn) is a type symbol. The atomic wffs of δω have the form
(Ί Ή) *i ίn

a («!, . . ., an), n — 1. The letters a, b, c, . . . will be used as syntactical
expressions to represent variables of arbitrary type or of a type specified
in the context. In the wff b(al9 . . ., an) b is said to occur in the predicate
position and al9 . . ., an in the argument positions. The letters A, B, C, . . .
will be used as syntactical expressions for wffs. A(b/c) stands for the
expression which results when b is substituted for all free occurrences of
c in A.

There are four axiom schemas:

(1) all truth-functional tautologies,

(2) wffs of the form

VaB -> B(c/a)

in which c occurs free wherever it is substituted for a,

(3) an extensionality schema of the usual kind,2

(4) a predicate-formation schema3 consisting of wffs having the form

3b V«! . . . Vαw. b{al9 . . ., an) <-> C

where al9 . . ., an are variables occurring free in C.

The rules of inference are

(1) modus ponens,

(2) from A —» B9 if a is a variable not occurring free in A, to infer

A — VcJ5(c/α).

3 The systems S(ί) and δ The logical constants and punctuation marks of
S(ί) are the same as those of δω. The other symbols of %(t) are

2. Cf. [5], p. 261.

3. In the %ω of [5], the schema (4) of the present paper is not an axiom schema but a
theorem schema. It is equivalent to axiom schema (2b) of [5],
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(1) individual variables x, y, z, u, v, w with or without subscripts, (ii) the
predicate symbols =, a, ε, π, (iii) some expressions to be introduced by
definition. Each variable of %{t) may be regarded as the name of a finite
sequence of variables of δα>. The atomic wffs of %(t) have the forms

(a) xay,

(b) x εy,
(c) (x, y)τr z,
(d) x = y,

where (a) is to mean that x is the name of a string al9 . . ., an of variables
and y of a variable b such that b(al9 . . ., an) is wf in δω, (b) that x, y have
the foregoing denotations and the expression b(al9 . . ., an) is not only wf but
also true, (c) that z names a string al9 . . ., am, bί9 . . ., bnf x names
au . . ., am and y names bl9 . . ., bn. The letters X, Y, . . . will be used as
syntactical expressions for wffs. X(y/z) stands for the result of substitut-
ing y for all free occurrences of z in X.

The axiom schemas of S(£) are the exact analogues of schemas (1) and
(2) of δω and the rules of inference are the exact analogues of the two rules
of δω. The postulates will be shown next. We shall use a system of
numbering of postulates, theorems and definitions in which a number
followed by P refers to a postulate, by D to a definition, by T to a theorem.

IP x - x,

2P x= y—. X-+X(x/y).

3P xεy —» xay.
4P VΛ: 3y Vs. xay Λ ~\Z εy.

The predicate symbol η is introduced by the definition

5D xηy^def 3£: xazΛyaz.

The expression xηy is to mean that x and y are names of variables, or
of strings of variables, of the same type(s).

6P xay —». xaz ^>yr\z.

7T η is an equivalence relation.

Proof; η is reflexive by 4P, symmetric by 5D, transitive by 6P.

8T uηvΛuaxλvay. —» #773?.

Proof: The premiss means there is 2 such that M α £ Λ t> a z from which by
6P xη ZΛyη z, whence the result by 7T.

9P VΛΓ VJ; 3>S (ΛΓ, y)π^.
10P (x, y) πZΛ (u, υ) π w. —>: ΛΓ = u*y = v. <-> z = w.
H P (Λ:, 3;) 7Γ 2Λ (u, υ) π w. —*: #77 wΛyη υ. <-> zη w.

Ί2P (ΛΓ, y)iτz\uaz.
13P (x, 3;) 7Γ ^ Λ zη w. —* 3u 3υ (u, v) π w.

The following definition makes it possible to eliminate the predicate π
in some contexts, and so to simplify notation.
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14D (x, y) = z<^>def{x, y)πz.

Where the expression (x, y) occurs in a formula X, and not in the scope of a
quantifier Vx or Vy, we shall regard X as an abbreviation for

3z .(x, y)iΐzjκX(z/(x, y)).

The associativity rule for concatenation is expressed by

15P ((x, y), U)ΉW *-> {x, (y, u)) π w

which permits us to use the definition

Ί6D (x, y, z) =def((x, y)z)

We now introduce as predicates in %(t) the type symbols which appear
as superscripts to the variables of Sω.

17D xe i <^>dej. Ί3u uax Ai3y 3z (y, z)πx.

The expression xe i is to mean that x denotes an individual variable of
Sω. The letter e is a syntactical expression denoting set membership
(perhaps more appropriately termed the relation of argument to predicate)
in %{t), not to be confused with ε which is a predicate of %(t) denoting set
membership in δω.

Other types are defined inductively by the schema

18D y e (t1 . . . tn) ^>dej3xx . . . 3xn . xλ e tλ Λ . . .ΛXnetnΛ (xl9 . . ., xn)ay,

1 9 P 3x xe i .

For each type t the theorem

20T 3xxet

follows from 19P, 4P, 9P.

2 1 P xe i Aye i.—» xηy.

For each type t we have the theorem

22T xet-^Vy.yet<^>yηx.

First, to prove xe t —> Vy. y e t -^ yηx: if ί is ι the result is 21 P. For
all other t the result may be proved by induction, using 8T, 11 P.

To prove the other half: suppose xe i and xηy. Then uay is
impossible since by 6P this would imply uax. Similarly {uiυ)uy is
impossible by 13P. This proves the result for the case where t is i. For
the higher types the result may be proved by induction, using 6P, 11 P.

This shows that the types are equivalence classes of η. We need also
to show that distinct type symbols denote distinct 77-classes, or equiva-
lently, that

23T For every pair of distinct types, tί9 t2,

x e tχ\xe t2.

Proof: First suppose that one of the types, say tu is 1. Then t2 is one of
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the higher types, so that xe t2 —» 3u uax which is incompatible with xe i by
17D. That proves the theorem for this special case. The general case can
be proved by induction. Let us say that U is subordinate to tj if the type
symbol represented by tj is contained in that represented by tj. Thus (i) is
subordinate to (ι(ι)) since the latter symbol contains (i). Clearly i is
subordinate to every type. We shall say that t{ is properly subordinate to tj
if U and tj represent distinct type symbols and U is subordinate to tj.

Let us assume, as an induction hypothesis, that the theorem has been
proved for every type which is properly subordinate to either or both of tu

t2. It is clearly sufficient to show that this hypothesis implies tx, t2 are
disjoint. Since we have already proved the theorem for the special case
where one of the two types is i, we may assume that both tx and t2 are
higher types, that is to say, tx = (tn . . . tlm) and t2 = (t21 . . . t2n). In con-
sequence of 17D and 22T,

ι-Vx:. xe f x — V^i . . . Vym: y1et11Λ...Λymetlm.**(y1... ym)ax

and a similar formula can be proved for t2. In order that a variable x may
belong to both of tl9 t2 we must have n = m in consequence of 12P. By the
induction hypothesis it is also necessary that, for 1 ^ i ^ m ~ n, the type
symbols represented by tu, t2ί be identical. But these conditions are
satisfied only if tx and t2 represent the same symbol. This completes the
proof.

Next we present some postulates which have the consequence that the
translations in %(t) of axioms of Sω belonging to schemas (3) and (4) are
theorems of %(t). For the extensionality schema

24P Vx Vy:. 3u. uaxΛuay. —> : Vw. uεx <-> uεy. —> x = y,

and for the predicate formation schema the seven postulates

25P Vx Vy 3z\\ zηXΛ VU:. uaxλuay. —» : uεz <^> .uεx\uεy,

2 6 P Vx V3; 3z Vu Vv:. uaxhυay. —» (u, υ) az .h :(u, v)εz < ^ .uεx \υεy,
27P Vx Vy 3z Vw. (u, y)ax -» uaz.A . uεz <->(w, 3;) εx,
28P VΛΓ 3^: Vu Vv. (u, υ)ax -» <w, u)az.Λ .(v, u) ε z <^{u, υ)zx.

From 27P, 28P one may deduce

29T VΛΓ 3>ε Vu Vz; Vw: (w, f, w) ax —» (t;, w, w)az. Λ . (V, U, W) ε Z

<r-> (u, υ, w) ε x,
30P VΛ: ΞU VW: (M, u)ax•-* uaz ,A.uεz<^(u, u)εx.

From 27P, 30P one may deduce

31T Vx 3z Vu Vz;: (u, u, υ)ax -+ (u, υ)az. Λ . (W, y)εz <->(M, U, υ) εx,

32P Vx 3z V3; V^: x α y —> (x, 3;) α?^. Λ . ( W , 3;) ε 2 ^ > wε y,
3 3 P Vx 3 2: V^ Vw. (u, υ)ax -* uaz.Λ .uεz <^>Vv(u, υ) εx.

Each of the last seven postulates has three parts: first, a prefix which
begins with Vx Vy 32 (Vx 3#); second, a part from which, if we know the
type(s) of x and y (of x) we can determine the type of z; third, a part that
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specifies how the extension of z is determined by the extension(s) of x and y
(of x). The third parts are adequate for description in δU) of all those
procedures, such as set intersection, Cartesian product, relative product,
by which predicates can be constructed in type theory, as will be shown in
section 6.

This completes the description of the basis of δ(£).
The system δ has the same wffs, the same axioms and rules of

inference as δ(ί), but no postulates.

4 Two lemmas By a valuation of a set of wffs of δ or of δω we mean a
mapping of that set into the set of truth values, {t, f}. Given any wff of 5
having the form VxY, by an instance of that wff we mean a wff of the form
Y{y/x) where y is free wherever it is substituted for ΛΓ.4 We shall say that
a valuation v of a set of wffs is consistent if it satisfies these two
conditions:

(1) given any wff of the form X\Y, v(X\ Y) = t if and only if v assigns value
f to at least one of the components X, Y",
(2) given any wff of the form VΛΓF, V(V#Γ) = t iff, for every instance Y(y/x)5

of the given wff, v(Y(y/x)) = t.

For δω the definition of instance is the exact analogue of that given
above. A valuation of a set of wffs of δω is consistent if it satisfies the
analogues of (1), (2) and also

(3) if A is an axiom, then v(A) = t.

For the first and second axiom schemas the third condition of consis-
tency is entailed by the first two, but for the third and fourth it is
independent.

Lemma 1. Let v be an arbitrary valuation of the atomic wffs of a pure first
order predicate calculus, in particular, of δ. Then v can be extended to a
consistent valuation of all the wffs of that system.

Proof: An extension w of v is defined inductively by the following sequence
of rules.

Rule 1. If X is quantifier-free, w(X) is the value determined, through the
truth-table of X, by the values assigned by v to the atomic components of X.
Rule 2n (n ^ 1). If values have been assigned by the preceding rules to the
instances Y(y/x) of a wff VxY, then V(VΛ:F) = t if the value t has been
assigned to all the instances; otherwise V(VΛΓF) = f.
Rule 2n + 1. If X is a truth-functional combination of wffs Yl9 . . ., Yn to

4. If any occurrence of x in Y is in the scope of a quantifier Vy, let z be the first
variable (in alphabetical order) which does not occur in Y, and let Yr be the ex-
pression which results when z is substituted for y in Y. Then Yf(y/x) is to be
considered an instance of VΛ; Y.

5. Or Yf (y/x) defined in the preceding note.
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which values have been assigned by the preceding rules, then w(X) is the
value which results by the truth-table of that combination from the values
assigned to Yl9 . . ., Fw.

It is easy to see that for every wff X the value w(X) is uniquely
determined in such a way that the conditions of consistency are satisfied.

Lemma 2. Let A be a wff of δω. Then A is a theorem if and only if, for
every consistent valuation v of all the wffs, v(A) = t. An exactly analogous
result holds for the system 8.

Proof: To prove the "only if" one may verify for every axiom A belonging
to schema (1) or schema (2) that v(A) = t if v is consistent, and for the two
rules of inference that every consistent valuation which assigns t to the
premiss or premisses must assign this value to the conclusion.

To prove the "if" one can use the fact, proved by Henkin in [2] for the
first order calculus and in [3] for type theory, that if lA is not a theorem,
then there is a maximal consistent set Γ of wffs of which A is a member.
Clearly a valuation v such that v{A) = t if AeT and v(A) = f otherwise is a
consistent valuation in the sense of the foregoing definition.6

5 Translations Let n be a one-one mapping of the set composed of all
finite sequences aί9 . . .,an (n ^ 1) of variables of δω onto the set of vari-
ables of 5(/). The syntactical expression x = n(al9 . . ., an) may be read "x
is the name of al9 . . ., a ." The variables of \$(t) which are names of
sequences composed of two or more variables of δω are not used in writing
translations of the wffs of δω, but we shall have a use for them in section 6.

For each wff A of Sω we define the following wffs of %(t): tr(A) which
we call the translation of A, r(A), and if there are free variables in A, \(A).
In the definitions which follow it is to be understood that y, x, χl9 xn are the
names, respectively, of b, a9 al9 an.

If there are free variables in A let al9 . . ., an be a complete list of
these variables and let tl9 . . .,tn be their types. Then

f(A) i S X x € ^iΛ . . .Λ X,;€ tn.

If A is the atomic wff b(a)9 then

r(A) is xεy .

If A is the atomic wff b(aί9 . . ., an), then

r(A) is (x1? . . ., x ; / )εy.

If A is the wff a = b9 then

r(A) is x = y.

6. The simplified proof of Henkin's theorem in [1], §54, can easily be adapted for
use here.
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If A is B\C, then

r(A)is r(£) |r(C).

If A is VGLB and ί is the type of a, then

r(A) is Vx. xe t-+ r(B).

If A is a closed wff, then

tr(A)is r(A),

otherwise,

tr(Λ) is \(A) — r(A).

6 The main result

Let A be a wff of %ω. Then A is a theorem of Sω if and only if tr(Λ) is
a theorem of Ϊ5(t).

Throughout the proof of this theorem let it be understood that x, y, z, u
are names of a, b, c, d respectively except where otherwise specified, and
that Wx names the string au . . ., am, w2 the string bί9 . . ., bn.

We prove the "if" in its contrapositive form. Suppose, then, that A is
not a theorem. By Lemma 2 there is a consistent valuation V of all the
wffs of Sω such that V(A) = f.

We now construct a valuation v of the wffs of S, i.e., of %(t) by the
following rules. Let F b e a wff of δ.

(1) If F is the wff Wiεy, let v(F) = t if the expression b(au . . ., am) is wf in
%ω and value t is assigned to it by V; otherwise v(F) = f.
(2) If F i s the wff v^αy, let v(Y) = t if b(au . . ., aj is wf in Sω; otherwise
v(F) = f.
(3) If Y is the wff wx = w2, let v(F) = t if m = n, V(ax = bx) = . . . = V(am =
bn) = t; otherwise v(Γ) = f.
(4) If Y is the wff (w b w2)πw, let v(F) = t if w = n(cl9 . . ., cm+n) and V(aλ =
d) = . . . = M(am = cm) = V(6i = cw+1) = . . . = V(6« = c^«) = t; otherwise
v(F) = f.

These four rules assign a value to every atomic wff of 55. Let v be the
consistent valuation of all the wffs which result by the proof of Lemma 1
from the values assigned by these rules.

We assert that (i) for each wff A of δω, v(tr(A)) = V(Λ), and (ii) to each
of the postulates of %(t) v assigns value t. We now prove (i).

(a) Let F be a wff of the form xet. By induction on the types one can
deduce from Rules (2) and (4) that v(F) = t if and only if x is the name of a
variable of type t.
(b) It follows that for every wff A of δω, v(t(A)) = t. In view of the tautology
p -*\ p -* q. <r-> q and the consistency of v, this implies v(tr(A)) = v(r(A)), so
it is sufficient to prove v(r(A)) = V(A).
(c) If A is the wff b(a), it is immediate from Rule (1) that v(r(A)) = V(A).
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(d) Suppose A is b(aί, a2) and consider first the case V(A) = t. By Rule (1)
v(w!εy) = t. By (4) v((Xi, x2)irw1) = t. So, since v is consistent it must
assign t to

3w. (Xi, x 2)πwΛwεy

which is the unabbreviated form of r(Λ).

Next consider the case V(A) = f. By Rules (4) and (3) v can assign t to
(Xi> X2)τrw only if there are cl9 c2 such that w = n(cl9 c2) and V(cx = aj =
V(c2 = a2) = t, but the latter condition in the present case implies
V(b(c1, c2)) = f, hence by Rule (1) v(wεy) = f. Thus every instance of the
negation of r(Λ) gets value t, so by consistency of v, v(r(Λ)) = f. So our
assertion is proved for b(al9 a2). A straightforward extension of the proof
applies to b(al9 . . ., am)9 m > 2.

(e) If A is a = b, the statement v(r(A)) = V(A) is immediate by Rule (3).
(f) By (c) and (d), v(r(A)) = V(A) holds for all atomic A. Since both V and v
satisfy the first condition of consistency (cf. section 4), this identity must
hold for all quantifier-free A, so by (b) assertion (i) holds for all
quantifier-free A.
(g) Now suppose A is V«J5 where B is quantifier-free, and consider first
the case V(A) = t . By consistency of V, all instances of VaB have value t
under V. If t is the type of a, all instances of r(A) have the form

* yef-> r(£)(y/x)

where y is an arbitrary variable. If y is the name of a variable of type t9

then r(i?)(y/x) is the image under r of an instance of VaB, hence has value t
under v by (f). So the formula * has value t under v in this case.

In the case where y is not the name of a variable of type t, v(ye t) = f
and again * has value t. Thus v assigns t to all instances of r{VaB) and so
to r(VaB) itself.

If V(VaB) = f, then there is an instance of VaB which also has value f
under V, and it is easy to see that in this case there is also an instance of
χ(VaB) to which v assigns value f.

By a sequence of applications of the arguments under (f) and (g) one
can prove v(r(A)) = V(A) for any wff of δω having one or more quantifiers.
This completes the proof of (i).

Assertion (ii) can be verified for each postulate, one by one, a tedious
routine which we omit. The "if" part of the theorem follows easily from
(i) and (ii).

To prove the "only if" part it is sufficient to show that (iii) if A is an
axiom of %ω then tr(A) is a theorem of δ(ί)? and (iv) if B follows from A and
A -* B by the first (from A by the second) rule of inference, then tr(B) is
deducible in S(f) from tr(Λ) and tr(A — B) (from tr(A)).7 The proof that (iii)

7. See [1], pp. 312-313, for those properties of Γ in consequence of which Γ is the
set of wffs to which value t is assigned by a consistent valuation.
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holds for axioms of Sω belonging to schemas (1) and (2) is elementary,
(iv) follows quite easily from 20T. It follows easily from 24P that (iii)
holds for (3), the extensionality schema.

For schema (4) the proof of (iii) is not quite so simple. First consider
the special case (a) where the wff C in the formula of schema (4) is a
quantifier-free wff in which the string of variables in the argument
positions (i.e., inside the parentheses) is the same in each of the atomic
components of C and in the expression b(au . . ., afl) occurring in the left
side of the formula. In this case the predicates in atomic components of C
all belong to the same type as b. Such an axiom is

:lcVί/: c(d) **.a(d)\b(d),

of which the translation is (if t is the type of d),

x, ye (t) -*:•: ":)z::ze W Λ V U : . U 6 £ - ^ : u ε z < ^ . u ε x | u ε y ,

which is easily deduced from 25P. In instances of case (a) where C is
more complex, the translation of the axiom can be proved by a sequence of
applications of 25P, consisting of one application for each stroke occurring
in the unabbreviated form of C.

Next, consider the case of a quantifier-free wff in which (a) no variable
occurs more than once in the argument positions of C, (β) the string of
variables in the argument positions of b(au . . ., an) lists all the variables
in the argument positions of C, and (y) lists them in the order in which they
occur in those positions. In this case the translation of the axiom can be
proved by a sequence of applications of 26P and 25P. Thus, the translation
of

3c: c(du d2) <-> . aidj) Λ b(d2)

can be proved by one application of 26P followed by one of 25P.
Next, suppose that conditions (a) and (β) are satisfied but not (y). Then

the translation of the axiom can be proved by first proceeding as in case
(b), then using 28P, 29T, or both. These two (with 9P) are adequate for all
permutations. If (a) is not satisfied one may use 30P, 31T, or both, in
conjunction where necessary with 28P, 29T. If (β) is not satisfied, one may
use 27P if the string au . . ., an does not include all the variables occurring
in the argument positions of C, and 32P if this string includes some
variables occurring in predicate positions and not in argument positions of
C. So it is proved that all translations of axioms of schema (4) in which C
is quantifier-free are theorems of 5(0. It is easy to see that 33P permits
us to remove the restriction to quantifier-free C. This completes the
proof.
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