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LOCAL RECURSIVE THEORY

VLADETA VUCKOVIC

1 Introduction. The purpose of this paper is to outline a generalization of
the recursive theory, which is quite different from existing generalizations.
Instead of an axiomatic treatment as an ultimate goal, we proceed in the
opposite direction, considering sets which are, as far as recursive notions
are in question, well behaved only locally. Our hope is that such a point of
view will not end in an imitation of the recursive theory and that it will
produce new, interesting and non-trivial problems and results.

In order to give a definite picture of such a Local Recursive Theory we
do not present the most general case possible. Already in this case the
number of problems which arise is overwhelming.

Methodically, local recursive theory is a development of Malcev's
general theory of enumerations. However, in this paper we use only the
simplest enumerations, indexings, i.e., bijective maps a:N —> Ua, where N
is the set of non-negative integers and Ua 2i denumerable set.

2 Recursive Manifolds. If a : N —* Ua is an indexing, we can identify Ua with
N and pursue the recursive theory on Ua in a trivial way. However, if 21 is

a family of indexings a :N —> Ua and M - \J Ua, the introduction of recursive

notions on M, by use of sets Ua, becomes a problem whose outcome is not
obvious.

Definition 2.1. A set M is called a recursive manifold (an RM) iff:

(i) There is a family 5ί (an atlas on M) of indexings a:N —> Ua, where each

Ua is a subset of M (a local neighborhood), such that M = vj Ua;
aeU

(ii) For all pairs (a, β) e 2ί2, the numerical map a'1 oβ is a partial recursive
function with recursive domain (inclusive 0, the empty set, as a possible
domain).

Example 2.1. Let M be an infinite set and a:N —» U an indexing of a
subset [/of M. If M = U, M is an RM with atlas {a}. If M Φ U, to every
x e M - U correspond the local neighborhood Ux = U u {x} and the indexing
ax:N —> Ux, defined by
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!

x for i = 0,

a(i - 1) for/ Ξ> l.

Then M becomes an RM, with atlas 2ί = {ax \ x eM - u}. Remark that every

a"x

ι°ay, for x Φ y, is the identity on its domain (which is N+ = N - {θ}). This

recursive manifold will be called the trivial RM on M.

An atlas 25 on M will be called maximal iff, for every atlas % on M, the

inclusion 25 c 21 implies the equality 25 = $L By Zorn Lemma,1 to every

atlas 21 on M corresponds a maximal atlas 25 => $1 in some particular

cases, we are able to construct a maximal atlas containing a given atlas.

Example 2.2. Let M = N and let I : N — N be the identity of N. Then N

is an RM with atlas {i}. The maximal atlas 25 ̂  {i} consists of all recursive

functions β:N —» N, which are injective and have recursive ranges.

Example 2.3. Let (ai)ieN be any sequence of increasing recursive
oo

functions. Denote by Uj the range of ai9 and let M= U Ui. Then M is an

RM with the atlas 2ί = {α, | ieN}. ι~~°

Definition 2.2. Let M be an RM with atlas 21 and let Mι be an RM with atlas

H l t Then:

(i) A set X c M is recursively enumerable {recursive) iff, for every αe2ί,

the set a~ί(X) is a recursively enumerable (recursive) subset of N.

(ii) Let X c M. A map / :X —> M2 is partial recursive iff I i s a r.e. (re-

cursively enumerable) set and, for all pairs (a, aλ) e $ί x 2ί1? the numerical

map fa,aλ - oΓιl°f°oί is a partial recursive function. If / is p.r. (partial

recursive) and total it is called recursive.

In considering functionals, i.e., maps f:X-*N9 X c M, and αnfo'-

functionals, i.e., maps /:Z) —» M, Z) c ΛΓ, we shall agree to consider N as an

RM with the atlas {i}, where I is the identity on N.

It is obvious how Definition 2.2 can be generalized to subsets of

Mp and to maps f:X -> Ml9 X c Mp. In (i), instead of a~γ(X) one has to

consider all sets

χal,..,ap= {((*ϊl(Xi)9 , Oίp\xp))\(xu . . , Xp)eX},

and in (ii) one has to consider all numerical maps

fa19..9cψ9β(nu , np) = β'\f{aι{nι), - , oίp{np))),

for all <(*!, . . , ap, β) e%p x 2ίx.

In this paper, M will be a fixed recursive manifold with atlas Sί. In

general, (M, 2ί) denotes that M is a recursive manifold with the atlas 2ί.

One should remark that, under Definition 2.2, all local neighborhoods Ua

are recursive sets, that every a:N-*M, as a map of N into M, is a

1. This remark is due to Professor T.H. Payne, University of California, Riverside.
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recursive anti-functional, and that every a"1: Ua —* AT, as a map from M
onto N, is a partial recursive functional with recursive domain. As an
application of this remark we shall prove a theorem on atlases. Let 2ί and
$ be two atlases on the set M. We say that they are weakly equivalent iff
they induce the same " r . e . , " " p . r . " and " recurs ive" notions for sets and
functionals in (M, 2ί) and (Λf, S3).

Theorem 2.1. Tivo atlases 2ί and S3 on a set M are weakly equivalent iff
their union (5 = % U S3 is an atlas on M, which is weakly equivalent with
both % and S3.

Proof. Suppose 2ί and S3 are weakly equivalent. Take any αeSί. By
equivalence and by the remark above, a"1 is a p.r. function with recursive
domain in (M, S3). Thus, for every j3eS3, a~ι°β is a p.r. function with
recursive domain. Similarly, every β~1°a, βeS3, αe2l, is a p.r. function
with recursive domain. This proves that (5 is an atlas on M. Obviously it
is weakly equivalent with both Si and S3. Converse trivial.

Let us point that in the definition of the weak equivalence we cannot
omit the condition on functionals. To see this, consider any denumerable
set M and two recursive manifolds (M, {a}) and (M, {β}) whose atlases are
singletones. By Theorem 2.1 {a} and {β} are weakly equivalent on M iff
there is a recursive permutation p :N —> N such that β = a op. By a theorem
of Kent there exists a non-recursive permutation f:N—» N, such that, for
every r .e. set E c N, both f(E) a n d / " 1 ^ ) are r.e. Thus, if β:N-+M is
defined by β = a°f, β and a induce the same notions " r . e . " and " recurs ive"
for subsets of M. However, for functionals this is not true. Define F:M —>
JVby F(β(n)) =f(n). F is not recursive in (M, {β}). However, since F(a(ή)) =
F(β(f~1(ή))) - n, F is recursive in (M,{a})9 i.e., {a} and {β} are not weakly
equivalent.

Definition 2.3. Let A be a subset of M. XA , the characteristic functional of
A, is the map XΛ : M —» N, defined by

ίθ if xeA,

1 ifxeCA = M - A.

Theorem 2.2.(i) A set A c M is recursive iff both A and CA are r.e. sets.

(ii) A set A c M is recursive iff XA is recursive.

Proof, (i) If A is recursive, then all a~λ(A), αe$ί, are recursive. Then all
a~1(CA) = Ca'1(A) = N - a~ι{A) are r.e. Converse similar, (ii) Remark that
XA °a is the characteristic function of a"1(A).

Theorem 2.2 should not suggest that local recursive theory will be a
verbal counterpart of the classical recursive theory. Already the problem
of enumeration of all r.e. subsets of a recursive manifold presents some
new and unpleasant aspects. (However, as it will be shown in section 4, a
very general class of recursive manifolds has very definite enumerations
of all r .e. subsets.)
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Let wt = \ne N V T^i, n, v)( be the i-th r.e. subset of N, in the Kleene
i y

enumeration of such subsets. For every ae2ί let wf - a{wι). Consider, for
every φe iVH (the family of all maps of % intoN), the set

(2.1) wφ = U Λ β ) .

One cannot conclude that w^ is a r.e. subset of M, since, for every

(2.2) /3-Vφ) = ̂ φ(/3> U U β'^a {wy{a))
aφβ

is not necessarily a r.e. subset of N. However, if A c M is a r.e. set then,
choosing a φe JV21 such that a~\A) - Wψa), we obtain

Theorem 2.3. For every r.e. set A c M ί ^ r β is a φ e N® such that A = w^,
where w^is as in (2.1).

Similarity, if

w\p) = {<«!, . . , ^ > € ^ V Tp(i, »i, . . , ^ , y)},
A y ^

fl^J, /or (al9 . . , ap)e Ap,

w?»'"aP= {(aάm), • , ^(nP>l<n!, . . ,np)ew^},

for every r.e. set A c M^ ί/zew ί/ẑ r̂  is a φe N^ such that A = w~\ where

(2-3) < - U . -K.%
(αi,..,V ί ? ι

As we have pointed out there exist special recursive manifolds in
which one can enumerate all r.e. sets. (See section 4.)

Theorem 2.4. There exist injective and recursive numerical functions h
andg such that, for all φ,ψe Nn for which w^and Wφ are r.e. sets,

(2.4) WyΌwφ = whiytφ)and w^ Πwφ =wg(ςp>φ) .

Proof. By an application of the classical Iteration Theorem from "above."

However, we are unable to establish a satisfactory form of the
Iteration Theorem for r.e. subsets of M. Since the identity lM on M is a
recursive map, we obtain easily

Theorem 2.5. (i) A set X c M is r.e. iff it is the domain of a p.r. map from
M into M.

(ii) Every r.e. set i c M is the range of a p.r. map from M into M. (The
map in question is I x = I M |X)

Remark that ranges of p.r. maps / :X —» M, X c M, where X is r.e.,
are not necessarily r.e. subsets of M. We have

(2.5) f(x)={Jf(xnua),
aeA

where each f(X Π Ua) is a r.e. subset of M; however, this does not imply
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that the union in (2.5) is a r . e . subset of M. It is important, t h e r e f o r e , to
point that the Graph Theorem holds.
Theorem 2.6. (The Graph Theorem) A partial map f:X —» M, where X is a
r.e. subset of M, is partial recursive iff its graph Gf is a r.e. subset of M2.

Proof. L e t / be p a r t i a l r e c u r s i v e . For a, βe% consider the set

(G]%β = {<»> m)\(a(n), β{m)) e G/}
= {(n, m)\m = β'ι°f°a (ή)}.

Since β~1°f°a is a p.r. numerical function, it follows that each (GJ1)a>βis a
r.e. subset of N, i.e., that G/ is a r .e. subset of M2. Conversely, if G/ is
r.e., each (G~f1)a β is a r .e. subset of N and so each β~lof°a is a p.r. func-
tion, since m = β~1ofo0ί (n)<^>{n,m) e {G]\>β.

Theorem 2.7. (i) Let f: M-* M be a recursive map and let g:M -* N be a
recursive functional. Then the composition gof\M—*N is a recursive
functional.
(ii) Let h : Np —* N be recursive and let each functional f{ :M —> AT δ^ recur-
sive. Then g:M —* N, defined by

g(x)=Hf1(x)f . * ,fP{x)),

is a recursive functional.

We conclude this section with two examples.

Example 2.4. Let S be a denumerable set and let S be the semigroup
generated by S, with concatenation as the semigroup operation. Let
a:N—* S be an indexing of S. We shall use the existence of effective
codings to introduce a corresponding indexing a : N —» S. This existence can
be formulated as follows.

Lemma 2.1. There exists a bijective map τ: iV —* U Np with following
properties: p = 1

(i) There is a recursive numerical function I, such that for all ne N
andp^l τ{n) e Np<->l(n) = p.
(ii) There exists a recursive σ:N2 -* N such that, for all n e N

τ(n) = <σ(l,n),σ(2,n), . . , σ(Z(n),w)> .

With notations of this lemma define a : N -* S by

(2.6) a(n) = α(σ(l,n))α(σ(2,w)) . . . . a(σ(l(n),n)).

Remark that, by Theorem 2.1, two singletone atlases {a} and {β} on a
denumerable set M are equivalent iff β~ι°a is a recursive permutation. We
can use this to prove

Theorem 2.9. Let {a} and {β} be two atlases on S and let {a} and {β} be the
corresponding atlases on S, defined by (2.6). Then {a} and {β} are weakly
equivalent on S iff {a} and {β} are weakly equivalent on S.

Example 2.5. One could be tempted to absolutize the local recursive
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notions by demanding that they hold on all possible atlases. For example,
let us say that a set A c M is absolutely r.e. iff it is r.e. in every
recursive manifold (M, %). Such sets exist; M, 0, all finite subsets of M
and all sets whose complements are finite. However, there does not exist
any set E c M, such that both £ and its complement are infinite, which is
absolutely recursively enumerable. To see this it is enough to consider all
recursive manifolds (N, {a}), with one-element atlases. A set E c N
(infinite, with infinite complement) will be absolutely r.e. iff, for all
permutations £ of N, p(E) is a r.e. subset of N. Trivially, such sets do not
exist.

3 Lifting and Relative Recursiveness. Let (M,50 be an RM. We know few
recursive or partial recursive maps from M into M, or into N. The identity
IM on M and every constant map are recursive; their restrictions to r.e.
subsets of M are partial recursive. And that is about all we know! This
imposes the problem of lifting recursive and partial recursive functions
(and sets, as well) from N into M. We can give only some very restrictive
positive results about such liftings.

Theorem 3.1. (The Local Lifting Theorem for Functionals) Letf:S-*N,
SC N, be a p.r. function, and let aoe% be a fixed element of the atlas 2ί on
M. Define f0 : ao(S) - N by

foM =f(^1M)'

Then f0 is a p.r. functional.

Proof. ao(S) is a r.e. subset of M, since, for every βe$ί, β"1{a0(S)) =
β~loa0(S) is the direct image of a r.e. subset of N under a p.r. function.
Also, for every βe%, fo{β{n)) *> f(<*όι(β(n))) = (foia^oβ)) («), which proves

that every fo°β is a p.r. function. Thus, f0 is a p.r. functional.

In case in which the function/ in Theorem 3.1 is recursive,the lifting/0

has Ua0 as domain and it is a p.r. functional with recursive domain. Thus,
it can be extended to a recursive functional f:M-+N, defining it to be a
constant on M - UaQ. Similarly to Theorem 3.1 one can prove

Theorem 3.2. (The Local Lifting Theorem for Maps) Let f :S — N, S c N,
be a p.r. function and let aoe% be a fixed element of the atlas $ί. Define

fo:ao(S)-*Mby

fo(ao(n)) - ao(f(n)).

Then /o is a p.r. map. In case f is recursive, f0 can be extended to a
recursive map of M into M.

Local liftings are possible also for r.e. and recursive sets. However,
the problem of global lifting depends essentially on the structure of the
atlas a. Let us call an RM <M, %) special iff, for all <α, β) e 2ί2, β~loa is the
identity on its domain (in case this domain is non-empty).

Theorem 3.3. (Global Lifting Theorem for Special Manifolds) Let <M, 2ί) be
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a special manifold. Let E be any r .e. subset of N. Then E, defined by

E = U ct(E) is a r .e. subset of M.

Theorem 3.3 shows that one can develop the Post theory of r .e. sets on
special manifolds. In the following example we exhibit some frustrations
inherent in such an enterprise.

Example 3.1. By our principle of localization, we have to adopt the
following definition: a set A c M is immune iff, for every ae%, the set
a~1(A) is an immune subset of N.

Let U denote the set of all odd members of N, and let a: N —* U be
defined by a(n) = 2n + I. For every ieN let C/f = {2z} U U. Define the
indexings α, :N —» Ui by

( 2i if n = 0

(a(n - 1) if » > 1.

Then Si = {αjzeiv} is an atlas on M = ( J C/, = iV. Let # be any immune
ι = 0

subset of ΛΓ, and let E = N - CΛ Set A = a(H) u £ . Then, for every / e N,
a~il(A) = H U {θ} is an immune subset of N. Thus, A is an immune subset of
M. Let now A ^ A u {i}, where I is the identity on N. The pair (N, 5XX> is
anew an RM. However, the set A is no more an immune subset of N, since
r ! ( A ) contains all even integers.

One could try to avoid the difficulties of a localized Post theory by the
introduction of global definitions, which, in case of the manifold (AT, {i}) will
reduce to usual definitions. In this case, the questions of cardinalities and
the adequate formulations of notions "f inite" and £ 'infinite" start to play a
significant role. Every r.e. set in (M, 2ί) has the form

Wφ = U Wφ(β) , ψeNn,

where each tv^(a) is an at most denumerable set. Let X denote the cardinal
number of X. If tf0 — $ί then Wψ — 21, and if 2ί — tf0 then each tϋψ is at most

denumerable. Since each Ua is a denumerable set and M- \J Ua, we obtain

for M the same estimates as for Wy. Thus, we can say that a Wψ is globaly
infinite iff Wy = M. Also, let us say that a set A c M i s globaly immune iff
it is globaly infinite and does not contain any globaly infinite r.e. set. We
can prove:

Theorem 3.4. Let (M, 21) have the property that M = (g, where (£ /s //z£
family of all globaly infinite r .e. stώsets of M. Then there exist 2M sets
A c Λf, swc7z #zβ£ δo//z Λ βn<i CA are globaly immune.

Proof, (σ denotes the_cardinal of the ordinal σ). Let σ be_the smallest
ordinal such that σ = M and such that, for every η < σ, η < M. Well-order
(S into an ordinal sequence {ιvξ)ξ<σ. To each ξ, < σ correspond the ordered
pair (x'ξ,yξ) of elements of M so that:
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(i) %ξ *yξ, XξβWξ and yξewξ', and (ii) both xξ and yξ are not elements of

U {xη>yη}- L e t A consist of exactly one element of each of pairs (xξ, yξ).

Then A = CA = M and both A and CA do not contain any wξ. This choice can
be done in 2M different ways.

In general, non-constructive proofs of the Post theory can be modified
in a global version of this theory for RM's. One can vary such global
versions, introducing conditions on cardinalities of sets in question, in such
a way that all global notions reduce to usual ones on (N, {i}).

A theory of Turing degrees can easily be developed on any RM. Let 8
denote the family of all total functionals f:M-+N.

Definition 3.1. (i) A functional /eδ is recursive in the functional geί , in
symbol/ -M g, iff, for every ae %,f°a -T g°a, i.e.,/°α is recursive ing°a.
(ii) A set A c M is recursive in the set B c M, iff XΛ is recursive in Xβ.

Obviously, f ^Mg iff there is φ e Nn such that for all {a,n) e% x N

(3.1) foa(n) = U{μyτΓa{φ(oi),nyy)).

Defining M-degrees in the obvious way, we conclude easily that each
M-degree [/]_is either denumerable (in case 5ί ^ tf0) or satisfies [/] ^ 2^
(in case tt0 ^ $Γ). Similar estimates are valid for the number of predeces-
sors of each M-degree. One proves easily that U ,̂ the class of all
M-degrees, is an upper semi-lattice.

The completion f of an fe 8 can be defined as the characteristic
functional of the set Cf, where, for every ae 2ί,

(3.2) a-\Cf)={n Vτί°α (n,n,y)\ .
V y )

Then [/] < [/']. In general, all pathological examples from the theory of
Turing degrees can be lifted locally to examples for M-degrees. As an
example we give:

Theorem 3.5. (Friedberg-Muchnik Theorem) There exist r.e. sets A c M
and B c M such that A ^M B and B ^MA.

Proof. If X, FC AT are the sets from the Friedberg-Muchnik theorem, any
local lifting A = ao(X) and B - ao(Y) will satisfy our theorem.

Existence of M-degrees raises so many problems relative to Turing
degrees that we cannot list them without a further and more detailed study.

4 Locally Finite RM's. The variety of conditions which can be imposed
upon an atlas 5ί cannot be compared with the corresponding variety in
topology. However, some analogies are possible. We discuss briefly one
which seems to be very promising.

Definition 4.1. A recursive manifold (L,5ί) is locally finite iff, for every
a e % , the family
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(4.1) Ka={βt%\Uan Uβ Φ φ}

is finite.

Two theorems show at once the advantages in working with locally
finite RM's.

Theorem 4.1. (The Enumeration Theorem) Let (L,%) be a locally finite
RM. A set A c L is r.e. iff A - w^, for some φeN^ , where w^ is as in
(2.1).

Theorem 4.2. In every locally finite RM (L, 2ί), a set A c L is r.e. iff it is
the range of a p.r. map from L into L.

In every recursive manifold (M,2ί) the inverse map/"1 of an injective
p.r. map / from M into M is a p.r. map, provided its range is a r.e. set,
since, for all α, βeSί, β~ι°f~ι°a = (a~1°f°β)~1. Thus, we have:

Corollary 4.2.1. In every locally finite RM, the inverse of a p.r. injective
map is a p.r. map.

We cannot say anything about direct or inverse images of r.e. sets
under p.r. maps without further restrictions. We do this by

Definition 4.2. Let <M, 5ί) be an RM. A map f \X -> M, X c M, is compact
iff, for every ae%, /"1(ί/α) can be covered by finite many local neighbor-
hoods Uβ, /3e«.

On the recursive manifold Ov, {i}), where I is the identity on N, all
maps are compact.

Theorem 4.3. Let <M, 51) be an RM, and let f :X -^ M, X a M, be a compact
p.r. map. Then:

(i) If E a M is a r.e. s#ί £/*£?? froί/z f(E) and f'1(E) are r.e. seίs.
(ii) If g: Y —» M, F c M, zs αn^ p.r. mα/>, ί/ẑ  composition g°f is a p.r. wα/>.

A theory of reducibility of sets can be built in a locally finite RM, using
compact recursive maps. Essentially, such a theory is a global theory and
its connections with M-degrees are not clear for the moment to us.

5 Atlases on N. In order to exhibit possible rewards of the local recursive
theory for the classical recursive theory, we shall now consider the notions
"simple" and "immune" under various atlases on N. Classical recursive
theory can be considered as the local recursive theory on (N, {i}), where I
is the identity on N. We have pointed out that the maximal atlas (5 on N
which contains {i} consists of all injective recursive functions with recur-
sive ranges. Local recursive theory on (JV, (S) will be called maximal. Let
9)? be the atlas on N consisting of all increasing recursive functions. Local
recursive theory on (N, 9)0 will be called semi-maximal. Finally, let 5 be
the atlas on N, consisting of all increasing recursive functions whose
ranges have finite complements. Local recursive theory on (N,5) will be
called Frechet. Obviously:
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{1} c g c m c <ε

and all four atlases are weakly equivalent on N. A set A ^ N will be called
maximally immune iff, for every ae (5, α""1^) is classically immune, semi-
maximally immune iff, for every αeϊft, α"1(A) is classically immune, and
Frechet-immune iff, for every α e δ , of"1^) is classically immune. It is
obvious how to define corresponding versions of "simple."

Theorem 5.1. A set A c N is maximally immune iff both A and is comple-
ment CA are classically immune.

Proof. If both A and CA are classically immune take any αeδ and consider
Ua^A, where Ua is the range of a. If UaC\A is finite, let ma be its maximal
member. Then CA contains the infinite recursive set {ne Ua\n > ma}. Con-
tradiction. Thus, Ua Π A is infinite and a~ι(A) is an infinite subset of N. It
must be immune. Thus, A is maximally immune. Conversely, suppose that
A is maximally immune. Then A is classically immune as well. If CA
(which is infinite) would contain an infinite recursive set, Ua(ae(ί) then
a"1 {A) would be empty, contradicting the supposition that A is maximally
immune. Therefore, both A and CA are classically immune.

Corollary 5.1.1. If S c N is classically simple, its complement CS cannot
be maximally immune. Thus, there does not exist any maximally simple
set.

The situation is similar with semi-maximal immunity.

Theorem 5.2. A set A c N is Frechet immune iff it is classically immune.

Proof. If A is classically immune take any Ua for ae δ . If A Π Ua is finite,
A is finite. Thus a."1^) is infinite and classically immune. Converse
obvious.

Corollary 5.2.1. A set S is Frechet simple iff it is classically simple.

Thus, different atlases on N appear as sieves through which fewer and

fewer notions can penetrate; formerly absolute notions become relativized

and we discover that on N one can have more than one recursive theory.
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