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A DEDUCTION THEOREM FOR RESTRICTED GENERALITY

M. W. BUNDER

In this paper, a deduction theorem for restricted generality (Ξ) will be
proved on the basis of a finite number of axioms which do not contain
variables. The theorem is in such a form as to avoid both Curry's paradox1

and the Kleene Rosser paradox.2 In fact it can be shown that nothing
inconsistent can be proved using this form of the deduction theorem and the
basic rules given below.3

An iterated form of the theorem can also be derived, as well as
deduction theorems for P (implication) and Π (universal generality).

1. The combinatory system The notation we use in this paper is as in [4],
in addition we take HΛΓ to stand for "x is a proposition." The system in
which we prove the deduction theorem will contain at least two rules,
others are expressible in terms of them. The first is the basic rule for
restricted generality Έ:

Rule Έ. Έxy, xu \- yu.

Note that xu may be interpreted as "u has the property x" or as "u is an
element of the class x" and Έxy may be interpreted as "for all u for which
xu holds, yu also holds" or as "x is a subclass of y." Έxy will also be
written as xu ^>u yu. The second rule is one for equality (Q).

Rule Eq. Qxy, x h y.

The system may also include any set of axioms without variables. These
can include axioms for equality such as v-QXX, for every primitive ob X,
(there are a finite number of these: Ξ, Q, K, S so far) and

1. See [4] Chapter 5. It is obtained when implication P is defined by P =

[x,y] E(K*)(Ky).

2. See Kleene and Rosser [5]. This form of the theorem also avoids a generalized
version of the Kleene Rosser paradox. This version of the paradox will appear in
a later paper.

3. This is done in an as yet unpublished paper by H. B. Curry and the author.
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Axiom 1. \-Qxx ^>x . Q ^ ^>y Q(xy)(xy),

to give equality for composite obs. If variables are required in the system
a single axiom scheme \-Quu, where u is any variable in the system is
sufficient. Any other axiom containing variables can then also be included
in the system. Take an axiom of the form *-T(uί9 . . . , un) for all ul9 . . . , un,
this can be expressed as:

hQu^ ΌUιl OU2U2 ~3u2 . . . OiUnUn^un T(uly . . . , wj . . . .

hT(wi, . . . , Un) is then derivable using \-Quxux, . . . , \-QunUn and Rule H.

2. The basic theorems and axioms The axioms we use are stated in terms
of a new ob L, which is such that "LX" is interpreted as "for all win A,
Xu is a proposition.'' This L is defined in terms of the primitive ob H and
a new (unspecified) primitive category A, thus:4

Definition L. L = FAH.

In addition to f-WQK, hWQS, hWQH, etc. and Axiom 1 which must be in the
system if it contains equality, we need three further axioms, viz:

Axiom 2. I-LΛΓ 3* Έxx.
Axiom 3. 5 \-Lx ^x,y: xu ^>u . yuv ^>v xu.
Axiom 4. \-Lx ^>x,t: xu Dtt yu(tu) ^>y . {xu ^>u (yuv ^>v zuv)) ^>x (xu ^>u zu(tu)).

Of these, Axioms 2 and 3 are (ΞI) and (EK) (see [4]) with the restriction Lx
on x. Axiom 4 also has x restricted to Lx, but it is not exactly (SS) as it
has the order of the expressions altered as well as the order of ^>z, ^>y and
=>/. Also the γx in Curry's [3] form (which is also Cogan's [2] form) is
replaced by a single symbol. We now prove a theorem from each of the
above axioms.

Theorem 1. Lx \- Έxx.

Proof. The theorem follows by Axiom 2 and Rule H. Similarly we get the
following two.

Theorem 2. Lx, xu μ yuv ^v xu.
Theorem 3. Lx, xu ~^u . yuv ^v zuv, xu ^>u yu(tu) \-xu ~3U zu(tu).

One would expect it to be possible to prove (El) from (EK) and (ES);
but here with the extra condition Lx this is not possible unless we have an
ob Y such that μY and μL(KY). In that case we have the next theorem,
which provides an alternative to Axiom 2.

Theorem 4. If there is an ob Y, not containing any variables, such that f-Y
and μL(KY), then Lx μ Έxx, follows from Axioms 3 and 4.

Proof. By putting B(KY) for y and BKAΓ for z in Theorem 3 we get,

4. F = lx,y,z] Zx(Byz).

5. "X l>Xty Y" is an abbreviation for "Ey 3 y * X ~DX 7 . "
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Lx, xu^u - Y ^v xu, xu^>u Y \-xu^u xu. Now by Axiom 3, Lx, v-xu ~DU . Y z>v

xu and by Theorem 2 h xu^>u Y, provided HY and (-L(KY). Thus the result

follows.

The next axiom that is needed for the deduction theorem gives a

property of the "universal class" WQ.

Axiom 5. hLx^xΈx (WQ).

We also need two properties of H:

Axiom δ. I-ΞIH,

which states that every assertion is a proposition; and

Axiom 7. h-LH,

which asserts that H is an element of L. We can then prove,

Theorem 5. Hy hL(K y).

Proof. By Theorem 2 with H for x, KA for y and y for u we have LH,

H y μ Δυ ~^v Hy. Thus by Axiom 7 and the properties of K, Hy \- Δv ^>υ \λ{Kyv),

which is Hy ι-FAH(K^).

Note that this theorem allows us to remove Axiom 1, as Theorem 1 can be

derived using Theorem 4 where hY is any axiom.

3. The deduction theorem: statement and motivation Now the deduction

theorem6 can be stated.

Theorem 6. (The Deduction Theorem for E). If Xo, X ι- Y and Xo \- L([t%X)

where u is not involved in Xo, then Xo \- X^>u Y.

The motivation for this form of the deduction theorem is based mainly

on its special case for P. Because of the paradoxes, the axioms of

propositional calculus have to be restricted in some way. This is usually

done by requiring all the variables in such a statement to be propositions.

Such a procedure has the disadvantage, however, that obs X of which it is

not certain whether or not they are propositions can never be used. We are

setting up a theory here which can be interpreted in a kind of 3-valued logic

in which statements are T (true), F (false) or N ("neither" or "not sure").

Truth tables for the propositional connectives are then as follows:

y y y

x \-x Vxy 1T F N Axy T F N Pxy T F N

T F T T T T T T F N ~T T F N

F T Λ F T F N # F F F F # F T T T

N N N T N N N N F N N T N N

6. A similar theorem was proved independently by Seldin [6] using somewhat differ-
ent assumptions. His methods allowed me to simplify some parts of my proof.
The theorem is also similar to one proved by Church in his 1932 paper. Church
used instead of L([u]X) what in classical notation would be (3u)X, and he requires
that u actually appears in X. He used axioms and rules which were proved in-
consistent by Kleene and Rosser [5].
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Similar tables7 to these can be found in Chapter 12 of Kleene [5].
The table for P is basic here, as the others should be derivable from it
using suitable definitions of -, V and A, if it is to be possible to extend the
theory to a classical system. This table for P could also be expressed
(still informally) as follows. PXY is T if and only if, HXis T or Y is T,
and Y is T whenever X is T. H(PXY) is T if and only if, HX is T or Y is T,
and HF is T whenever X is T. To be consistent with the tables for P,
therefore, a deduction principle of the form

IfXV-Yand h-HX or \-Y, then \-PXY

can be adopted. It is the H form of this that we now prove.

4, Proof of the deduction theorem
Proof. Let there be n steps F l 3 Y29 . . . , Yn = Y in the proof of Y from Xo

and X. We show by induction on k that Xo h i DM Yk. There will be five
cases to consider.

1. YkisX.
2. Yk is a constant (with respect to u), such that Xoγ-Yk.
3. Yfc is WQw (i.e., the only axiom which can contain u).
4. Yk is obtained from y, by Rule Eq.
5. Yk is obtained from F; and Yi by Rule Ξ.

Cases 1, 2 and 3 involve no inductive hypotheses, and so take care of the
basic step k = 1, but they are also applicable when k > 1. In the inductive
step the theorem is assumed for Yi(i < k).

Case 1. By Theorem 1, L([u]X) v-X ΏU X, so as, X0)-L([u]X) and
Yk=X the result follows.

Case 2. If Yk is a constant with respect to u such that, Xo \-Yk, then
[u]Yk= KYk. Now Yk *-L[KF*] holds by Theorem 5 and Axiom 6. Therefore
Theorem 2, with KYk for x and K([u]x) for y, gives Yk \-χr ^v Yk, where v is
a variable not involved in Xo, X, or Yk, and Xf is X with w replaced by #.
Hence Yk \-X ^u Yk, and as Xo I- ΓA, we get Xo \-X DM Yk.

Case 3. By Axiom 5, L([u]X)\-X^u WQw, so if WQw= FΛ, the result
follows byX0\-L([u]X).

Case 4. If Xo *-Yk follows from X0*-Yi by Rule Eq, then, if \-X0, Yk =
Yi9 and so (X ^u Yk) = {X ^uYj). By the hypothesis of the induction
Xov-X^u Yi. T h e r e f o r e X o v-X ^u Yk.

Case 5. Let Yk be obtained from Yj{j^k - 1) and Y^i **k - l,i Φj) by

Rule Ξ. Yj must then be of the form Zxv ^>v Z2v, Y{ of the form ZtZ3 and Yk

of the form Z2Z3. Then by the hypothesis of the induction, iϊ XQ\-L([u]X),
then X0^X o>u . Z ^ D V Z2V and I Q 1 - ^ =>« ^1^3. Now substitute into The-
orem 3 [u]X for x9 [u] Zλ for y, [u] Z2 for z and [w] Z3 for t. This gives

7. Note that axioms Al,2, 3, 4 and 7 of my earlier article [1] satisfy these three-
valued tables. A7 is in fact based on the table for P. Thus in a system based on
these tables the assumption t-H +1X for anyX and a k ̂  0 cannot hold.
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L([u]X), X ^u . Zxυ =>„ Z2v, X Dβ . ZXZZ \~X ^u Z^Z*.

Thus given Xo \~ L([u]X) and the above hypothesis X0\-X^u Y follows. The
induction has therefore been completed for all cases and the theorem holds.

Corollary 1. Any axiom free of variables can be added to the system and
the deduction theorem will still hold. If an axiom of the form \-Z for all u
is added, where Z involves u, the theorem holds if HE(WQ)([w]Z) is also an
axiom.

Corollary 2. The theorem still holds if instead of the single condition Xo

there is any finite number of them, say Xo, Xl9 . . . , Xn, replacing Xo

throughout.

5. The iterated deduction theorem We shall now consider some examples
of the working of deduction theorem, especially of the condition X0\-L([u]X).
If we have

xu, yuv \-zuv, (for all u, v) (1)

we can get

xu, L(yu) hyuv ^)v zuv. (2)

(This seems intuitively reasonable and this step is allowed by our form of
the deduction theorem). It might seem reasonable then, to also have the
following step:

Lx, L(yu) \-xu ^>u . yuv ^>v zuv,

however, this is wrong, (unless yu does not involve u), as the variable u is
not removed throughout by the induction. If however we had xu f- L(yu), (2)
would reduce to xu \-yuv ^>v zuv, and so the step to

Lx\-xu ^>u . yuv ^v zuv (3)

can be made in the same way as the step leading to (2).
We could also write what we have concluded from (1) as

Lx, FxLy \-xu ^>u . yuv ^>vzuv.

In this example the deduction theorem was applied twice. From it we can
see how the deduction theorem can be iterated. All that is necessary is
that the condition Xo, . . . ,Xk t-L([uk+ί]Xk+1) holds for all variables in-
volved inX0, . . . , Xk+1 when we are taking the induction over uk+1.

Theorem 7. (Iterated Deduction Theorem for Ξ). IfX0,Xu . . . , Xm f-F,
where no Uk occurs in any Xj for j < k; and if for all k < m, Xo, Xly . . . ,
*k *-U[uk+1]Xk+l); then X0\-Xx ^ . . . Xm ^um 7.

6. Deduction theorems for P and Π In connection with the form of the
deduction theorem that we have proved it is necessary to have some basic
obs that belong to the category L. The first of these we have taken to be H.
Also we require f-LA, and using this we can prove HLE.
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Axiom 8. hLA.

Theorem 8. H L E .

Proof. By Axiom 5, LA i-ΞAE. Thus by Axiom 8, AMI-EW, SO by Axiom 6,

AwhH(Ett) and by Axiom 8 and the deduction theorem the result follows.

Deduction theorems for P and Π8 are easily obtained from that for Ξ.

The one for Π contains no auxiliary premises such as X o hL(. . .), as we

already have hLE by Theorem 8.

Theorem 9. (The Deduction Theorem for Π). If Xo H YU all u then Xo i-ΠF.

Theorem 10. (The Deduction Theorem for P). If Xo, X \-Y and if X0\-HX,

thenX0\-XΏ Y.

Proof. If in Theorem 6 a M I S taken which is not involved in X or Y, then

Xo h L([u]X) becomes Xo I- L(O), and this follows if Z o h H Z Thus I o h l D s

Y, holds and this is, Xo h Z(KX)(KY), i.e., Xo h PXY.
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8. Note that Π = Ξ( WQ). The basic rules for P and Π are: Pxy, x h y and
WQ u, ΠΛ: \-XU.
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