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ON CONSERVING POSITIVE LOGICS

ROBERT K. MEYER

Let L+ be a sentential logic without negation. One frequently wishes to
know which classically valid negation axioms can be added conservatively
to £+, in the sense that the negation-free fragment of the resulting logic L
is precisely L+. The question becomes more urgent as the strength of the
axioms to be added increases, for it frequently happens that one cannot add
together axioms sufficient for the full classical principles of double
negation, excluded middle, and contraposition conservatively.1

In the present paper, we shall develop a method which will enable us to
prove, for several interesting systems, that their negation-free fragments
are determined by their negation-free axioms. We take as the negation
axioms to be added those given by Anderson and Belnap for their system E
of entailment, namely

Al. Λ-»A

A2. (A-*1B)-> (B-*A)
A3. (A->A)->A.

We note in passing that these axioms lead in E (and in related systems) to
the theoremhood of all forms of the double negation laws, the DeMorgan
laws, contraposition laws, and laws of excluded middle and non-contradic-
tion. In short they are strong axioms, raising non-trivial questions of
conservative extension.2

1. For example, the addition of plausible axioms expressing all these principles
causes the negation-free fragment J + of the intuitionist sentential calculus to
collapse into the classical calculus K, as is well known. Cf. [7].

2. Anderson in [1] explicitly takes note of the conservative extension question for
the system E + determined by the negation-free axioms and rules of E. He lists
this as an open problem for E significant not only in its own right but on account
of relations between E and J investigated in [ 4} the problem is similarly
interesting for the Anderson-Belnap system R, which is even more intimately
related to J. Cf. [11].
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1. I assume the sentences of a positive logic L+ to be built up using binary
connectives —», &, v, without negation but perhaps with some other connec-
tives or constants, from a denumerable set of sentential variables. I
assume as the only rules of inference modus ponens for —» and adjunction
for &; the application of these rules to instances of some definite set of
axiom schemes yields as usual the set T of theorems of L+. By the
negation completion L of L+, I mean the result of adding-to the formation
apparatus, and taking as additional axioms all of the new sentences in-
which are instances of the old axiom schemes together with all instances of
A1-A3,

A. possible matrix for a logic L is a triple W = (M, O, Z>), where M is a
non-empty set, 0 is a set of operations on M corresponding to the connec-
tives, and D is a non-empty subset of (desigwmted elements of)) M. Am
interpretation a of L in 9ft is a homomorphism fram the algebra of
formulas of L, in the sense of fli], into M. A sentence A is true on the
interpretation; m in the matrix 9U if and only if α(A);e D; A is valid in 2JΪ just
in case A is true on all interpretations a of L in 9t» Finally,, 2ft is a matrix
for L (for short, an L-matrix) if and only if (i) the axioms of L are all valid
in 2& and (ii) 2tt strongly satisfies modus ponens and ad-junction-—Le.,.. for
all a,.b in Mr if both a e D and be®, a & 6 e D> and if both ίί e D and «•• -» b e By

b e D. (Where in applying these concepts we wish to call attention to* the; fact
that we are dealing with a positive logicr we suffix '+' where appropriate—
e.g., we speak of the L+-matrix 9K+ = (M+, O+, D+).)

Our stipulations imply, as is well-known, that the set T of theorems; of
what we call a sentential logic is closed under substitution for sentential
variables. Accordingly, for every logic L the canonical L-matrix 8=^
<F, O, Γ) exists, where F is the set of sentences of L, O is the set of
connectives (taken as operations on F)\ and T is the set of theor ems. The
canonical interpretation aL oi L in; 8 is the function which assigns to each
sentence of L itself.3

We note the following truism.

Lemma 1. Let L be a sentential logic. The following conditions are
equivalentr for each sentence A of L.

(1) A is a theorem of L.
(2) A is valid in every L-matrix.
(3) A is valid in the canonical L -matrix.
(4) A is true on the canonical interpretation αL.

Proof. Immediate from definitions, in the manner of [15].

2. By Lemma 1, every non-theorem A of a positive logic L+ is invalid in
some Z+-rnatrix 9K+= (M+, O+, D+). To show that the negation completion

3., I mention [ 15] for its accessibility; underlying ideas are generally credited to
Lindenfoaum, Cf. also the dissertation of D. Ulrieh; (Wayne: State University,
1967), and ttie work o l i o s .
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L of L+ is a conservative extension thereof, our strategy will be to enlarge
3W + to a possible L-matrix 331 = (M, O, D), where

(1) M = M + u M ~ , where each element of M" is the negation of some
member of M+;

(2) 0 is the set of operations of 9W+, extended to all of M, together with
negation;

(3) D+ C D , and furthermore M+ ΠD = D+.

If we can work out the details of this plan in such a way that for every
non-theorem A of L+ there exists in conformity to (l)-(3) an enlargement
9W of a matrix 9JΪ+ that rejects A, then I is a conservative extension of L+
provided that each such 9W is an L-matrix—i.e., satisfies the axioms and
rules of I + together with the negation axioms A1-A3. The reason is that, if
these conditions are fulfilled, there was-some interpretation a+ of L+ in 9W+
on which A is not true; letting a be the interpretation of I in 1 which
agrees with a+ on sentential variables (which uniquely determines a), we
see by (2) that a and a+ agree wherever the latter is defined and hence by

(3) that A is not true on a; hence by the lemma that ended section 1, A is a
non-theorem of L.

So much for general strategy; how is it to be carried out in particular
cases? As above, let L+ be a definite positive logic and 9Jί+ = (M + , O+, D+)
be an L+-matrix. The plan to enlarge 9W+ in accordance with (l)-(3) to
2JΪ = (M, O, D) requires specific answers to the following questions:

(4) How is the set of new elements M" to be determined?
(5) How is negation to be defined on M?
(6) Given that (by (2)) the operations of O are to agree with those of O+

where the latter are defined, how are these operations to be defined
when one of their arguments is in M~ ?

(7) Which elements of M" shall belong to D?

Strong negation laws, though they are a burden in attempting to carry out
syntactic proofs of conservative extension (since with strong laws new
negation-free theorems could have come in many ways), have their uses
here by forcing us to answer (4)-(7) in a way that makes them true. To
make double negation true, we stipulate the following:

(I) M~ Π M+ = φ, and there shall be a bijection * from M + onto M~ such
that, for all a e M+, -a = α* and -(«*) = a.

(I) answers (4) and (5); the need to make contraposition and the DeMorgan
laws true suggests a partial answer to (6). Let -^+, &+, v+ be operations of
O+, and let —*, &, v be corresponding operations of O. Then, * being as
in (I),

(II) For all α, b in M+,
a. α* — 6* = b — a = b — + α;
b. α * & 6 * = (flvδ)* = (αv+6)*;
c. α * v δ * = (a & b)* = (a &+£)*.
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Given a-c, the operations —», &, v are defined whenever both arguments are

in M+ or both are in M~. But suppose one argument is in Λf+ and the other

in M"; what are we to do? A simple answer is to let everything in one of

these sets intuitively to imply everything in the other; a felicitous choice

turns out to be to let the +'s imply the -'s, and the desire to attend to

elementary properties of conjunction and disjunction almost forces the

following:

(III) For all a, binM+,

a. a & δ* = 6* & a = α;

b. a v 6* = 6* v a = 6*;

c. α— 6*eZ>;

d. α*-* 6^D.

(III) takes leave of the self-evident principles that inspired (I) and (II) and

so must be considered one among alternate strategies; our justification is

that it often works and may be neatly pictured. For if, as is often the case,

3W+ is a lattice in which &+ and v+ deliver respectively greatest lower and

least upper bounds, and the order —+ is defined setting a ~+ b if and only if

a — b eD+, then the effect of (I) and (II) is to make of M~ a copy of M+ (with

the order relation reversed); (III) finishes the job of defining an extended

order ^ by making a^b whenever a eM+ and beM~; we complete the

picture by observing that if 9W+ is a (distributive) lattice, 9W is a (distribu-

tive) lattice.

(II) and (III) constituted a partial answer to (6), but we have by the way

answered (7) also. For since all +'s imply all -'s, we can only close D

under modus ponens as follows:

(IV) D = D+ΌM-.

(IV) has the advantage of being simple, but it also makes 9Jί inconsistent in

the sense that, for some ae M, ae D and -aeD, since D+ was non-empty to

begin with. This would have cost us some pain had we included the

implicational paradox A & A —> B among the negation axioms; as it is, all

that is shown is that our simple-minded approach won't work for systems

simple-minded enough to have implicational paradoxes of that sort; since in

particular the relevant logics (for which the questions we are attempting to

answer are open) don't have such paradoxes, there is no reason yet to quit.

(I-IV) already enable us to get conservative extension results for a

number of positive logics Z + . We shall not pause to derive them, however,

since for logics as strong as E the vagueness of (IΠc) and (Hid) won't do;

for unlike our other specifications, (IΠc) and (IΠd) do not yield specific

values for specific arguments. It turns out, however, that if the matrix 9Jl+

from which we began has a certain simple property, we can specify (IΠc)

and (Hid) satisfactorily for E also. As it turns out, for a wide class of

logics each non-theorem can be rejected in a matrix with this property,

here called rigorous compactness. Accordingly we devote the next section

to the study of rigorously compact matrices, proving a pretty lemma of

some interest on its own; the use of this lemma lies in this paper in the
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area of technical maneuver., however; the reader who wishes to get on with
the argument may skip the section and refer back as needed.

3. Let all of the operations of O be among &, v, —», -, o, u, where & and v
may be thought of as standard conjunction and disjunction and o and u, if
present, as intensional analogues thereof.4 A matrix 9JΪ = (M, O, D) is
rigorously compact provided that there exist elements Ie D and 0-eM - D
with the following properties:

(V) For all ae M, whenever the relevant operation is in O,
a. O ^ α = α - > / = flU/ = / U α = α v / = / v f l = /;
b. <9&α = α&(9 = Ooa = αo 0 = 0;
c. I & , a = a & ι I = O v a = a v O = a'9
d . If a Φ Θ, a —> 0 = 0 and αol = Ioa = I;

e. If α =£ J, / --> α = # u α = <z U 0 = 0;
f. -0 = /and -I = 0.

(a-f) give / and 0 many of the properties of truth-table T and F; in particu-
lar, if M = {θ, /}, what (a-f) determine are classical truth-tables (for
intensional as well as standard connectives).

A somewhat more interesting case arises when M = {θ, N, 1} and
D = {N, /}, where N is a (neuter) element distinct from 0 and /. If we
specify

(VI) N = N'8ι N = NvN = N-> N = NoN = N u N, and AT = -JV,

and otherwise let operations on Mbe determined by (a-f) above, the result
is a matrix of some importance. It is, in fact, the first distinctive
Sugthara matrix; we shall call it S3 and note that it has a natural repre-
sentation in the integers {-1, 0, +l}, with & going to min, v to max, - to
inverse.5

Apart from truth-tables, most familiar matrices are ίiot rigorously
compact. The reason lies in (Vd) and (Ve); in, e.g., Boolean or pseudo-
Boolean algebras (cf. [15]), for a such that 0 Φ a Φ /, / —» a - α, violating

4. o and U may be interpreted as intensional analogues of conjunction and disjunc-
tion respectively. They were introduced into the relevant logics by Church and
were studied in a number of dissertations, including Belnap*s, mine, and Dunn*s.
(They are the sort of connectives one studies in dissertations, though I shall give
reasons here for the postgraduate utility of o, as J^isk Jaas given reasons for that
of U.)

5. On this labeling 0 stands for N, -1 for 0, 1 for /. The original Sugihara matrix
Sω contained all the non-zero integers; a variant appears in [17] as a matrix
plausible for the Sugihara system of strict implication, though not characteris-
tic. That Sω itself is important for relevant logic became evident through my
proof that it is characteristic for the Dunn-McCaΠ system R-mingle. (That
proof is unpublished, but an algebraic counterpart Wiich links extensions of
R-mingle to finite Sugihara matrices (i.e., sub-matrices of Sω, sometimes with
0 added) is to be found in Dunn's [8].) The matrix S3 originates in [16].
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(Ve), and α—> 0- -a, violating (Vd) in the Boolean case. It is again those
rigorously compact matrices that are lattices that are most easily pictured
(cf. remarks following (III) above); it is obvious from definitions that 0 and
/ are then the lattice zero and unit; moreover 0 and / are isolated with
respect to negation and the intensional operations —», o, u, in the sense that
if one argument to an intensional operation isO or/, the value will be 0 or /
whatever the other argument. Not surprisingly, some rigorously compact
matrices have been useful for the semantics of relevant logics—e.g., in [5];
it turns out, as I prove below, that any matrix for a relevant logic may be
trivially embedded in a rigorously compact matrix.

In fact, where 9W = (M, O, D) is an I-matrix, let the rigorously com-
pact extension of m be the matrix 9»* = (M*, O*, D*), where M* is got by
adding 0 and /to M; D*, by adding / to D; O*, by extending the operations of
O to M* by (Va-Vf). 2JΪ* is a possible L -matrix, though it is not neces-
sarily an L-matrix; e.g., if L is classical sentential logic and 9tt is truth-
tables, 2JI* is a 4-element matrix (the Sugihara matrix S4, in fact) in which
the classical theorem scheme A -* (B —»Λ) is invalid; so 9Jί* is not in this
case an L -matrix.6

It would be interesting, accordingly, to characterize the class of
sentential logics L such that rigorously compact extensions of /--matrices
are themselves invariably L-matrices. My attempts to solve this problem
have all foundered on counter-examples, but a necessary condition toward
its solution is found in the following lemma.

Lemma 2. Let L be a sentential logic whose connectives are among —>, &,
v, -, o, U. Suppose that for every L-matrix 9W the rigorously compact
extension 9JΪ* just defined for Wl is also an L -matrix. Then all theorems of
L are valid in the Sugihara matrix 53.

Proof. It suffices to note that the 1-point matrix N = ({N}, O, {N}}, with
operations defined trivially by (VI), is an L -matrix for every L with the
connectives above, and that the rigorously compact extension of N is S3. So
trivially S3 is by hypothesis an L -matrix, which was to be proved.

Lest the reader feel that we have cheated by dragging in the trivial
matrix N, we present him with a corollary: Change 'every' to 'some' in the
second sentence of Lemma 2; the lemma still holds. (Essentially the idea is
that if the rigorously compact extension of any L-matrix $Jl is an L-matrix,
so is its image under the function that takes / into /, 0 into 0, and every-
thing else into N. For that function is readily observed to be a matrix
homomorphism from 9JΪ* into S3, whence the validity of the axioms of L in
S3 follows from their validity in 9DΪ*.)

Every sub-logic L of the classical sentential calculus admits a

6. A particular matrix 9JΪ0 plays a central role in [5] and in many other Anderson-
Belnap investigations into the semantics of relevant logics. 9Wo and the products
and implicative extensions thereof presented in [5] are all rigorously compact;
so is any Sugihara matrix (cf. last footnote) with least and greatest elements.
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rigorously compact I,-matrix—truth-tables, as we have noted, will do. But

what Lemma 2 and its corollary show is that we cannot in general preserve

L-matrixhood by tacking on / and 0 satisfying (Va-Vf); in particular, such

tacking on is never successful if any of (p & -p) -* q, p —> (q -* p), p —>

{q\f -q) and their ilk is a theorem of L, since all such are invalid in S3. On

the other hand, for the logics classified as relevant such tacking on always

works, an observation to be confirmed below where needed for present

purposes.

4β That interlude being over, we can return to (IΠc) and (Hid). Let I + b e a

positive logic; 9W+, a rigorously compact L+-matrix.

(VII) For all a, b e M+, * being as in (I),

a. a — δ* = /;

b. α* -> b = 0.

Having cleared that up, let 9tt = (M, O, D) be the enlargement of 901+ got by

applying stipulations (I-IV) and (VII), which we call the rigorous enlarge-

ment of 9W+.

We shall now characterize certain logics as rigorous. By the basic

positive rigorous logic BR+, we mean the logic formulated with —*, &, v

primitive, with rules of modus ponens for —* and adjunction for &, and with

the following axiom schemes:

Bl. A— A

B2. (A-> B)-* ( ( £ - , C ) - ( A - O)

B3. (B -» C) - ((A - B) - (A - C))

B4. (A & 5) —A

B5. (A& B) — 5

B6. ((A _ £) & (A - c)) - (A - (B & C))

B7. A - (AvB)

B8. ,B— (Av5)

B9. ((A - C) & (5 - O) - ((Av5) - C)7

A logic I + is a positive rigorous logic if it can be formulated with the

same connectives, axiom schemes, and rules of inference as BR+, with

7. All of the axioms of BR+ are theorems of E+, but BR+ is a much weaker sys-
tem, lacking in particular the E-valid principles of distribution of & over v,
the contraction principle Cl, and the E-theory of modality. Nevertheless BR+

(and the negation-completion BR one gets by adding A1-A3) is of some interest
as a minimal relevant logic; it has a deduction theorem (of sorts) and familiar
replacement properties hold; B4-B9, one notes, are just lattice properties.
(Cf. Anderson [2] and Curry [6].) So far as minimality is concerned, Belnap
has made a fascinating conjecture about the pure implicational system BRj de-
termined by B1-B3 and modus ponens —namely that for this system both A -*- B
and B -+ A are theorems only if A and B are identically the same sentence.
I add that though a disgustingly large number of persons have tried Belnap's
problem, it remains disgustingly open, though some clarification has been
provided by L. Powers in unpublished work.
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perhaps one or more of C1-C7 below as additional axiom schemes. A logic
L is a rigorous logic if it can be formulated as the negation completion, in
the sense of section 1 of a positive rigorous logic.

Cl. ( A - (A - £ ) ) - (A -*B)
C2. Where B is in apodictic form * (A -> (B — C)) -> (5 -> (A — C))
C3. ((A->A) -^ B) — B
C4. (NA&NB) -^N(A&B)9

C5. (A& (5vC)) - ((A&£)vC)
C6. (((A & 5) — C) & (A — (BvC))) - (A - C)
C7. (A — 5) - ((A _»£)-* (A -» 5))

We have chosen C1-C7 because their addition to BR+ produces logics in
which people have taken an independent interest. For example, add Cl and
C5 to get the positive fragment P+ of the Anderson-Belnap system P of
ticket entailment (cf. [2] and [3] for motivation). Adding C2 to P+ (alterna-
tively, adding C3 and C4) produces E+. C6 is a strengthened version of C5,
producing a system MD+.10 Adding C7 produces mingle-systems of the kind
investigated by Ohnishi and Matsumoto in [14]; in particular, adding C7 to E
produces the unpublished McCall-Dunn system E-mingle.

5. We can now prove our first principal result.

Theorem 1. Let L+ be a positive rigorous logic) then the negation com-
pletion L of L+ which results from taking A1-A3 as additional axiom
schemes is a conservative extension of L+.

Proof. We must show, for a given non-theorem A of L+, that A is a
non-theorem of L. Suppose then that A is unprovable in L+. Consider first
the canonical L+-matrix 8+ . By Lemma 1, A is not true in 8+ on the
canonical interpretation aL+.

Let 9W+ = (M+, O+, D+) be the rigorously compact extension of 8+
defined in section 3. We remark that by Lemma 2 and its incofmal corollary
at least a necessary condition that 9W+ be an Z.+-matrix is fulfilled; the
sufficient condition is that the axioms of Z.+ are valid in 2W+ and that the
rules are strongly satisfied; since 9W+ is got from 8+ by adding 0 and / , and
since 8+ is known to be an L+-matrix, this is exhaustive but easy; we do
two cases and leave the rest to the reader.

Ad B4. Show for all a, be M+y (a & b) -* a e D+. Cases. (1) a = 0. By
(V), (0 & b) - 0 = 0 — 0 =/€/)+. (2) a = I. By (V), ( / & & ) - > / = IeD+.

8. As in [10] , B is in apodictic form if B is of the form D — E or is a conjunction
of sentences in apodictic form.

9. As in [5], NA is defined as {A ~*A) —> A.

10. When added to E+. Until Dunn in [9] found a way of motivating R+ which did not
motivate C6, I thought MD more likely to prove semantically stable than E itself;
since Dunn has at least temporarily grounded that view, I have named the system
in his honor.
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(3) b = 0. By (V), (a & 0) - a = 0 -> a = I. (4) a Φ 0 and a Φ I and b= I. By

(V), (a&,I)—>a=a-*a, which is an element of 8+ and which is designated
therein by the validity in 8+ of Bl. (5) a and b are both distinct from 0 and
/. Then (a & b) —* α is by the validity of B4 in 8 + a designated element of
8 + and hence belongs to D+. Cases exhausted.

Ad adjunction. Show for all a, be D+, a hb e D+. Cases. (1) a = /. By
(Vc), / & b = beD+ on assumption. (2) b = I. Similar. (3) a Φ /, b Φ I.
Adjunction holds on assumption for 8+. Cases closed.

So 9W+ is an L+-matrix. Let 2R = (M, O, D) be the rigorous enlarge-
ment of 931+ defined at the beginning of section 4. Clearly A is not true on
the interpretation aM which agrees with aL+ on sentential variables, for
since A is negation-free (XM(A) = aL+(A) ^D by definition.

Since as just noted A is invalid in 9W, A is by Lemma 1 a non-theorem
of L provided that 9M is an L-matrix. We end the proof accordingly by
showing 3W an L-matrix, given that 9W+ is an L+-matrix. That D is closed
under modus ponens and adjunction is clear from (II) and (III). Show axioms
valid by cases. Example—let * be as in (I) and let a, b, c belong to M+;
then as part of the verification of B2 note that (a* -* b*) — ((6* -» c*) —
(a* - c*)) = (by Ila) (δ — α) — ((c -> 6) — (c - α)); but the latter belongs to
Z)4" because B3 is valid in 9W+. Similar moves validate the negation axioms
A1-A3, bearing in mind that (I-IV) and (VII) were chosen with the validation
of those axioms in mind; example—for ae M+ note that—a —> a = -(«*) —* a
(by /) = a — α, which belongs to Z)+ since Bl is valid in 2R+; this partially
confirms the validity of Al in 9W. So it goes, and the interested reader may
amuse himself by checking all the computational possibilities in like
manner.11

6. Theorem 1 answers Anderson's question affirmatively for E and for a
number of related logics. It does not, however, answer the question for R,
since the proof of Theorem 1 breaks down when one attempts to verify the
R-theorem A -> ((A -^ A) -* A). The result of this failure is that we shall
leave open the question whether R is a conservative extension of the system
R' determined by the negation-free axioms of [5].12 If we take the
connective o of intensional conjunction as an additional negation-free
primitive, however, a modification of the proof of Theorem 1 will work.13

11. A similar, though less general, argument is used to prove Lemma 3 in [11].

12. Counting v as primitive. (Added in proof: The answer is yes.)

13. There are good reasons to formulate R+ with o quite independent of the desire
to extend Theorem 1 to R. First, Dunn has showed in his dissertation (Univer-
sity of Pittsburgh, 1966) that o has a natural interpretation in the algebraic
semantics of R, which will be presented by him, Leblanc, and me in a forth-
coming paper; cf. also [ 12] , which provides a simple realization of R+ in the
natural numbers. Second, Dunn has also provided (cf. the abstract [9]) a
Gentzen-style consecution calculus for the negation-free part of R, the adequacy
of whose interpretation depends upon the presence of o. (Indeed, at writing, that
which Dunn has axiomatized is the negation-free part of R depends on Theorem
2 below, a dependence which hopefully will cease when his methods are extended
to account for negation.)
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Eschewing generality in what follows,14 we formulate the system R+ of
positive relevant implication with —*, &, v, o primitive, rules of adjunction
and modus ponens, axiom schemes B1-B9, Cl, C5, and the following:

Rl . A ^ (B — (AoB))
R2. (A -> OB - O) - ((AoB) -* C)
R3. A - ((A — B) -> 5)

The negation completion R of R + results when A1-A3 are added.15

To motivate Rl and R2, we note that the biconditional ((A & B) —> C) «->
(A -* (5 —> C)) is unacceptable in R, since it leads immediately from the
theorem (q &/>)—>/> to the fallacy of relevance (cf. [3]) q -* (p —* p). It is
convenient, however, to have a kind of conjunction which allows unre-
stricted exportation and importation.1 6 Rl and R2 do so for o.

We truck now with the appropriate modifications in the proof of
theorem 1. Let 9W+ = <M+, O+, D+) be an R+-matrix. Let M" and * be as in
(I). Let 0 and / be distinct non-members of M + u M " . We define the
relevant enlargement 98 = (M, O, D) of 9K+ as follows:

(VIII) 1. M = M+UM' \j{θ, /}.
2. D = D+UM~ U{/}.
3. 0 = {->, &, v, o, -}, where

a. 3K shall be rigorously compact—i.e., when at least one argu-
ment to an operation is 0 or /, the value shall be given by
(Va-Vf).

b. On M+ operations of 0 shall agree with corresponding opera-
tions of O+.

c. For all ae M+, -a = a* and --a = α.
d. For all a, 5eM+, (Πa-Πc) and (IΠa-IΠd) shall hold; furthermore

a-*b* = ( α o δ ) * 1 7 ; α * - * b = 0; ao δ* = δ*oα = (a — 6)*; α * o δ * = /.

The specifications (VIII) suffice to define SDί. The reader should note that
the strategy of relevant enlargement is in a sense opposite to that of
rigorous enlargement which appeared in the proof of Theorem 1, for what

14. Some generality is still attainable; the theorem to be proved still holds if we
eschew the distribution axiom C5, for example. But the situation is delicate—
we cannot eschew Cl, since it is provable from the other axioms of R+ in the
presence of A1-A3. Likewise we lose the conservative extension property if we
add C7 alone to R+, getting Dunn*s system R-mingle; for all the negation-free
axioms of R-mingle thus formulated are intuitionistically valid, but A1-A3
enable one to prove the un-Brouwerian formula {p -*• q) v {q —- p) in R-mingle.

15. o becomes redundant in R, since A o B is definable therein as -(A — - # ) ,
whence Rl and R2 become provable.

16. These motivating remarks owe much to Dunn and to Belnap.

17. This may be thought of as an answer to the question posed by (IIIc) alternative
to (Vila), which doesn't work here.
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we essentially did there was to take a matrix 8 + and to add 0 and /to get
2JΪ+; by copying 2K+ we got 3H. The technique of the present construction
may be viewed the other way round—first we copy, and then we add 0
and L1 8

We now apply the proof of Theorem 1 to R, mutatis mutandis.

Theorem 2. R is a conservative extension o/R+.

Proof. Strategy is as above, so we shall be brief. If A is a non-theorem of
R+, it is not true on an interpretation a+ in some R+-matrix 9W+—e.g., the
canonical one. Form the relevant enlargement 9JΪ of SW+ and show, by
verifying the axioms and rules of R, that 2tt is an R-matrix; the interpreta-
tion a which agrees with a+ on sentential variables agrees with α+ on all
negation-free sentences of R, so in particular A is not true on a; hence A is
a non-theorem of R. So all negation-free theorems of R are already
theorems of R+, which was to be proved.

There are two interesting corollaries to our results, which we shall
draw in conclusion. First, where I is a logic, we mean by an L-theory any
set T of sentences of L which contains all axioms of L and which is closed
under the rules of L; we write ^ A if Ae T, and we call T complete (con-
sistent) if for every sentence A of L at least one (not both) of A, A is in Γ.
Then

Corollary 1. Let L be one of the rigorous logics, or R. Then there is a
complete L-theory T such that, for all negation-free sentences A of L, \^A
if and only if J-̂ A. Furthermore, where L is E, R, or P, there is a con-
sistent and complete L-theory Γ* with this property.

Proof. We prove the corollary for the rigorous logics, leaving the reader
to handle R in like manner. Given L+, construct the matrix 9W and the
interpretation a^ as in the proof of Theorem 1, and consider the set T of all
sentences of L which are true on o^. Since 9W is an L-matrix, it is easy to
show that T is an I-theory; furthermore T is complete, since by the
construction of M at least one of a, -aeD for all aeM. Finally, the
restriction of aM to sentences of L+ is the canonical interpretation of L+;
hence by Lemma 1, hj.A iff and only if i-̂ A, for all negation-free sentences
of L.

Though by the construction of T that theory is complete, it is neverthe-
less woefully inconsistent; in fact hj, Ί?. whenever B is negation-free.
Suppose, however, that L is E, R, or P. Then application of the methods
of [13] yields the result that T has a consistent and complete sub-L-theory

18. The question arises of unifying our two techniques by adding intensional con-
junction to E + and the other rigorous logics. But I leave open the problem of
finding the right axioms for o in E + (even better, in BR+), noting only that
R1-R2 won't do.
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Γ*.19 Since Γ* must at any rate contain all theorems of L (since it's an
L-theory) and since it cannot contain any non-theorems of its extension Γ,
when A is negation-free \-j* A if and only if ι~LA. This ends the proof of
Corollary 1.

Corollary 1 sheds interesting light on the relevant logics. First, the
construction of T shows that the means of blocking the so-called "implica-
tional" paradoxes really work; the philosophical point, worked out nicely by
Dunn in his dissertation (op. cit.) is that a sentence is not necessarily
relevant to its negation. Second, the corollary shows that all of the
negation-free theorems of one of the relevant logics L may be rejected
together in a single consistent and complete l-theory Γ*. It would be nice
to find a recursive axiomatization of such a Γ*, since that would imply a
positive solution to the decision problem, not yet solved for any of the
relevant logics, for at least the negation-free fragment L+ of L.

Our final corollary slightly improves a result of [11].

Corollary 2. Let L be R or a rigorous logic. Then all negation-free
theorems of L are intuitionis tic ally valid.

Proof. It suffices to note that all negation-free axioms and rules of L
(including those for o) are intuitionistically valid, whence the corollary
follows by the conservative extension results.20
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