Notre Dame Journal of Formal Logic Volume XV, Number 2, April 1974 NDJFAM

SEMANTICS FOR CONTINGENT IDENTITY SYSTEMS

ZANE PARKS

In [2], it was shown that the semantics developed by Hughes and Cresswell in [1], pp. 198-199, for the contingent identity systems T + CI, S4 + CI, and S5 + CI is inadequate in that none of these systems is sound with respect to the corresponding notion of validity. The purpose of this note is to present a semantics which is adequate. We restrict our attention to T + CI; extending this semantics to S4 + CI and S5 + CI is straightforward.

A model structure is an ordered quadruple $\langle W, R, D, I \rangle$ such that Wand D are nonempty sets, R is a binary reflexive relation on W, and I is a nonempty subset of the set of functions from W into D. A value assignment V on a model structure $\langle W, R, D, I \rangle$ is a function which assigns each variable **a** value $V(\mathbf{a})$ in I and each n-place predicate letter φ a value $V(\varphi)$ in the set of functions from W into the power set of the n'th Cartesian product of D with itself. Let V be a value assignment on $\langle W, R, D, I \rangle$ and let $i \in I$. Then $V\begin{bmatrix} \mathbf{a} \\ i \end{bmatrix}$ is defined to be that value assignment on $\langle W, R, D, I \rangle$ which assigns i to \mathbf{a} and elsewhere agrees with V. A model is an ordered quintuple $\langle W, R, D, I, V \rangle$ such that $\langle W, R, D, I \rangle$ is a model structure and Vis a value assignment on $\langle W, R, D, I \rangle$. Let $\mathfrak{M} = \langle W, R, D, I, V \rangle$ be a model and $i \in I$. Then $\mathfrak{M}\begin{bmatrix} \mathbf{a} \\ i \end{bmatrix}$ is defined to be $\langle W, R, D, I, V \rangle$ be a model where M is a value assignment on $\langle W, R, D, I \rangle$. Let $\mathfrak{M} = \langle W, R, D, I, V \rangle$ be a model and $i \in I$. Then $\mathfrak{M}\begin{bmatrix} \mathbf{a} \\ i \end{bmatrix}$ is defined to be $\langle W, R, D, I, V \rangle$ be a model and $i \in I$. Then $\mathfrak{M}\begin{bmatrix} \mathbf{a} \\ i \end{bmatrix}$ is defined to be $\langle W, R, D, I, V \rangle$ be a model and $i \in I$. Then $\mathfrak{M}\begin{bmatrix} \mathbf{a} \\ i \end{bmatrix}$ is defined to be $\langle W, R, D, I, V \rangle$ be a model and $i \in I$. Then $\mathfrak{M} = \alpha'$ as ' α is true at w in \mathfrak{M} ') inductively as follows:

(i) $\mathfrak{M}, w \models \varphi \ \mathfrak{a}_1 \ldots \mathfrak{a}_n \text{ iff } \langle V(\mathfrak{a}_1)(w), \ldots, V(\mathfrak{a}_n)(w) \rangle \epsilon V(\varphi)(w),$

(ii)
$$\mathfrak{M}, w \models \mathbf{a} = \mathbf{b} \text{ iff } V(\mathbf{a})(w) = V(\mathbf{b})(w),$$

(iii) \mathfrak{M} , $w \models \sim \alpha$ iff it is not the case that \mathfrak{M} , $w \models \alpha$,

(iv) $\mathfrak{M}, w \models (\alpha \lor \beta)$ iff either $\mathfrak{M}, w \models \alpha$ or $\mathfrak{M}, w \models \beta$,

(v) $\mathfrak{M}, w \models L\alpha$ iff for all $w' \in W$ such that $wRw', \mathfrak{M}, w' \models \alpha$,

(vi)
$$\mathfrak{M}, w \models (\mathfrak{a}) \alpha$$
 iff for each $i \in I, \mathfrak{M}\begin{bmatrix} \mathfrak{a} \\ i \end{bmatrix}, w \models \alpha$.

A formula α is *valid* iff for each model \mathfrak{M} and w in \mathfrak{M} , \mathfrak{M} , $w \models \alpha$. Proof that

Received June 28, 1973

T + CI is both sound and complete with respect to this semantics will not be given here. Such a proof can be easily constructed following the proof that the system B1 is sound and complete given in [3].

REFERENCES

- [1] Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, London (1968).
- [2] Parks, Zane, and Terry L. Smith, "The inadequacy of Hughes and Cresswell's semantics for the CI systems," Notre Dame Journal of Formal Logic, vol. XV (1974), pp. 331-332.
- [3] Parks, Zane, "Investigations into quantified modal logic," in preparation.

University of Wisconsin Madison, Wisconsin