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GENERALISED LOGIC

JOHN EVENDEN

1. The logically unsophisticated will often protest when those who are more
sophisticated draw out the consequences of their statements. If the
discussion is pursued, it may be found that they are resistant to accepting
the excluded middle law. Moreover, they may go further, by refusing to
concede that a certain statement is or is not true and refusing to concede
that it is or is not false, though admitting that it cannot be both true and
false. Those who are more sophisticated have a powerful armoury for
avoiding such pitfalls. This includes the adjectives of degree and emphasis
and such devices as "partly the one thing and partly the other," "true or
false but we don't know which," "true in one sense and false in another,"
"classes versus criteria," "extension versus intension" and in the last
resort "neither true nor false" and "too vague to mean anything."

The one thing that is not attempted is to take the unsophisticated
seriously, that is to say, to attempt to construct a logic in which there is a
middle term that is not necessarily incompatible with truth or with falsity,
though these remain incompatible with one another. In the present paper it
will be shown that, contrary to expectation, such a logic can be constructed
and that it is an interesting and very radical generalisation of elementary
logic.

Take the matter from another point of view, by considering existing
systems that modify or abrogate the excluded middle law. On the one hand,
there are systems such as those of Heyting [l] and of Fitch [2] in which
ApNp is not a theorem, but in which there is no third term "?p'\ On the
other hand, there are such systems as those discussed by Rosser and
Turquette [3], in which there are three or more terms, but in which the
terms are incompatible with one another, in the sense that any proposition
takes one and only one value. Comparing these two groups of systems, it
may be asked whether a system could be constructed that, unlike the
systems of the first group, includes a third or middle term, but unlike the
systems of the second group is such that the middle term is not incom-
patible with p or with Np. The system of the present paper is such a
system.
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This logic will be called "generalised logic,7' in distinction, of course,
from "general logic," which will always be referred to as "elementary
logic." The middle term will be symbolised by "?p" and pronounced
"vague-/>," the middle value being called "vagueness." It should particu-
larly be noted that when discussing generalised logic such words as " p r o -
position" and "va lue" take on a wider meaning, to include examples that
would be excluded in discussions of conventional logic; for example, from
some points of view the third "va lue" is not a true value. Generalised
logic has the following properties.

(1) There is a third value, giving the theorem AApΊpNp. (2) The
notion of value is generalised, by allowing that whereas KpNp is disallowed,
neither KpΊp nor KΊpNp are disallowed. (3) Although CKpNpq, EKpNpKqNq,
etc. are theorems, NKpNp is not a theorem (as KpNp may be merely
vague). If EqKpNp then q is said to be "excluded." Exclusion is more
general and weaker, than falsity, in particular, CNqEqKpNp is a theorem,
but its converse is not a theorem. (4) There is a class calculus cor-
responding to the propositional calculus. (5) For a domain of propositions
that do not take the third value, the axioms and rules revert to a complete
set for the Boole-Schroeder logic.

Three fallacies are worth noting, as they confuse thought when the
logic is first studied. (1) Vague terms may not be substituted for non-vague
terms and vice versa. For example, given that φ(p, q, r, . . .) is a theorem
one may not infer $(?/>, q, r, . . .), the substitution rules debar this.
(2) Given Epq, one may infer neither ENpNq nor E?p?q (in default, of
course, of other premises) and one may not infer any of these three forms
from any other. (3) The system includes the axiom EpNNp but the rules of
formation and substitution debar generalisation of this axiom to EφNNφ
for any function φ.

The intuitive basis of generalised logic is, indeed, so different from
that of elementary logic that an intuitive derivation of the primitives of
generalised logic is desirable. This intuitive derivation forms the next
section of this paper and is followed by a formal development of the
system.

2. In designating the items of the system, D = Definition, A = Axiom,
Ru = Underived rule, R = Derived rule and T = Theorem. To facilitate
tracing items among the intuitive derivations, the further designation " I "
is used for these items. Apart from a distinction among the variables that
will shortly be described, the only departure from the usual symbolism is
the introduction of " ? " for " i s vague." To facilitate translation from the
propositional to the class calculus, implication is not used in the axioms
and rules but equivalence and for this reason the primitives may be
rather more numerous than necessary. In any case, however, the aim is to
achieve intelligibility rather than brevity.

The available basis for discussion is:
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AApΊpNp II.
p and Np are incompatible, but ?p is incompatible with neither p nor Np 12.

Clearly, there is a distinction here, between the logic of vagueness, on
the one hand and the logic of truth and falsity, on the other. In accordance
with this distinction, one may expect to encounter axioms and theorems for
whose variables one may not indifferently substitute formulae containing
occurrences of " ? " , on the one hand, and formulae not containing occur-
rences of " ? " , on the other. This expectation is, indeed, realised and to
uphold the required distinction it is necessary to work with two kinds of
variable, the "restricted variables" (r.v.'s for brevity) and the "general
variables'' (g.v.'s for brevity). The letters p, q, r, s, are reserved for the
r.v.'s and the letters /, g, h, i, are reserved for the g.v.'s. Before formu-
lating a substitution rule, two types of formulae will now be defined.

Type 1 formulae are those well formed formulae that contain no
occurrences of "?" and no g.v.'s. Type 2 formulae are those well
formed formulae that contain at least one occurrence of " ? "
and/or at least one g.v. 13.

It is doubtful whether every well formed formula is intuitively
interpretable, or even formally significant: for example, I can offer no
interpretation of ?Kp?p and no inference from it. To distinguish between
the logic of truth and falsity, on the one hand and the logic of vagueness, on
the other, type 1 formulae must be confined to that type under substitution
for their variables and this is achieved by the following rule (due to Prior
in [4], Appendix C).

Formulae of either type can be substituted for the g.v.'s in an
axiom, theorem, or rule, but only type 1 formulae can be sub-
stituted for the r.v.'s in an axiom, theorem, or rule. Rl, 14.

It is fairly obviously safe to formulate the following axioms and rules
in g.v.'s (they contain no occurrences of " ? " or "JV").

The associative and commutative laws are valid for conjunctions and
disjunctions of g.v.'s A3, A4, A5, A6, 15.
EKfAghAKfgKfh and EAfKghKAfgAfh A7, A8, 16.
EKfff and EAfff Al, A2, 17.
If Efg then Egf Ru2, 18.
If Efg and Egh, then Efh Ru3, 19.
If / and Efg then g Ru6, 110.
If Efg then EKhfKhg and EAhfAhg Ru4, Ru5, 111.
Cfg = EKfgf Definition D1, 112.

The rules of the system are completed by adding a weak case of the
deduction theorem to justify the method of subordinate proof (see [2]).
Granted the usual intuitive notion of implication, it is evident that sub-
ordinate proof will be valid, but it is admittedly odd to base an underived
rule on a definition (112). The oddity is trivial, however, for it could be
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removed by replacing each equivalence among the primitives by a pair of

implications, replacing 112 by "Efg = KCfgCgf" and adding the rule "if Cfg

and Cgf, then KCfgCgf."
Subordinate proofs will be placed in square brackets. No rule will be

cited to justify the hypothesis as this is invariably the first step within the
brackets and the rule is invariably Ru7 (113, below). Also, no rule will be
cited to justify the conclusion, as it is invariably the first step after
closure of the brackets, invariably comprises "C (first step within
brackets) (last step within brackets)" and the rule is invariably Ru7.

Hypotheses are allowed and any proposition infered from an hypothesis is
implied by it. Ru7, 113.

Turning now to axioms that contain occurrences of " ? " or "N," it is
found, not surprisingly, that with the exception of one variable in A9 and
A10 they must be formulated in r.v.'s.

Firstly, notice that the enlargement of the scope of the logic to include
for vagueness introduces no assymmetry between p and Np: to negate Np is
still to assert p and to negate p is still to assert Np. Moreover, ?p stands
in precisely the same relation to p and to Np.

ENNpp and E?Np?p A17, A18, 114.

Now reconsider II. There must be conditions under which ?p is
excluded, yielding ApNp, Similarly, there must be conditions under which p
is excluded, yielding A?pNp and conditions under which Np is excluded,
yielding Ap?p. It might be supposed that this notion of exclusion was
simply negation of the relevant term, but in fact, it is weaker than negation.
This can be seen by considering AΊpNp, which excludes p but is weaker
than Np, or by considering Ap?p, which excludes Np but is weaker than
NNp, i.e., p. It would seem as if one were committed to a fourth value but
fortunately, as will be seen shortly, exclusion can be specified without
introducing a new primitive. Meanwhile, the notion of exclusion must be
further investigated.

Bearing in mind that falsity is stronger than exclusion, if Kpq is not
merely vague or excluded, but false, then either p is false or q is false and
similarly, if p is false or q is false, then Kpq is false. That is to say,
De Morgan's theorem is valid, provided it is formulated as a type 1
formula.

ENKpqANpNq and ENApqKNpNq A13, A14, 115.

But by 14 one may substitute Np for q to obtain:

ENKpNpApNp 116.

Which is startling—if there is such a thing in logic-^because clearly
ApNp is not a theorem and therefore, by 116, neither is NKpNp. However,
one may already conjecture that 116 should be interpreted as entailing that
the conventional laws of excluded middle and contradiction are valid if and
only if ?p is excluded. Moreover, a further hint is obtained by substituting
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KpNp in II (by 14) giving AAKpNp?KpNpNKpNp and suggesting (though the
proof is not yet available) that A?KpNpNKpNp will be a theorem and that
although KpNp is not false it is valid to eliminate it from the former
function, to obtain the latter, because it is excluded.

Consider, now, in what sense, if any, ?Kpq and ΊApq are value
functions. In particular, might there be a state of affairs where p and q
were both true, where neither of them were vague, yet where Kpq were
vague and/or Apq were vague? This would amount to positing that the
connective itself could be vague and although it is conceivable that a
system could be constructed to include for vague connectives, this is a
further generalisation with which we are not concerned. But therefore:

C?KpqA?p?q and C?ApqA?p?q 117.

And from this one can prove (using 114):

C?KpNp?p and CΊApNpΊp 118.

Also, bearing in mind that ?Kpq and ΊApq are value functions in the
sense described above, 119 below is self evident and from this 120 can be
proved. Finally 121 can be proved from 118 and 120 (using Rβ, which is
proved independently of the present considerations).

CK?p?q?Kpq and CK?p?q?Apq 119.
C?p?KpNp and C?p ?ApNp 120.
EE?p?KpNp?ApNp 121.

Comparing 121 with 114 and 116 it can be seen that neither NKpNp nor
ApNp are theorems because both may be merely vague and that they are
both vague if and only if p is vague. Now while this is to say that where
propositions are vague, contradictions are vague, it is not to deny that a
contradiction implies anything:

CKpNpf and EKKpNpfKpNp and EKpNpKqNq Al 1, 122.

The first and second members of 122 are equivalent by 112 and the
third is derivable from the first by substituting KqNq for /, etc. Also, using
122 with the two lemmas "if Afg and Cgh, then Afh" and "CfAfg" (T31 and
T15), both of which can be proved independently of the present discussion,
one obtains

EAKpNpff 123.

Also, it will be shown in the next section that CNqEqKpNp (T39), but I
do not think that the converse of this theorem can be proved (if it can, the
system is inconsistent). Therefore statements equivalent to a contradiction
have, by 122, 123, T39 (and the absence of its converse), the properties of
of exclusion described in the discussion following 114. These various
theorems specify exclusion and a proposition equivalent to a contradiction
will be said to be excluded. It will be convenient to reserve the letter "s"
for asserting exclusion (EpKsNs, etc.) but it will be understood that this
usage has no logical significance. The following further axioms are
intuitively obvious:
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EKAApΊpNpff and EAAAp?pNpfAAp?pNp A9, A12, 124.

Let us now seek the De Morgan analogue of ?Kpq and ?Apq. It has
already been mentioned that there is a class calculus corresponding to the
propositional calculus and the De Morgan analogues can most clearly be
intuited by analogy with Venn-type diagrams for the class calculus.

p 2. Q

Figure 1. Figure 2.

Figure 1 i l lustrates the diagrams. In Figure 2, 1. is KpNq, 2. is Kpq,
3. is K?pq, 4. is K?p?q, and so on. It is easy to see that:

E?KpqAAK?pqK?p?qKp?q A15, 125.

E ΊApqAAK ΊpNqK ?p ?qKNp ?q A16, 126.

This completes the primitives of the system.

3. In summary, the primitives of the system are :

Cfg=EKfgf 112, D l .

EKfff 17, Al. EAfff 17, A2.
EKfgKgf 15, A3. EAfgAgf 15, A4.
EKfKghKKfgh 15, A5. EAfAghAAfgh 15, Aβ.
EKfAghAKfgKfh 16, A7. EAfKghKAfgAfh 16, A8.
EKAAp?pNpff 124, A9. EAKsNsff 123, A10.
EKKsNsfKsNs 122, A l l . EAAAp?pNpfAAp?pNp 124, A12.
ENKpqANpNq 115, A13. ENApqKNpNq 115, A14.
£ ΊKpqAAK ΊpqK ?p ΊqKp Ίq E ΊApqAAK 7pNqK?p ΊqKNp ?q

125, A15. 126, A16.
£7W/>/> 114, A17. E?Np?p 114, A18.
Substitution rule 14, Rul .
If Efg, then #£/" 18, Ru2.
If Efg and #£7z, then Efh 19, Ru3.
If Efg, then EKhfKhg 111, Ru4.
If £fe, then EAhfAhg 111, Ru5.
If /and £/£% then g 110, Ru6.
See 113 (subordinate proof)

113, Ru7.
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The primitives of the class calculus can be obtained from these
primitives by deleting Ru6 and Ru7 and translating the remaining primi-
tives into class notation.

The following theorems and rules are easily proved, here the proofs
will be omitted.

Rl. If Efg and Ehi, then EAfhAgt
R2. If Efg and Ehi, then EKfhKgi
R3. If EfAgh and Ehi then EfAgi
Tl. Eff
T3. EΊKpNpΊp
T5. EΊKpNpΊApNp
T7. EA ?KsNsNKsNsAAp ?pNp

T2. ENKpNpApNp
T4. EΊApNpΊp
T6. ENApNpKsNs
T8. E?Apq?KNpNq

For the intuitive validity of T7, see T25, below.

T9. E?Kpq?ANpNq
Til. EAApKA 7pNpANq ?qqAAr ?rNr
T13. EfAfKfg
R4. If Cfg and Cgh then Cfh
R5. If Cpq then EKpNqKsNs
R6. C/g and Cgf if and only if Efg
T15. C/Λ/̂
T17. EKpNpKqNq
T19. EAAp?pNpAAq?qNq
T21. EAANANpNqNANpqKpΊqp
R7. C/g if and only if EAfgg

T10. EAKpq?KpqKAp?pAq?q
T12. £AANpKA ?ppAq 7qNqAAr ?rNr
T14. C/Γjfr/

T16. C//
T18. CKsNsf
T20. CfAAq?qNq

So far, Ruβ and Ru7 have not been used in the proofs of rules or
theorems, so that the above twenty-one theorems and seven rules can be
translated into class notation without becoming invalid. Most or all of the
following theorems, down to T50, do, however, require Ru6 or Ru7 for their
proof.

R8. If/and Cfg then g
T22. CgCfg

Proof. [1. g [2./ 3. g (1)] 4. cfg] 5. CgCfg
T23. CfEfAApΊpNp

Proof. [ 1 . / 2. CfCAAp?pNpf(Ύ22) 3. CAApΊpNpf (1, 2, R8)
4. CfAAp?pNp (T20) 5. EfAApΊpNp (3, 4, R6)] 6. CfEfAApΊpNp

T24. AApΊpNp
T25. A?KsNsNKsNs

Intuitively, this last amounts to ί(contradictions are vague or false"
and is central to the point that exclusion is weaker than falsity and to the
notion of vagueness: where propositions are vague, contradictions may be
merely vague.

T26. AApKA?pNpA?qNqq
T27. AANpKA?ppA?qqNq T28. EEffAApΊpNp
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R9. / and g if and only if Kfg
T29. CKfCfgg

T31. CKAfgCghAfh
T33. CfCgKfg
T35. CCfKghKCfgCfh
T37. ECKfghCfCgh
T39. EEAfgKsNsKEfKsNsEgKsNs
T41. CpCNpf
T43. CCfpCCfNpEfKsNs
T45. CCpfAAΊpNpf
T47. CKApfNpf
T49. CEpNpΊp

T30. EKCfgCgfEfg
T32. CCfgCCghCfh
T34. CKCfgChiCAfhAgί
T36. CCghCAfgAfh
T38. CAEfKsNsEgKsNsEKfgKsNs
T40. CpENpKsNs
T42. CCfpEKfNpKsNs
T44. CANpfCpf
T46. ECfgEAfgg
T48. ECAfghKCfhCgh
T50. CCNppApΊp

It is a reasonable conjecture that if 0W is an w-variable theorem of
Boolean propositional logic COT . . . E?pιKsNsE?p2KsNs . . . E?pnKsNsφt]

will be a theorem of generalised logic, but I have been unable to show this.
A piecemeal comparison with the relevant theorems of Principia Mathema-
tica is of some interest. About two thirds of these theorems are theorems
of generalised logic and interesting comparisons can be made with nearly
all the remainder, the following being a selection of examples.

PRINCIPIA MATHEMATICA

1.01. Cpq = ANpq Definition
2.01. CCpNpNp

2.03. CCpNqCqNp
2.5. CNCpqCNpq
2.521. CNCpqCqp

2.68. CCCpqqApq
2.85. CCApqAprApCqr
3.24. JW/>iV/>
4.83. EKCpqCNpqq
5.13. ACpqCqp

GENERALISED LOGIC

T51. ECpA?pfAA?pNpf
T52. CCpNpEpKsNs and

T53. CCpNpA?pNp
T54. CCpNqCqAΊpNp
T55. CNCpqA?pCNpq
T56. CNCpqA ?pCqp and
T57. CNCpqA?qCqp
T58. CCCpAΊpffApf
T59. CCApfApgAAp?pCfg
T60. AΊpNKpNp
T61. EKKCpfCtpfCNpff
T62. AAΊpCpfCfp

Most of these theorems are not difficult to prove. Perhaps the
only form that presents some difficulty is the form CNCpqφ, as in
T55 to T57. Theorems of this form can be proved from derivatives
of T54. For example, the proof of T56 is: (1) CCNpqCNqA?pp (T54,etc).
(2) CCNpCpqCNCpqAΊpp ( l , e t c ) . (3) CNpCpq (T41,etc). (4) CNCpqA?pp
(2, 3, R8). (5) CpCqp (T22). (6) CNCpqA?pCqp (4, 5, T31, R4).

4. Consider the relation of generalised propositional logic to Boolean
propositional logic, or of generalised class logic to Boolean class logic.
To do so, add the axiom E?pKsNs to the generalised logic and substitute
r.v.'s for all g.v.'s. Then this axiom can be used to eliminate all occur-
rences of " ? " and A10, Al l , can be used to eliminate redundant occur-
rences of KsNs, leaving every axiom, rule, and theorem an axiom, rule, or
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theorem, of Boolean logic. Moreover, with both the resulting propositional
logic and the resulting class logic it is easy to prove a complete set for the
corresponding Boolean logic.

These results define the sense in which generalised logic is more
general than Boolean logic, for the addition of E?pKsNs makes the system
degenerate. Also, they show that generalised logic is incomplete and that
it can only be completed by degenerating into Boolean logic.

Now consider the part of the system that is formulated in g.v.'s only,
without r.v.'s. This part of the system contains no occurrences of " ? " or
"N." One may ask whether this sub-system is a complete system for K,
A and C (and E). I have been unable to prove this and believe that it is
incomplete, but it is easy to show that a complete K-A-C system results
from the addition of the axiom CCCfgff to the system. Also, as far as I can
judge the addition of CCCfgff to the system of generalised logic as a whole
does not make it inconsistent.

It is therefore tempting to add CCCfgff to generalised logic, but for two
reasons I have not done so in the present paper. Firstly, CCCfgff is not
intuitively obvious in the sense in which Al to A8 are intuitively obvious.
Secondly, it is probably possible to make additions to the axioms con-
taining " ? " and such strengthening of the system may not be consistent
with CCCfgff but may be more interesting. The axiom remains, however, a
likely candidate for addition to the system and defines the sense in which
the K-A-C sub-system of g.v.'s is incomplete.

It may be asked whether generalised propositional logic can be
extended to a generalised functional logic. This is not the time and place
for an exposition, but it will, perhaps, be of interest to mention that a
system of first order functions of one variable can be constructed by
distinguishing between general functions, Fu F2, • and restricted func-
tions, fl9 /2, . . . and there seems every reason to suppose that this can be
extended to any number of variables and to higher functions. It is, perhaps,
worth mentioning that (3x) F(x) cannot be adequately defined by ~(x) ~F(x)
because, for example, if ?f(x) is substituted for F(x) the result is
~(x) ~?f(x) and there are no propositional axioms or rules for handling
~? p. Existential quantification can, however, be handled by the method of
instantiation by constants. Because (3x) F(x) cannot be defined and because
there are two types of function, the system is inclined to proliferate axioms
and elementary theorems; probably a higher functional calculus of any
number of variables will be cumbersome.

Finally, consider the status of the Law of Contradiction and of the
Logical Paradoxes, in the context of generalised logic.

By the Law of Contradiction one might mean A: contradictions are
false, {NKpNp), or B: c o n t r a d i c t i o n s are excluded, (EKpNpKqNq,
EKKpNpfKpNp, EAKpNpff, and CKpNpf). In Boolean logic both are the case,
in generalised logic only B is the case. In either logic a paradox is the
case when EpNp, In Boolean logic this entails a contradiction, i.e., enables
one to infer p and therefore KpNp and therefore anything. In generalised
logic one has EEpNpKEpKsNsENpKsNs and CEpNpΊp and ElpΊKpNp and
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E?KpNp?ApNp, etc. Thus p and Np are equivalent if and only if both are
excluded and in that event p is vague, as, indeed, is KpNp, but a paradox
does not entail a contradiction.

For a sentence, /?, to be paradoxical (i.e., for EpNp) it is necessary but
not sufficient that it should be vague and it is both necessary and sufficient
that both p and Np should be excluded. It need not occasion surprise that
deductive systems can be constructed for domains of propositions some of
which conform to these conditions. A paradox generates a contradiction in
a badly constructed logica magna, because although its domain includes
paradoxical propositions, its axioms and rules are only valid for a domain
of non-vague propositions. In a conventional system, the use of techniques
for eluding the paradoxes is not an arbitrary meta-logical intrusion, but the
necessary limitation of the domain of the system to one as narrow, or
narrower, than the domain for which the axioms and rules are valid. Also,
the domain of the relevant axioms and rules is not arbitrary, because if it
is widened to include for vague propositions the propositional logic of the
system becomes incomplete. Boolean logic, however, is incomplete in
another sense, namely, that it does not include vague propositions.
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