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1 Intvoduction. To our knowledge, the first reference to nonassociative
numbers as an independent concept is in a paper of Etherington [3], in
which it is related to some situations in biology. Recently, it has been
shown in [1] and [7] that a suitable representation of nonassociative
numbers can be a useful tool to solve some problems of coherence in the
sense of [8]. Moreover, the set of nonassociative numbers is one of the
simplest free algebras and can be used to give descriptions of nonassocia-
tive free algebras.

Formally, the theory N of nonassociative numbers bear similarities to
those of the theory of natural numbers. In [4], Evans characterized the
nonassociative numbers by a set of ‘‘Peano-like’’ axioms. In [2], these
axioms were formalized and following a suggestion of Evans, it was shown
that N is incomplete and furthermore that it is essentially undecidable. It
is natural to ask if and how N can be formalized within formal set theory,
say Zermelo-Fraenkel (ZF). In the present work we do exactly this.
Furthermore, by considering variations of this model, we show that the
axioms of N are independent.

The representations of N by coordinates in [1] and [7] offer the
possibility of constructing other models for N, but they would be more
complicated than ours. In this connection we refer to Freyd’s Adjoint
Theorem [5], one of whose consequences is the existence of free algebras,
which therefore also gives a way to construct a model for N, but this too
would be quite sophisticated.

2 A model for nonassociative numbev theory. In [2], nonassociative number
theory is defined to be the first-order theory with equality, N, having one
individual constant 1, three binary function letters corresponding to
addition (+), multiplication (-), and exponentiation and whose proper axioms
are:

(N1) % +x %1
(N2) Xy + Xp= Xg+ X4.20.0; = X3A%Xp = X,
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(N3) x,-1=ux

(N4) %y - (X2 +X3) = Xy« Xy + X+ X3

(N5) xi =X

(N6) xfz™s = xy2 - 5

(N7) (Nonassociative Induction) For any well-formed (wff) A(x) of N,
A1) A (x) (%) (Axy) A Axy) . DAy + %5)) . D (%) Alxy).

Consider the set P defined as follows: Let P, = {1} where 1 = 0 and for
each natural number = let P,,, = P, U {a, b) lae Paabe P,,}. Then let P =

nLSJP,,, where w denotes the set of positive integers. Also define a +b =

{a,b) for each ae Pand be P.
It is easy to see that under this interpretation, axioms (N1) and (N2) is
satisfied. It also follows that (N7) is satisfied. For suppose that

A1) A (%1€ P)(xz€ P)Ax) acA(xy) . D, oAlx; + %5)) .

Then of(x) for each xe P,. Furthermore, if o#(x) for each xe P, and if
x€ P,y then xe P, or x ={(a,b) for some ae P, and be P, In either case,
(x € Pyyy)) A(x). Hence (xe P,)A(x) for each new and so (xe P)A(x). Thus

SE A(1)(x1€ P)(xz€ P)(A(x1) AcAxz) . D, Axy + %5)) . O (6, € P)A(x,) .

To prove that the other axioms are satisfied under the given interpre-
tation we need only prove a theorem of nonassociative recursion in ZF.
Informally, we must prove that if f: x¥ X x — x and if a € x then there exists
a unique function t: P — x such that t(1) = a and t(m + n) =f(t(m), t(n)).
Formally, we use the notation of Hatcher [6] (cf., in particular, page 186):
F(x) is the wff of ZF which says that x is a function, D(x) is the term of ZF
which denotes the domain of a function x, I(x) is the term of ZF which
denotes the range of a function x, and x,"" x, is the term of ZF which denotes
the image of x, under the function x,.

Theorem of Nonassociative Recursion:

() (62) (F(x,) A (%) X 1(x,) C D(xy) A fxa} X 1(x,) © D(xy) A d(xy) % {x,}
CD(x1) .A. {xa, x2) €D (1) : D (Elxy)(F(x3) .A. P = D(x3) .. 1(x35) % I(x3) C D(xy).
A 1= x5, (x4)(x5)((x4, X €P. D-X:s”(x:x, Xs) <x4, Xs)

=%, (xa"x4, %3''%5)))) .

Proof. Suppose

F(x;) A 1(xy) X 1(x1) C D(xy) A {x2} X 1(x;) C D(x,y) .a. 1{xy) X {x,} C D(x,) .
A {Xq, x5 € D(xy)

and let

&= {xs Ixs eP(P x D(x1)) .A. (1, %) € X5 .A. (%6) (%) (X5) (%) (X6, X7) € X5 .
A (Xg, Xo) € X5 1 O, (g, Xg), X1 (Xq, Xg)) € xs)}

and

t=Ne.
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We first show that (v)(ue P D (E!v)({u, v) et). First suppose that {1, v) e
tav+x, Let L ={wlwetaw+(1,0)}. Then L Ct < Px D(x,). Also, since
v 4 %, (1,xpel. Furthermore, if (xg, %) e L .A. (x5 %€ L then ((xg, Xg),
%1""(%q, X)) € L since (xg, ¥s) + 1. Hence L e & and sot C L, which is a con-
tradiction, since (1,v)et and (1,v)4 L. Hence (1, v) et implies that v = x,
and we have thus proved that (E!0)((1, v)et).

Now suppose that uye P.D. (E1v,)((uy, vp) €t), e P . D, (E10,) (g, 03) e ),
and that w;e P.a.uye P. Then (E!v;))({uy, v et) and (E!v,)((ug, v5) € t) and so
(g, us), %1" (v, v)) € t. Suppose ((uy,u,), v)et, where v # x,"(v,, v,). LetK =
fuluet.a.u 4 (ug,uz, v)}. Then (1,x5) # ((uy,uz), v) and since (1,4, € t,
(1,%5) € K. Suppose (xg, Xz € K and (¥g, Xg) € K. Then ((Xg, Xg), X, {Xq, X¢)) € t.
Futhermore, ((xq, xg), X! (X7, Xo)) = ((Uy, Up), V)=>(x¢, Xg) = (U1, Upy aANA x{ Xy, Xg) =
v=>x = u; and X = u,=>(Uy, ¥ € K and (Up, xg) € K=>x7 = v; and Xg = v,=>
x1"(vy, vy) = v, a contradiction. Hence:

(%, Xg), %1 (%, X)) F ({ty, ), v) and thus ((Xs, ¥g), X¥1'"(X7, x5 € K. Also K C
t C P xD(xy) and so t € K. But this is a contradiction since ((u, u,), Vet
but (uy, uy), v) K. Hence {(u,u.), v)et=>v = x,""{v,, v) and we have thus
proved (E!v)({{u;,u), vy € t). Hence by nonassociative induction, (u)(ue P . D,
(Elv)({u, v) et) and so F(t).

We also have that D(t) C P; by definition of t and that P C D(t), by
definition of t and by nonassociative induction. Hence P = D(x;). Further-
more, if ue l(t) then u = x, or u = x,""{t"xg, t"xz) for some (xz,xg € P X P.
Hence

1(t) x 1) .C. {2, 20} U {xa} X 1lxy) U l(xy) X {wa} U 1(xy) % 1(xy)
and so I(t) X I(t) C D(x,). Finally,
vl =2x,.4. (x4)(x5)((x4,x5> €P.O. " xy, %5 = %1 (V" %4, ' %5))

by definition of t and so the theorem is proved.

Now, on the basis of this theorem, we can define operations, - and exp,
where exp(x,y) = % on P, by means of (N3)-(N4) and (N5)-(N6) respectively.
Consequently, we have

Proposition 1: (P, +, -, exp, 1) is a model for N.
3 Independence.
Proposition 2. The axioms of N are independent.

Proof. For each of the seven axioms of N, we exhibit an interpretation
of N in which all of the axioms except the given one hold:

(N1) Let the domain of interpretation be {1} and define 1+1=1-1=1'= 1.

(N2) Let w be the domain and define +, -, exp, and 1 as usual.

(N3) Let P be the domain. Define t, exp, and 1 as before and define x; -1 =1
and x1 - (X2 +X3) = Xy ¢ Xy + Xy ¢ Xy,

(N4) Let P be the domain. Define +, exp, and 1 as before and define
X1+ Xz = X1.
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(N5) Let P be the domain. Define +, ., and 1 as before and define x} = 1
and x72P3 = xF2 . 473,

(N6) Let P be the domain. Define +, -, and 1 as before and define x;2 = x,.

(N7) Let P x P be the domain, define 1 as (1, 1), (x;, ¥;) + (%, ¥o) = (%, + %,
Y1+ Yo, (%, V0 ¢ (K, Vo) = X1+ Xe, Yy - V), and (x, y1><x2’y2> = (%12, y1yz>;

where the operations indicated within the ordered pairs are those defined in
the model (P, +, -, exp, 1) of N. Let o#(x) be the wif x=1v(Ex)(Ex,)(x =
% + %). Then oA(1) and (%) (xs) (A(x1) A Alxy) D Alxy + x5)) but ~(x) A(x)
since ~4({1,2)).
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