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A STRONGER DEFINITION OF A RECURSIVELY INFINITE SET

CHARLES H. APPLEBAUM

1 Introduction. The purpose of this announcement is to strengthen the
definition of a recursively infinite set as defined by Dekker and Myhill in
[2]. This can be done after we have proved that any function that maps an
immune set, a, one-to-one into itself and has a partial recursive extension
must be an ω-permutation of a.

2 Preliminaries. Let ε stand for the set of nonnegative integers (numbers),
V for the class of all subcollections of ε (sets), and 9 for the set of all
mappings from a subset of ε into ε (functions). If / is a function, we
write δ/ and pf for its domain and range respectively. The relation of
inclusion is denoted by c and that of proper inclusion by ξ . Certain
families of functions are denoted by special symbols.

3i-i = {/e9 I/is one-to-one},
ct - {fe9 | /has a partial recursive extension},

<^i-i = {/€cΛ|/has a one-to-one partial recursive extension}.

The sets a and β are recursively equivalent [written: a - β], if δ/ = a and
pf = β9 for s o m e / e ^ i - i

We recall from [1], Proposition 1 that

(*) feJi-i^tr1***, for/eS .̂

A permutation of a set a is an ω-permutation, if fecA^x. The reader is
assumed to be familiar with the contents of [2],

3 Main Results.

Notation. For fe9, fn is defined for neε, as follows: f° = i, where i is
the identity function, and fn+1 = fofn

9 where o is function composition, and
/ w + 1 has the appropriate domain.

Theorem 1. Let a be an immune set and f e l^γfλcA such that δf - a and
pf c ay then f is an ω~permutation of a.
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Proof. Let yepf. Put β ={f\y)\iet}. Thus β c a and β is r.e. Hence
β must be finite. It follows that t h e r e exist n u m b e r s i<j such that

f\y)=f\y). B u t / e * ! - ! , hence

(r1)/o//(y) = (r1ro/ί(y).
Thus fH(y) =y. It follows that /(/H"1(3;)) =3;. So/" 1 ^) =f-i'1(y)9 where
7 - z - 1 > 0. Hence by putting

Γ\y) =fk(y), where & = (μw > 0)(/w(3;) = y) - 1,

it is clear t h a t / ^ e ^ . Thus by (*), fed^-i. But since α is immune, it
follows that pf = a. Hence / i s an ω-permutation of α.

Remark. We recall from [2] that a set a is recursively infinite (r.i.) if
there is an / e ^ - i such that δ/= a and p/S α, i.e.,^ ^ /3, where β 5 α.
It is also known that α is r.i. if and only if a has an infinite r.e. subset.
By using Theorem 1, we can now strengthen the definition of r.i.

Theorem 2. A set a is r.i. if and only if there exists an /e^x-iΠ c4 such
that δf = a andpfζi a.

Proof: The only if part is immediate. Thus let there exist an/e 9ι^10o4
such that δf=a and pf ζ, a. It suffices to show that a has an infinite r.e.
subset. But if a has no infinite r.e. subset, then a is immune and by
Theorem 1, pf = a. Since pfζ. a, we are done.

Remark. Theorem 1 is useful in the study of automorphisms of algebraic
structures and Theorem 2 makes it easier to prove a set is not immune.
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