Notre Dame Journal of Formal Logic Volume XIV, Number 2, April 1973 NDJFAM

SIMULTANEOUS VERSUS SUCCESSIVE QUANTIFICATION

LEROY F. MEYERS

In standard predicate calculus, if u and v are distinct variables, then "for all u and v, Puv" is satisfactorily restated as "for all u, for all v, Puv"; symbolically:

 $\forall (u, v) Puv \text{ as } \forall u \forall v Puv .$

Similarly, "there are u and v such that Puv" is satisfactorily restated as "there is a u such that there is a v such that Puv"; symbolically:

 $\exists (u, v) Puv \text{ as } \exists u \exists v Puv .$

On the other hand, in standard predicate calculus with equality, it is *not* correct to restate "there exist unique u and v such that Puv" as "there exists a unique u such that there exists a unique v such that Puv"; symbolically:

 $\exists ! (u, v) Puv versus \exists !u \exists !v Puv ,$

where

 $\exists ! vPuv \text{ abbreviates } \exists vPuv \land \forall v \forall v_1 (Puv \land Puv_1 \to v = v_1), \\ \exists ! (u, v)Puv \text{ abbreviates } \exists u \exists vPuv \land \forall u \forall u_1 \forall v \forall v_1 (Puv \land Pu_1v_1 \to u = u_1 \land v = v_1), \end{cases}$

and u_1 and v_1 are distinct variables not occurring in $\exists u \exists v P u v$. We have the following counterexample. In the theory of real (or complex) numbers,

 $\exists ! (x, y) (x = y^2)$

is false (since there are many pairs (x, y) such that $x = y^2$), but

$$\exists ! x \exists ! y(x = y^2)$$

is true (since only 0 has exactly one square root). Simultaneous unique existence is often used in stating theorems, as in the following special case of the division algorithm in the theory of natural numbers:

$$\exists ! (x, y) (0 = 1 \cdot x + y \wedge y < 1)$$

It is an exercise in predicate calculus with equality to show that

Received January 29, 1971

$$\vdash \exists ! (u, v) Puv \rightarrow \exists ! u \exists ! v Puv$$
.

A similar situation occurs with simultaneous *versus* successive uniqueness (not requiring existence); symbolically:

!(u, v)Puv versus !u!vPuv,

where

$$!vPuv \text{ abbreviates } \forall v \forall v_1 (Puv \land Puv_1 \rightarrow v = v_1) , \\ !(u, v)Puv \text{ abbreviates } \forall u \forall u_1 \forall v \forall v_1 (Puv \land Pu_1v_1 \rightarrow u = u_1 \land v = v_1) ,$$

and u_1 and v_1 are distinct variables not occurring in $\exists u \exists v Puv$. However, an implication similar to that for unique existence cannot be expected to hold, as the following examples show. In the theory of complex numbers,

$$!(x, y) (x = y^2)$$

is false, but

$$!x!y(x = y^2)$$

is true. In the theory of real numbers,

$$!(x, y) (x^2 + y^2 < 0)$$

is true (since there are no pairs (x, y) such that $x^2 + y^2 < 0$), but

 $|x|y(x^2 + y^2 < 0)$

is false (since for all x there is no y such that $x^2 + y^2 < 0$). (A similar situation occurs whenever $\exists (u, v) Puv$ is false when interpreted in a domain with more than one element.)

Obviously, $\exists !(u, v)Puv$ is equivalent to $\exists (u, v)Puv \land !(u, v)Puv$, but there is no simple relation between $\exists !u \exists !v$ and $\exists u \exists vPuv \land !u!vPuv$. In fact, in the theory of real numbers,

$$\exists ! x \exists ! y (x = y^2)$$

is true and

$$\exists x \exists y (x = y^2) \land !x !y (x = y^2)$$

is false, whereas

$$\exists ! x \exists ! v (x^2 \cdot v^2 = 1)$$

is false and

$$\exists x \exists y (x^2 \cdot y^2 = 1) \land !x ! y (x^2 \cdot y^2 = 1)$$

is true.

While $\exists !(u, v)Puv$ is equivalent to $\exists !(v, u)Puv$ (and similarly for !(u, v)Puv), there is no simple relation between $\exists !u \exists !vPuv$ and $\exists !v \exists !uPuv$ (and similarly for !u!vPuv), as some of the above examples show.

Remark. A syntactically uniform reading of the quantifiers $\forall u, \exists u$,

 $\exists ! u$, and !u is "for all (each, every) u," "for some u," "for some unique u," and "for unique u," respectively. These readings avoid the confusion which sometimes occurs between $\exists !u$ and !u in informally stated uniqueness proofs.

The Ohio State University Columbus, Ohio